
Steering Decision Transformers via Temporal Difference Learning

Hao-Lun Hsu, Alper Kamil Bozkurt∗, Juncheng Dong∗, Qitong Gao, Vahid Tarokh and Miroslav Pajic

Abstract— Decision Transformers (DTs) have been highly
effective for offline reinforcement learning (RL) tasks, suc-
cessfully modeling the sequences of actions in a given set of
demonstrations. However, DTs may perform poorly in stochastic
environments, which are prevalent in robotics scenarios. In this
paper, we identify that the root cause of this performance
degradation is the growing variance of returns-to-go, the signal
used by DTs to predict actions, accumulated over the horizon.
Building upon this insight, we propose an extension to DTs that
allows them to be steered toward high-reward regions, where
the expected returns are estimated using temporal difference
learning. This way, we not only mitigate the growing variance
problem but also eliminate the need for DTs to have access to
returns-to-go during evaluation and deployment phases. We show
that our method outperforms state-of-the-art offline RL methods
in both simulated and real-world robotic arm environments.

I. INTRODUCTION

The true potential of reinforcement learning (RL) is
hindered in numerous real-world robotics application domains
by the costly trial-and-error approach of online learning [1],
[2]. This problem is particularly pronounced in the field of
general robotics [3]–[5], autonomous vehicles [6], [7] and
drones [8], [9], where learning from scratch can be both
expensive and hazardous [10], [11]. Offline RL [12] holds
great promise to unlock the full potential of RL as it eliminates
the necessity of active interactions with an online environment
by enabling the use of offline datasets that are often available
across a wide range of diverse domains and settings [13], [14].
Consequently, offline RL has attracted significant attention,
aimed to learn effective and generalizable policies from offline
datasets (e.g., [13], [15]–[17]).

Decision Transformers (DTs) [18], recently introduced as
a part of a more general framework called RL via supervised
learning (RvS) [19]–[21], have shown promising performance
in offline RL tasks, outperforming conventional RL methods
such as Temporal-Difference (TD) learning [22]. DTs recast
RL problems into sequence prediction problems where the
actions are predicted based on the past trajectory and the
cumulative reward to be attained in the future, called returns-
to-go (RTG). Although the DT approach has led to great
empirical success [18], it has been shown that DT yields poor
performance for environments exhibiting highly stochastic
behaviors [23], [24] and has poor stitching ability [25], [26].

∗equal contribution with alphabetical order
This work is sponsored in part by the AFOSR award FA9550-19-1-0169,

as well as the National AI Institute for Edge Computing Leveraging Next
Generation Wireless Networks, Grant CNS-2112562.

Hao-Lun Hsu and Alper Kamil Bozkurt are with the Department of
Computer Science and the other authors are with the Department of Electrical
and Computer Engineering, Duke University, Durham, NC 27708, USA;
Emails: {hao-lun.hsu, alper.bozkurt, juncheng.dong,
qitong.gao, vahid.tarokh, miroslav.pajic}@duke.edu.

The poor DT performance in stochastic environments is the
main performance bottleneck [23] that substantially limits its
use in many robotics environments (e.g., [25], [27], [28]).

In this work, we first analyze why the performance of DTs
in stochastic environments is poor while being outstanding
in near-deterministic environments. Our analysis reveals that
the growing variance of RTG being accumulated over the
horizon is the main cause of the performance degradation in
the stochastic environments. To demonstrate the correctness
of our analysis, we empirically show that replacing RTG
with an approximated optimal value function yields higher
performance than the original DT-based approach.

Motivated by the insights from this analysis, we in-
troduce Steering Decision Transformers via Temporal
Difference learning (D2T2), which integrates DTs with
approximated TD learning. D2T2 utilizes the power of TD
learning to overcome the variance problem, reminiscent of the
highly effective collaboration between policy optimization and
TD learning in Actor-Critic (AC) algorithms [29]. Specifically,
D2T2 maps the current state into a guiding vector that steers
DTs toward high-reward regions where the expected returns
are approximated by TD learning. Through TD learning,
D2T2 addresses the variance problem of the RTG and
demonstrates significantly improved performance in stochastic
tasks compared to DTs.

To further tackle the issue of growing variance of RTG in
stochastic environment, our approach transforms long horizon
tasks into shorter ones. With the transformed learning problem,
D2T2 further improves the performance of DTs. Also, our
approach eliminates the need to manually craft RTG, a promi-
nent challenge DTs face during evaluation and deployment.

We benchmarked our approach on two illustrative stochastic
tasks (FrozenLake and Tailgate driving [24]), two stochastic
CARLA benchmarks [30], and three suites (18 tasks) from
D4RL (Gym-MuJoCo, AntMaze, and FrankaKitchen) [13] as
well as a real-world robotic arm manipulation environment
(see Fig. 1). This set of environments with tasks of different
levels of difficulty enabled us to comprehensively investigate
the capability of our approach. We showed that our approach
outperforms the state-of-the-art baselines, including both
return-conditioned and goal-conditioned methods, in almost
all stochastic environments including real-world robotic
manipulation environments.

II. DECISION TRANSFORMERS AND STOCHASTICITY

A. Problem Setup

Sequential decision-making problems can be formulated
as Markov Decision Processes (MDPs), defined by a tuple
(S,A,R, P, T), where S and A are the set of states and

Fig. 1. A UR5e trying to push a red tape to a target position.

actions respectively; R is the reward function where rt =
R(st, at) is the received reward at time step t for taking
action at in state st; P (s′|s, a) is the transition probability
for s, s′ ∈ S, a ∈ A; and T is the horizon. We consider
finite-horizon MDPs, without discounting, where the ultimate
goal is to learn an optimal policy π∗ that maximizes the
expected total return, i.e.,

π∗ ∈ argmax
π

{
Eρπ

[∑T

t=0
rt

]}
; (1)

here, ρπ is the state-action distribution under policy π and rt
is a random variable that represents the reward received by the
agent at time t. In the offline setting, the optimal policy π∗ is
learned from a fixed set of trajectories D storing the transitions
(s, a, r, s′). We note that D is usually collected over some
behavior policy πb which can be either a single policy or a
mixture of policies and they are considered unknown.

B. Decision Transformers in Deterministic Environments

At each time step t, a DT predicts an action at after
taking as input the observed trajectory and the RTG signal
Rt =

∑T
k=t rk, i.e., the cumulative return obtained from

time step t to the end of the trajectory. We note that, at time
step t, Rt is not available during evaluation and deployment
phases; however, for an offline trajectory from D, Rt can
be computed from all the subsequent rewards received after
time step t. This way, DTs aim to solve the RL problems
via supervised learning, with the following objective.

Problem 1. Train a DT that predicts the action at that is most
likely to generate a given RTG Rt based on a given trajectory
observed until time step t. In other words, let τt denote
the observed trajectory until time step t and let At+1:T :=
{at+1, . . . , aT } denote the set of future actions after time
step t; then, the objective is to accurately approximate the
following action prediction function:

f∗(τt, t, Rt):=argmax
a

{
max

At+1:T

P

(
T∑

k=t

rk=Rt

∣∣∣τt, at,At+1:T

)}
. (2)

Once trained, a DT can be used to predict actions to
obtain a desired return R∗, by setting the RTG signals as
Rt = R∗ −

∑t−1
i=0 ri where

∑−1
i=0 ri := 0. The idea here,

starting with the desired RTG R0 = R∗, is to decrease the

desired RTG by the observed reward rt after taking the action
at predicted by the DT at each time step t. If the maximum
possible return that can be obtained can be specified as the
desired reward R∗, then the DT should predict a sequence
of actions that maximizes the probability of obtaining the
maximum return.

We next show that a DT, perfectly approximating f∗ from
(2), is indeed guaranteed to return the optimal sequence
of actions that result in the maximum cumulative reward in
deterministic environments. This facilitates understanding why
the performance of DTs degrades in stochastic environments.

Proposition 1 (‘Standard’ RTGs lead to optimal trajectories
in deterministic environments). For a given deterministic
environment, a finite horizon T and an initial state s0, let
{s∗0(=s0), a∗0, r∗0 , . . . , s∗T , a∗T , r∗T } denote an optimal trajec-
tory, assumed to be unique for simplicity; and let R∗

t :=∑T
t′=t r

∗
t′ denote the optimal return, the maximum future

cumulative reward achievable from time step t onward. Then,
for any s0 ∈ S, it holds that:

1) At t = 0, a DT, perfectly approximating f∗ from (2),
will predict a∗0 if the input Rt = R∗

0. If the optimal
trajectory is not unique, then the predicted a∗0 must be
the first action of some optimal trajectory.

2) At t > 0, if the input to DT is R∗
t , then the output

action must be a∗t .
3) At t > 0, the recursively computed signal Rt = Rt−1−

rt must equal to R∗
t .

Proof of Theorem 1. Please see in Appendix.

Theorem 1 concludes that the DT outputs the optimal
trajectory almost surely in deterministic environments. The
key takeaway is that the success of DT relies on the successful
estimation of R∗

t . In deterministic environments, R∗
t can be

estimated almost surely if the initial signal is correct. However,
in stochastic environments, the variance of Rt becomes larger
as the number of steps increases. This results in a signal with
growing variance over the horizon, as we now discuss.

C. Improving Returns-to-Go Signals for Decision Transform-
ers in Stochastic Environments

An intuitive solution to reduce the RTG variance is to
use the Markov property of the environment and to build an
RTG signal that only uses st at time step t. We note that this
solution shares the same motivation and theoretical support as
the use of TD learning to approximate the cumulative future
rewards in AC [29], where the variance of the Monte-Carlo
estimates of cumulative rewards causes unstable gradient
estimation. Hence, an ideal RTG signal should provide the
maximum amount of future cumulative reward that any agent
can collect, using only the information in the current state st.
This signal can be captured by the optimal value function,
i.e., the value function of an optimal policy.

Consequently, in this work, we introduce a modified version
of DTs where the RTG is replaced with the output of the value
function from a pre-trained Q-learning model; we show that
such architecture successfully outperforms the original DT in

Transformer-based BC D2T2 D2T2

Transformer-based BC

(3)(2)(1)

Fig. 2. Overview of the D2T2 Framework. (1) D2T2 first extrapolates a
steering guidance function with transformer-based behavior cloning where the
labels for cloning are inferred from the offline dataset through TD learning.
(2) During training, D2T2 aligns the generated steering-guided action with
the observed action via supervised learning. (3) During evaluation, D2T2
employs the learned steering guidance function to generate actions that lead
to optimal returns.

stochastic tasks (see Section IV for details). This demonstrates
that TD learning can address the problem of growing variance
of the input signal to DTs in stochastic environments.

While TD learning can address the challenge of growing
variance of the RTG signal, the fundamental prediction
problem faced by DTs remains – to predict the action that
most likely leads to the desired value of cumulative reward.
This is a challenging long horizon prediction problem since
it requires consideration of all the future rewards that need
to sum up to the desired return. Consequently, we propose a
new and less challenging prediction problem for DTs: What
is the action that can most likely lead to a desired state as
early as possible? A solution to this problem can be used to
obtain the sequence of actions that lead to desired states with
high expected returns. Formally, the new prediction problem
is defined as follows.

Problem 2. For a given desired state s∗ and a sufficiently
large discount factor γ < 1, predict an action at that
maximizes the discounted probability of reaching s∗; i.e.,

at∈ argmax
a

{
max

At+1:T

T∑
t′=t+1

γt′−tP(st′=s∗,s∗ /∈τt′−1|τt, a,At+1:T)

}
(3)

where exponentially decaying γ encourages reaching s∗ faster.

With all the aforementioned analysis and motivations, in
this work, we introduce D2T2 (Fig. 2), which has an input
signal that can modify the original prediction problem of the
DTs into the less challenging one above. Notably, the input
signal employs TD learning to address the growing variance
problem and eliminates the need for the RTG upon evaluation,
another prominent challenge faced by the original DTs.

III. D2T2: DECISION TRANFORMERS STEERED VIA
TEMPORAL DIFFERENCE LEARNING

D2T2 converts the tasks of decision-making to se-
quence modeling problems via supervised learning on
an offline dataset D in order to extrapolate a policy
πθ(at|st−k:t, at−k:t−1, Ĝt−k:t), i.e., the action at at time step
t is determined not only based on the sequence of prior states
st−k:t and actions at−k:t−1 but also a sequence of steering
guidance signals (SGs), Ĝt−k:t. At each time step t, Ĝt

Algorithm 1 SG Learning for D2T2
1: Input: Training dataset D = {τ1, τ2, ..., τn} of training

trajectories, approximated optimal value function V (s)
from TD learning

2: Output: Learned function for SG generation ḡζ(st−k:t)
3: ##### Step I in Section III-A #####
4: for each τi = {s0, a0, s1, a1, ...} in D do
5: for t = 0 to T − 1 do
6: Gt=g(st) = argmaxsj{γ

j−tV (sj)|j > t, sj ∈ τi}
7: Add Gt to τi
8: end for
9: Gt = sT

10: Add Gt to τi
11: end for
12: ##### Step II in Section III-A #####
13: Behavior cloning with causal transformer by optimizing

min
ζ

1

N

∑
τi∈D

1

T

∑
st∈τi

||g(st)− ḡζ(st−k:t)||2

with optional VAE.

provides a signal that can lead πθ toward achieving a pre-
determined goal. In the original DT model, Ĝt at time step
t is Rt (i.e., the RTG at time step t). On the other hand,
D2T2 employ a novel SG that involves a distinct goal with
a shorter horizon and utilize TD learning to address the
growing variance problem of the RTG. This leads to superior
performance of D2T2 over the original DTs, especially in
stochastic tasks (as shown in Section IV). To simplify notation,
in the following sections, we use Ĝt to denote the signal
input into D2T2 that is generated by a learned parametric
function ḡζ , and Gt to denote a signal that is computed from
the information in the offline dataset D and will be used in
the training of ḡζ . We next introduce the SG used by D2T2.

A. Learnable Steering Guidance over Latent Representations

Value functions V (·) can guide DTs toward achieving
the optimal cumulative rewards, as discussed in Section II-
C. However, it requires V (·) to be near-optimal in order to
provide effective guidance, which is considered challenging in
offline RL due to the limited coverage of the state-action space
provided by the offline dataset D. To this end, we leverage
variational inference [31] to encode guidance provided by the
sub-optimal value functions into a compact and expressive
latent space; this distills the knowledge acquired from state
values as well as environmental transitions and rewards, to
formulate the final SGs. The detailed steps for generating
SGs are introduced below and summarized in Algorithm 1.

Step I. As discussed in Section II-C, compared to the value
of the desired future cumulative rewards, a desired nextstate
can potentially decrease the horizon of the decision problem,
thus improving the learning efficiency. Accordingly, the first
step toward constructing the SGs is to generate a mapping
function g : S → S such that each state st ∈ τi is mapped
to a corresponding desired next state Gt = g(st) ∈ τi that

has the maximum value, i.e.,

Gt = g(st) = argmax
sj

{γj−tV (sj)|j > t, sj ∈ τi}; (4)

here, V (·) is an approximated optimal value function that
estimates the maximum expected cumulative return from
state s, i.e., V (s) ≈ Eρπ∗ [

∑T
k=0 γ

krt+k+1|st = s] where
π∗ is the optimal policy. In practice, although one can use
any temporal difference (TD) algorithms for optimal value
function approximation, the implicit Q-learning (IQL) [32]
remains a compelling algorithm for learning V (·); thus, we
alternatively use Q-learning for descriptions of our methods
and experiments. We note the purpose of the discount factor
γ in (4) is to motivate early achievement of the desired next
state. In other words, if two future states have the same value,
then the one that appears earlier in the trajectory is more
desired as this can help improve the future cumulative reward.

Step II. As discussed in Section I, a drawback of the
original DTs is that the RTGs are not available during
evaluation/deployment after the training is completed, as
they depend on future information. Hence, they become
hyper-parameters to be tuned which may lead to unstable
performance. The guidance provided from the value function,
following (4), faces the same limitation as it depends on the
value of future states. To address this, we employ behavior
cloning with causal transformer [18] (Fig. 2) to learn a
function ḡζ : Sk → S that extrapolates the function g(·)
by minimizing the squared loss, i.e.,

min
ζ

1

N

∑
τi∈D

1

T

∑
st∈τi

||g(st)− ḡζ(st−k:t)||2, (5)

where ζ is the parameters of the causal transformer, N is
the number of trajectories in the offline dataset D, and T
is the horizon of the environment. Consequently, at each
time step t, given the sequence of prior states st−k:t, the
SG Gt = gt(st) ≈ ḡζ(st−k:t) can be obtained without
leveraging any information from the future. We choose a
causal transformer over other architectures (e.g., MLP, RNN,
LSTM) to ensure that the model has access to the whole
long-horizon sequence. Here, we specifically choose the
transformer architecture as they have shown to be effective
in processing long input sequences [33].

Moreover, given that the approximated optimal value
function V (·) is highly likely to be sub-optimal if the offline
dataset does not comprehensively cover the state and action
space [12], its approximation errors can be propagated into
ḡζ(·) whose training requires V (·) as shown by (5) and (4).
Thus, directly using ḡζ(·) as the SG could be problematic, as
the errors from the previous two steps can both be propagated
into the DT, in addition to the supervised learning error from
the training itself. To resolve this, we leverage variational
inference [31] to concentrate the learned knowledge into a
compact and expressive latent space via a variational auto-
encoder (VAE), leading to Ĝt ∼ qψ(·|ḡζ), where qψ(·|ḡζ) is
the approximated posterior that encodes ḡζ to the latent space.

In practice, we observe that variational inference is not
always necessary. For example, for complex tasks with

30m 40m 50m
Stop Sign

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Re
tu

rn

D2T2
IQL
SPLT
DT
VDT
BC
TT

(a) Tailgate Performance

0.2 0.3 0.4 0.5
probability

0.2

0.3

0.4

0.5

0.6

Re
tu

rn

D2T2 (ours)
IQL
SPLT
DT(t)
DT(m)
BC
TT

(b) Lake Performance

Fig. 3. (a) Tailgate task performance with different stop signs (data
optimality): the smaller the stop sign is, the higher the crash rate of the data
is. (b) FrozenLake task performance with different probability (stochasticity):
the smaller the x-value is, the larger the stochasticity is.

complicated environment dynamic or high-dimensional states,
a VAE can improve the performance. On the other hand, for
simple tasks, the negative impact induced by the learning error
of the VAE may outweigh the benefits brought by the latent
space. In this case, variational inference should be employed
with caution. Hence, the SG inputs of D2T2 in Fig. 2 can
be either Ĝt = ḡζ(st−k:t) or Ĝt ∼ qψ(·|ḡζ), depending on
whether or not a latent representation is employed. Please
refer to Appendix VIII for additional details.

In our experiments in Section IV, we explicitly report
which SG is used by D2T2.

B. D2T2 Training & Evaluation

In contrast to the original DT where the RTGs are not
available upon evaluation/deployment, the SG of D2T2 can be
determined without the need for future information following
the design above. Specifically, at step t, the inputs to D2T2
can be formulated as

τinput = (s0, a0, Ĝ0..., st−1, at−1, Ĝt−1, st, Ĝt), (6)

with Ĝt ∼ qψ(·|ḡζ(st−k:t) following the step above where
ḡ(st−k:t) is deterministic as introduced above. Consequently,
a D2T2 can be trained with only the offline trajectories τi ∼ D
to minimize the squared loss between the actions provided
in the offline trajectory, a ∼ τi, and the actions predicted
from D2T2, at = πθ(st−k:t, at−k:t−1, Ĝt−k:t), following the
regular supervised learning schema as in the original DT [18].
Upon evaluation, a D2T2 takes as the input the sequence (6)
(up to the current step t), and subsequently predicts the action,
following at = πθ(st−k:t, at−k:t−1, Ĝt−k:t). The training and
testing stages are summarized in Algorithm 2 in Appendix.

IV. EXPERIMENTS

In this section, we provide a comprehensive empirical study
of our method and compare it with state-of-the-art methods.
We consider a broad range of tasks, including 2 illustrative
stochastic examples: Tailgate driving and FrozenLake; 2
stochastic CARLA benchmarks; 3 suites from D4RL: Gym-
MuJoCo, AntMaze, and FrankaKitchen [13]; and a real-world
robot arm manipulation experiment. We first demonstrate the
implications of our analysis in Section II-B, which motivates
the integration of DT with the value function, which we refer
to as VDT. We then focus on demonstrating the competitive
performance of our proposed algorithm D2T2.

We mainly compare methods that follow a similar ar-
chitecture branch: Decision Transformer (DT) [18], Trajec-
tory Transformer (TT) [34], SeParated Latent Trajectory
Transformer (SPLT) [24], and transformer-based behavior
cloning (BC) [18]. We also include a strong offline Q-learning
(IQL) for comparison. For D4RL tasks, we compare methods
that are representative of both Q-learning and RvS. In the
former category, we compare Conservative Q-learning (CQL)
[35] and IQL. In the latter category, we consider both (1)
fully-connected architectures: RvS-R and RvS-G (learning
with either conditioned on goals or rewards [22] and (2)
transformer-based models: DT, TT, SPLT, and transformer-
based behavior cloning (BC). In addition, we also include
mildly conservative Q-learning (MCQ) [36] to Gym-MuJoCo
suite and contrastive RL (CL) [37] to AntMaze-v2 suite as
strong baselines. We note that D2T2 employs VAE in all
the tasks other than the two illustrative tasks (Tailgate and
FrozenLake) due to their simplicity. Due to space limitation,
please refer to Appendix IX for detailed experimental setup,
ablation studies, and additional experimental results.

Tailgate Driving. We conducted experiments on the Tail-
gate driving task to verify our theoretical insights that motivate
the integration of TD with DT. The goal of the tailgate driving
problem is to maximize the ego vehicle’s distance within one
episode following a leading vehicle in the same direction on a
one-dimensional path. We collected trajectories following the
prior work [24] for an autonomous driving problem whose
state space is the absolute position and velocity of both the
ego and leading vehicles, s ∈ [ex, ev, lx, lv], and the action
space is the acceleration of the ego vehicle a ∈ [−1, 1].
The leading vehicle either begins hard-braking at the last
possible moment to stop just before the d mark meters and
then resume going forward; or speeds up to the maximum
speed and continue for the entire trajectory, which makes this
scenario a stochastic event to the ego vehicle.

We collected around 100k samples for each dataset with
different d as the stop sign and its corresponding crash rate as
the data quality, which is shown in Table V in in Appendix.
The reward for each time step records the normalized distance
dn = d

dmax
, where d is the actual distance the ego vehicle

moving forward and dmax is the maximum moving distance
between the ego and leading vehicles considering the safe
following distance. We report the task performance with
standard error in Fig. 3(a). Our empirical results show that
VDT improves DT substantially, confirming our findings in
Section II-C. Note that DT here has already been hand-tuned.
The DT conditioned on the maximum return in the dataset
performs worst, which is omitted. Our empirical results in
this stochastic problem show that D2T2 has a significantly
higher return compared with the original DT and VDT, which
supports our previous argument. Therefore, we focus on D2T2
as our method for the remaining experiments.

Stochastic Frozenlake. Frozenlake environment with
stochastic transitions is visualized in Fig. 4 in Appendix.
We conducted experiments on the datasets with different
probabilities p of moving toward the intended direction and

TABLE I
SUCCESS RATE (%) AND SPEED (M/S) ON NOCRASH BENCHMARK∗

Metric BC TT DT(m) DT(t) IQL SPLT D2T2
Success (%) 92.2 85.4 89.7 94.2 97.5 95.1 98.3

±0.5 ±2.5 ±6.2 ±2.9 ±0.4 ±2.6 ±0.8
Speed (m/s) 2.44 2.62 2.70 2.76 2.79 2.75 2.81

±0.01 ±0.30 ±0.06 ±0.03 ±0.06 ±0.09 ±0.11
∗We evaluated D2T2 with the baselines for 10 seeds through all
25 routes in the unseen Town02. DT(m) is DT conditioned on the
maximum return in the dataset. DT(t) is DT with a hand-tuned
conditional return. For both Success (%) and Speed (m/s) a larger
value is better.

TABLE II
MULTIPLE METRICS ON LEADERBOARD BENCHMARK∗

Metric BC TT DT(m) DT(t) IQL SPLT D2T2
Total score 53.4 56.2 62.3 68.6 63.6 65.8 70.2

±7.1 ±8.5 ±11.3 ±4.5 ±6.8 ±4.3 ±4.5
Completion (%) 94.2 70.6 95.6 98.3 100.0 93.5 100.0

±4.5 ±10.2 ±4.8 ±2.7 ±0.0 ±8.6 ±0.0
Collision (/km) 4.1 2.8 1.8 1.7 2.3 2.5 1.8

±1.2 ±2.2 ±1.7 ±0.5 ±0.5 ±0.3 ±1.3
Infraction (/km) 2.4 0.0 2.6 2.5 2.2 2.2 2.1

±2.2 ±0.0 ±0.9 ±0.8 ±0.7 ±1.3 ±0.8
∗We evaluated D2T2 with the baselines for 10 seeds and on
Leaderboard devtest routes. DT(m) is a DT conditioned on the
maximum return in the dataset. DT(t) is a DT with a hand-tuned
conditional return. For both Total Score and Completion (%) a larger
value is better, while for Collision (/km) and Infraction (/km) a
smaller value is better. A larger performance value is better.

the probability 1 − p of moving to either between two
sides of the intended directions to evaluate with different
levels of stochasticity. The lower is p, the more stochastic
is the environment. We varied p value for data collection
and evaluation. The offline trajectories have the length of
100 and are acquired via training a DQN [38] policy in gym
environment. In Fig. 3(b), we show that our D2T2 earns higher
returns among all stochasticity levels compared with most
of the baselines, including SPLT which is state-of-the-art in
solving stochasticity issues of DT. DT(m) is DT conditioned
on the maximum return in the dataset. DT(t) is DT with a
hand-tuned conditional return. The standard error is small
enough for all methods to be ignored. We observe that IQL is
a strong comparison for really low p while our performance is
still competitive. Also, when p increases to 0.6, which is still
not a large probability, D2T2 outperforms IQL significantly.

CARLA NoCrash Benchmark. We evaluate our method
on the CARLA NoCrash [30], [39] benchmark whose goal is
to navigate in a suburban town to a desired goal waypoint from
a predetermined start waypoint without crash, considering
safety as a priority [6], [40] in tasks such as autonomous
driving. The benchmark consists of 2 towns Town01 and
Town02, each with 25 different routes. We trained our method
D2T2 as well as all the baselines on the Town01 dataset
and then evaluated them in the unseen Town02 routes. In
Table I, we present 2 metrics for comparison, observing
that DT(t) with tuning target return RTG does improve

success rate and speed against DT(m) with maximum return
in the dataset. However, it would be difficult to estimate the
best target return without online evaluation or prior domain
knowledge, especially since the training and testing are in
different scenarios, i.e., Town01 and Town02. By contrast,
D2T2 leverages the benefit of Q-learning with a properly
designed guidance signal, leading to both the highest success
rate and speed and outperforming IQL.

CARLA Leaderboard Benchmark. We next evaluated our
method on a modified version of the CARLA Leaderboard
benchmark following the setting in [24]. Compared with
NoCrash Benchmark, this task involves more maneuvers
like lane-changing in urban and highway situations as well
as 8 additional variables. The results are summarized in
Table II. Total scores are calculated with route completion
rate, collisions per kilometer (/km), and infractions (/km),
which is the main indicator of the performance for all methods.
Among all the baselines, we would like to emphasize the high
performance in DT(t) is similar to the NoCrash benchmark in
that manually tuning the target return is arbitrary. Although
SPLT is able to disentangle the world dynamics and the
agent policy, resulting in a competitive performance in such
complexity of CARLA Leaderboard scenarios, our better
total score indicates that steering guidance is a more proper
condition variable.

D4RL Suites. As discussed in Section II-B, DT has
competitive performance in deterministic or near-deterministic
tasks, such as the ones in D4RL suites. From Table III,
we observe that D2T2 outperforms the original DT with
a competitive performance compared to strong offline Q-
learning methods (e.g., IQL and CQL) in MuJoCo tasks.
We report the other complete results with standard error for
AntMaze and FrankaKitchen tasks in Table XIII, and XII in
Appendix respectively. Specifically, D2T2 outperforms DT in
AntMaze environments significantly in both Table XIII and
Fig. 5 in Appendix. We believe that D2T2 indirectly improves
its stitching ability (i.e., learning the optimal policy from sub-
optimal trajectories) by integrating with Q-learning [25].

Real-Word Experiment on UR5e Robot Arm. Finally,
we mainly compare our D2T2 with vanilla DT. We conducted
a stochastic pushing task for UR5e robot arm, which aims to
push an object to a target position. We formulate this task
as an MDP with both action and state space as the positions
of the current object and the target as shown in Fig. 1. The
reward function is the distance between the object and the
target. Specifically, during the data collection using the UR5e
robot arm, we started by detecting the current object, the
positions of the target, and the end effector of the robot arm
via QR codes. We then divided the whole motion planning
into 4 steps with the input states as the concatenation of
the positions of the current object and the target: the end
effector (1) approaches the object from above, (2) it goes
down to the same height as the object, then (3) pushes the
object to the target’s position, and lastly (4) goes up to the
previous height. In practice, we generated offline near-optimal
trajectories upon expert demonstrations with object and target

offsets in execution. We then added the action noise given
the current state (object and target position) to increase the
stochasticity. In addition, with probability p ≤ 0.3, the action
is not executed effectively to change the state. If the object
does not reach the target, the robot arm resets and tries again
with up to 10 steps.

We eventually trained our collected offline dataset (i.e., 104
samples) on both DT and D2T2 and then re-deployed both
policies on the UR5e robot arm. We evaluated both approaches
with 12 different initial states via 3 different criteria: reward,
success rate (i.e., whether achieving the target eventually),
steps (i.e., number of steps to achieve the target). In Table IV,
we show that D2T2 outperforms DT from all criteria and
with a smaller variance. In addition, DT could not accurately
predict how to approach the object in one of the initial states
no matter how many steps it is given.

V. RELATED WORK
A. Offline Reinforcement Learning

Offline RL offers the advantage of learning policies solely
from pre-existing data, eliminating the need for real-time
interaction, which can be both hazardous and resource-
intensive in real-world problems. However, mitigating the
distribution shift inherent in offline RL, stemming from
disparities between learned policies and behavior policies, is
crucial. Previous studies have tackled this challenge through
explicit constraints [41], [42] or implicit mechanisms [32].
Additionally, various approaches have been proposed to
regularize dynamic programming [35], [43] to alleviate
deviations from the behavior policy.

B. Reinforcement Learning as Sequence Modeling
On the other hand, the utilization of transformer architec-

tures has gained prominence in addressing RL challenges.
DTs [18] and Trajectory Transformer (TT) [34] stand out
for their adeptness in fitting reward-conditioned policies
and modeling trajectory distributions, respectively. Moreover,
advancements have extended DTs to tackle offline safety
settings [44], [45]. As the complexity of multi-task and
long-horizon scenarios escalates, researchers have proposed
solutions aimed at handling either multiple tasks [46], [47]
or sub-tasks within a single overarching task [48].

In addition, several works target the vulnerability of DT
with stochasticity issues. For example, ESPER [23] learns
trajectory representations disentangled from environmental
dynamics via adversarial clustering and SPLT [24] learns
environmental stochasticity and agent policy separately with
two transformers. Similarly, DoC [49] predicts the trajecto-
ries’ representations by minimizing the mutual information
between the representation and the environment transition.

For robotics applications in practice, the architecture of DT
is flexible according to the purpose. For instance, the inputs
are only states and actions while pre-training varying terrain
parameters with privileged information [50]. Instead of having
the RTG as a part of inputs, skill prediction modules [51] and
embodiment [52] serve as additional inputs. The work [53]
divides the state into images and texts as two separate inputs.
None of them keeps the RTG as the guidance.

TABLE III
AVERAGED NORMALIZED SCORES ON GYM-MUJOCO SUITE∗

Environment BC RvS-R DT TT SPLT CQL IQL MCQ D2T2

halfcheetah-Med-Expert-v2 59.9 92.2 86.8±1.3 95.0±0.2 91.8±0.5 91.6 86.7 87.5±1.3 90.9±0.8
walker2d-Med-Expert-v2 36.6 106.0 108.1±0.2 101.9±6.8 108.6±1.1 108.8 109.6 114.2±0.7 109.9±1.7
hopper-Med-Expert-v2 79.6 101.7 107.6±1.8 110.0±2.7 104.8±1.1 105.4 91.5 111.2±0.1 114.8±0.5

average-Med-Expert-v2 58.7 100.0 100.8 102.3 100.7 95.9 101.9 104.3 107.1
halfcheetah-Med-Replay-v2 4.3 38.0 36.6±0.8 41.9±2.5 42.7±0.3 45.5 44.2 56.8±0.6 62.5±0.2
walker2d-Med-Replay-v2 36.9 60.5 66.6±3.0 82.6±6.9 57.7±4.7 77.2 73.9 91.3±5.7 101.8±5.2
hopper-Med-Replay-v2 27.6 73.5 82.7±7.0 91.5±3.6 75.0±23.8 95.0 94.7 101.6±0.8 92.8±4.7

average-Med-Replay-v2 22.9 57.3 62.0 72.0 58.5 72.6 70.9 83.2 85.7
halfcheetah-Medium-v2 43.1 41.6 42.6 ±0.1 46.9±0.4 44.3±0.7 44.0 47.4 64.3±0.2 79.6±0.8
walker2d-Medium-v2 77.3 71.7 74.0±1.4 79.0±2.8 77.9±0.3 72.5 78.3 91.0±0.4 89.2±0.4
hopper-Medium-v2 63.9 60.2 67.6±1.0 61.1±3.6 53.4±6.5 58.5 66.3 78.4±4.3 74.8±3.4

average-Medium-v2 61.4 57.8 61.4 62.3 58.5 58.3 64.0 77.9 81.2

average-Gym-v2 47.7 71.7 74.7 78.9 72.9 77.6 76.9 88.5 91.3
∗We use the results from the TT paper [34] for BC, DT, and TT and the results from the IQL paper [32] for CQL and IQL. For RvS-R [22],
SPLT [24], and MCQ [36], we use the results reported from their own papers respectively. We report the mean and standard error for our
method over 10 seeds. The top scores are in bold.

C. Integration of Decision Transformers and Q-learning

Alternatively, we incorporate DTs with Q-learning to
alleviate the stochasticity problem for DTs. Several works
have tried to combine DTs with dynamic programming (e.g.,
Q-learning). Among them, some work [25], [28] relabel RTG
in DTs with precomputed conservative value functions to
improve DT’s stitching ability. EDT [26] adjusts the context
length of DT with interpolation between trajectory stitching
and behavior cloning. Q-transformer [54] uses a Transformer
to provide a scalable representation for Q-functions trained via
offline TD backups. However, none of them tackle stochastic
tasks. Another recent work WT [55] aims to utilize behavior
cloning to mitigate stitching and instability initialization
without considering the learned value functions.

VI. CONCLUSION

In this work, we investigated the Decision Transformers to
understand their strengths and weaknesses. Specifically, our
analysis provided an explanation for the strong performance
of DTs in deterministic task, revealing a potential reason for
its less competitive performance in stochastic environment,
and suggesting two potential improvements. Motivated by
these insights, we introduced a new approach, D2T2, with
a TD-learned guiding signal that significantly improves the
performance of DTs in stochastic tasks. On a variety of
environments and tasks, our method outperformed state-of-the-
art methods, revealing the promising potential of combining
DTs with TD learning.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, pp. 1238–1274, 2013.

[2] N. Gürtler, S. Blaes, P. Kolev, and et al, “Benchmarking offline
reinforcement learning on real-robot hardware,” in International
Conference on Learning Representations, 2023.

TABLE IV
REWARD, NUMBER OF STEPS FOR COMPLETION, AND SUCCESS RATE (%)

ON REAL ROBOT MANIPULATION TASK∗

Metric DT D2T2
Reward −0.157± 0.228 −0.110± 0.111

Success (%) 91.7± 27.64 100± 0

Steps 4.83± 7.71 3.08± 1.93
∗We evaluated D2T2 with a DT on 12 different initial states. For
both Reward and Success (%) a larger value is better while we aim
to complete the task with a smaller number of steps.

[3] N. Sontakke, H. Chae, S. Lee, T. Huang, D. W. Hong, and S. Ha,
“Residual physics learning and system identification for sim-to-real
transfer of policies on buoyancy assisted legged robots,” in 2023
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2023.

[4] L. Smith, J. C. Kew, T. Li, L. Luu, X. B. Peng, S. Ha, J. Tan,
and S. Levine, “Learning and adapting agility skills by transferring
experience,” Robotics: Science and Systems (RSS), 2023.

[5] J. Dong, H.-L. Hsu, Q. Gao, V. Tarokh, and M. Pajic, “Ro-
bust reinforcement learning through efficient adversarial herding,”
https://arxiv.org/abs/2306.07408, 2023.

[6] L. Wen, J. Duan, S. E. Li, S. Xu, and H. Peng, “Safe reinforcement
learning for autonomous vehicles through parallel constrained pol-
icy optimization,” in 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), pp. 1–7, IEEE, 2020.

[7] L. Wang, J. Liu, H. Shao, W. Wang, R. Chen, Y. Liu, and S. L.
Waslander, “Efficient reinforcement learning for autonomous driving
with parameterized skills and priors,” Robotics: Science and Systems
(RSS), 2023.

[8] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforcement
learning,” Nature, 2023.

[9] H. Hsu, H. Meng, S. Luo, J. Dong, V. Tarokh, and M. Pajic, “Reforma:
Robust reinforcement learning via adaptive adversary for drones flying
under disturbances,” in 2024 International Conference on Robotics and
Automation (ICRA), IEEE, 2024.

[10] A. Kumar, A. Singh, S. Tian, C. Finn, and S. Levine, “A workflow for
offline model-free robotic rl,” in Conference on Robot Learning, 2021.

[11] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine, “Cog:
Connecting new skills to past experience with offline reinforcement
learning,” in Conference on Robot Learning (CoRL), 2020.

[12] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” 2020.

[13] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl:datasets
for deep data-driven reinforcement learning,” in arXiv:2004.07219,
2020.

[14] J. Liu, Z. Zhang, Z. Wei, and et al, “Beyond ood state actions:
Supported cross-domain offline reinforcement learning,” in Annual
AAAI Conference on Artificial Intelligence (AAAI), 2024.

[15] A. Padalkar, A. Pooley, A. Jain, and et al, “Open x-
embodiment: Robotic learning datasets and rt-x models,”
https://arxiv.org/abs/2310.08864, 2023.

[16] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper,
S. Singh, S. Levine, and C. Finn, “Robonet: Large-scale multi-robot
learning,” in CoRL 2019: Volume 100 PMLR, 2019.

[17] A. Brohan, N. Brown, J. Carbajal, and et al, “Rt-1: Robotics transformer
for real-world control at scale,” Robotics: Science and Systems, 2023.

[18] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” in Advances in Neural
Information Processing Systems, vol. 34, pp. 15084–15097, 2021.

[19] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel, “Goal-conditioned
imitation learning,” Advances in Neural Information Processing Systems,
2019.

[20] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. M. Devin, B. Eysenbach, and
S. Levine, “Learning to reach goals via iterated supervised learning,”
in International Conference on Learning Representations, 2021.

[21] F. Codevilla, M. Muller, A. Lopez, V. Koltun, and A. Dosovitski,
“End-to-end driving via conditional imitation learning,” in 2018 Int.
Conf. on Robotics and Automation (ICRA), p. 4693–4700, IEEE, 2018.

[22] S. Emmons, B. Eysenbach, I. Kostrikov, and S. Levine, “Rvs: What
is essential for offline rl via supervised learning?,” in arXiv preprint
arXiv:2112.10751, 2021.

[23] K. Paster, S. McIlraith, and J. Ba, “You can’t count on luck: Why
decision transformers fail in stochastic environments,” in arXiv preprint
arXiv:2205.15967, 2022.

[24] A. R. Villaflor, Z. Huang, S. Pande, J. M. Dolan, and J. Schneider,
“Addressing optimism bias in sequence modeling for reinforcement
learning,” in Proceedings of the 39th International Conference on
Machine Learning, vol. 162, pp. 22270–22283, PMLR, 2022.

[25] T. Yamagata, A. Khalil, and R. Santos-Rodrı́guez, “Q-learning deci-
sion transformer: Leveraging dynamic programming for conditional
sequence modelling in offline RL,” in International Conference on
Machine Learning, 2023.

[26] Y.-H. Wu, X. Wang, and M. Hamaya, “Elastic decision transformer,”
in 37th Conference on Neural Information Processing Systems, 2023.

[27] A. Correia and L. A. Alexandre, “Hierarchical decision transformer,”
in 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1661–1666, 2023.

[28] D. Lawson and A. H. Qureshi, “Control transformer: Robot navigation
in unknown environments through prm-guided return-conditioned
sequence modeling,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), p. 9324–9331, IEEE, 2023.

[29] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, 1999.

[30] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “An open
urban driving simulator,” in Conference on robot learning, Proceedings
of Machine Learning Research, pp. 1–16, PMLR, 2017.

[31] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[32] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” in International Conference on Learning
Representations, 2022.

[33] V. Melnychuk, D. Frauen, and S. Feuerriegel, “Causal transformer for
estimating counterfactual outcomes,” in International Conference on
Machine Learning, pp. 15293–15329, PMLR, 2022.

[34] M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as one
big sequence modeling problem,” in Advances in Neural Information
Processing Systems, 2021.

[35] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning
for offline reinforcement learning,” in arXiv:2006.04779, 2020.

[36] J. Lyu, X. Ma, X. Li, and Z. Lu, “Mildly conservative q-learning for
offline reinforcement learning,” in Advances in Neural Information
Processing Systems, 2022.

[37] B. Eysenbach, T. Zhang, R. Salakhutdinov, and S. Levine, “Contrastive
learning as a reinforcement learning algorithm,” in arXiv preprint
arXiv:2206.07568, 2022.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” in arXiv preprint arXiv:1312.5602, 2013.

[39] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the
limitations of behavior cloning for autonomous driving,” in Proc. of
the IEEE/CVF Int. Conf. on Computer Vision, pp. 9329–9338, 2019.

[40] H.-L. Hsu, Q. Huang, and S. Ha, “Improving safety in deep reinforce-
ment learning using unsupervised action planning,” in 2022 Int. Conf.
on Robotics and Automation (ICRA), p. 5567–5573, IEEE, 2022.

[41] A. Kumar, J. Fu, G. Tucker, and S. Levine, “Stabilizing off-policy
q-learning via bootstrapping error reduction,” in arXiv preprint
arXiv:1906.00949, 2019.

[42] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning, p. 2052–2062, PMLR, 2019.

[43] S. Fujimoto, D. Meger, and D. Precup, “Offline reinforcement learning
with fisher divergence critic regularization,” in International Conference
on Machine Learning, Proceedings of Machine Learning Research,
p. 5774–5783, PMLR, 2021.

[44] Q. Zheng, A. Zhang, and A. Grover, “Online decision transformer,” in
Int. Conf. on Machine Learning, pp. 27042–27059, 2022.

[45] Q. Zhang, L. Zhang, H. Xu, L. Shen, B. Wang, Y. Chang, X. Wang,
B. Yuan, and D. Tao, “Saformer: A conditional sequence modeling
approach to offline safe reinforcement learning,” in International
Conference on Learning Representations, 2023.

[46] K.-H. Lee, O. Nachum, M. S. Yang, L. Lee, D. Freeman, S. Guadarrama,
I. Fischer, W. Xua, E. Jang, H. Michalewski, and I. Mordatch, “Multi-
game decision transformers,” in Advances in Neural Information
Processing Systems, pp. 27921–27936, 2022.

[47] M. Xu, Y. Lu, Y. Shen, S. Zhang, D. Zhao, and C. Gan, “Hyper-decision
transformer for efficient online policy adaptation,” in International
Conference on Learning Representations, 2023.

[48] S. G. Konan, E. Seraj, and M. Gombolay, “Contrastive decision
transformers,” in Proceedings of The 6th Conference on Robot Learning,
vol. 205 of Proceedings of Machine Learning Research, pp. 2159–2169,
PMLR, 14–18 Dec 2023.

[49] M. Yang, D. Schuurmans, P. Abbeel, and O. Nachum, “Dichotomy of
control: Separating what you can control from what you cannot,” in
International Conference on Learning Representations, 2023.

[50] H. Lai, W. Zhang, X. He, C. Yu, Z. Tian, Y. Yu, and J. Wang, “Sim-
to-real transfer for quadrupedal locomotion via terrain transformer,” in
2023 Int. Conf. on Robotics and Automation (ICRA), IEEE, 2023.

[51] X. Huang, D. Batra, A. Rai, and A. Szot, “Skill transformer: A
monolithic policy for mobile manipulation,” in Proc. of the IEEE/CVF
International Conference on Computer Vision, pp. 10852–10862, 2023.

[52] C. Yu, W. Zhang, H. Lai, Z. Tian, L. Kneip, and J. Wang, “Multi-
embodiment legged robot control as a sequence modeling problem,”
in 2023 Int. Conf. on Robotics and Automation (ICRA), IEEE, 2023.

[53] A. Hu, L. Russell, H. Yeo, Z. Murez, G. Fedoseev, A. Kendall,
J. Shotton, and G. Corrado, “Gaia-1: A generative world model for
autonomous driving,” in arXiv preprint arXiv:2309.17080, 2020.

[54] Y. Chebotar, Q. Vuong, and et al, “Q-transformer: Scalable offline
reinforcement learning via autoregressive q-functions,” in Conference
on robot learning, Proc. of Machine Learning Research, PMLR, 2023.

[55] A. Badrinath, Y. Flet-Berliac, A. Nie, and E. Brunskill, “Waypoint
transformer: Reinforcement learning via supervised learning with
intermediate targets,” in arXiv preprint arXiv:2306.14069, 2023.

[56] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,”
Journal of machine learning research, vol. 9, no. 11, 2008.

APPENDIX

VII. PROOF OF THEORETICAL RESULTS

Proof of Theorem 1. Following the proposed conjure that
given the input Rt, DT is predicting the most likely action at
that can lead a future cumulative reward of Rt, we assume
that a well-trained DT can accurately predict such actions at
each step.

First, it is important to note that the maximum probability
that any action can lead to a future cumulative reward of the
amount R∗

t is 1. For any initial state s0, we consider the trajec-
tory with the highest cumulative reward as the optimal trajec-
tory and denote it by τ∗ .

= {s0(s∗0), a∗0, r∗0 , . . . , s∗T , a∗T , r∗T }.
If R0 = R∗

0, then a∗0 can lead to a trajectory with a cumulative
reward of R∗

0 with probability one because the environment is
deterministic. If the optimal trajectory is unique, i.e., only τ∗

can has a cumulative reward of R∗
0, then because DT is well-

trained, it must output a∗0 if the input is R∗
0. At time t > 0,

because the environment is deterministic DT can receive R∗
t

if taking action a∗t and follow the sequence of actions listed
in τ∗. This implies that DT can receive a cumulative reward
of R∗

t with probability one by taking a∗t . Hence, because DT
is well-trained, it will output a∗t .

Next we prove that Rt = R∗
t if R0 = R∗

t . We use induction
to prove it. Because we have shown that a well-trained DT will
output a∗0 and by assumption that the reward is deterministic,
R1 = R∗

0−r∗0 = R∗
1. Hence, the base case is proved. Assume

toward induction that at t = k > 2, we have Rk−1 = R∗
k−1.

We have proved that at t = k, DT will output a∗k and due
to the fact the reward is deterministic, rk = r∗k, then by
definition of R∗

t , Rk = R∗
k−1 − r∗k. This concludes the proof

for the case where the optimal trajectory is unique. For the
case where there are multiple optimal trajectories all with
cumulative rewards of amount R∗, note that the sequence of
actions generated by DT must lead to the realization of one
of such optimal trajectories. Thereby the proof is concluded.

Algorithm 2 Training and Evaluation of D2T2
1: Input: Training dataset D = {τ1, τ2, ..., τn} of training

trajectories, V (s) from TD learning
2: for each τi = {s0, a0, Ĝ0, s1, a1, Ĝ1, ...} in D do
3: Compute πθ=(at|st−k:t, at−k:t−1, Ĝt−k:t)
4: Calculate Lθ(τ)=−

∑
t log πθ(at|st−k:t, at−k:t−1, Ĝt−k:t)

5: Backpropagate gradients w.r.t Lθ(τ) to update model
parameters θ

6: end for
{Evaluation of D2T2}

7: Input: Initial state s0, behavior cloning transformer
model πζ

8: for t = 0 to T − 1 do
9: Ĝt = ḡζ(st−k:t) (optional: Ĝt ∼ qψ(·|ḡζ))

10: Acquire action from πθ=(at|st−k:t, at−k:t−1, Ĝt−k:t)
11: Receive next state from environment
12: end for

TABLE V
TAILGATE DRIVING ENVIRONMENT: INFORMATION FOR THE

AUTONOMOUS DRIVING TASKS, INCLUDING THE NUMBER OF OFFLINE

TRAJECTORIES AND CRASH RATE.

d mark (m) 30 40 50

trajectories 2728 2771 2954
crash rate 22.69% 17.65% 10.47%

VIII. METHOD SUPPLEMENTARY

a) (Optional).: As discussed in Section III-A, given
that the value function V (·) is considered sub-optimal, its
approximation errors can be propagated into the downstream
supervised model ḡζ(·) trained following (5). As a result,
directly using ḡζ(·) as the guidance signal for DT could
be problematic, as the errors from the previous two steps
can all be propagated into DT, in addition to the supervised
learning error from the training of DT itself. To resolve
this, we leverage variational inference [31] to concentrate
the learned knowledge into a compact and expressive latent
space; as existing works have found that the latent space
can facilitate detecting similar objects by devising a mapping
over the L2 distances in the latent space, such as stochastic
neighbor embedding [56]. Consequently, we train a variational
auto-encoder (VAE) to formulate such a space over ḡζ(·).
Specifically, given a set Ḡ =

⋃
τi∈D Ḡ(τi), where Ḡ(τi) =

{Ĝ0, Ĝ1, . . . , ĜT }, where Ĝt = ḡζ(st−k:t) with st ∈ τi, t ∈
[0, T], one can train a VAE to reconstruct Ḡ by maximizing
the evidence lower bound (ELBO), i.e.,

max
ϕ,ψ

1

NḠ

∑
ḡ∈Ḡ

[
log pϕ(ḡ|z)−KL(p(z)||qψ(z|ḡζ))

]
; (7)

here, p(z) is the latent prior following a normal Gaussian
distribution, qψ(z|ḡζ) is the approximated posterior that
encodes ḡζ to the latent space, and pϕ(ḡ|z) is the decoder.
Following from [31], both ϕ and ψ are neural networks that
output the mean and diagonal variance of pϕ and qψ which
both follow Gaussian distributions. Finally, we can leverage
qψ to map each ḡζ ∈ Ḡ to its latent representation which we
use as the SG, Ĝt ∼ qψ(·|ḡζ). As ḡζ have already captured
the state value information from future steps, and considered
that such knowledge has been encapsulated into the latent
space, we envision SG to be able to capture long-term goals
for DT to achieve, as well as provide guidance for DT during
evaluation.

The training and testing stage of D2T2 are described in
Section III-B and summarized in Algorithm 2.

IX. EXPERIMENTAL DETAILS

We run all our experiments on Nvidia RTX A5000 with
24GB RAM and each experiment setting is averaged over 10
trials with different random seeds.

A. Tailgate Driving

In this stochastic problem, we collect around 100k samples
and train the RL policies with 300k total timesteps. Our

environment setting and baseline comparison are partly from
[24]. However, note that [24] only considers one stop sign
and does not investigate the data quality with crash rate.
We list 3 different datasets in V. To decide a better hyper-
parameter settings, we investigate the hyper-parameters and
their corresponding tables with stop sign = 50m as follows:

1) The discount factor γ of the mapping function in the
range of [0.7, 0.95]. Note that the γ here is for steering
guidance function mapping instead of the inputs for
DT. In DT, the discount factor is 1.0.

2) The number of layers of the transformer model in the
list of [2, 3, 4, 5]

3) The number of self-attention blocks in the list of [4, 8,
16]

4) The value of the context in the list of [3, 4, ..., 10]

TABLE VI
THE DISCOUNT FACTOR γ OF THE MAPPING FUNCTION IN THE RANGE OF

[0.7, 0.95]

Metric 0.70 0.75 0.80 0.85 0.90 0.95

Return 0.75 0.83 0.82 0.86 0.83 0.79
±0.03 ±0.025 ±0.01 ±0.03 ±0.045 ±0.02

TABLE VII
THE NUMBER OF LAYERS OF THE TRANSFORMER MODEL IN THE LIST OF

[2, 3, 4, 5]

Metric 2 3 4 5

Return 0.83±0.035 0.84±0.019 0.86±0.03 0.84±0.017

TABLE VIII
THE NUMBER OF SELF-ATTENTION BLOCKS OF THE TRANSFORMER

MODEL IN THE LIST OF [4, 8, 16]

Metric 4 8 16

Return 0.81±0.06 0.86±0.03 0.85±0.02

We conclude that the discount factor of mapping function
and context length are relatively critical hyper-parameters
in D2T2 for tailgate driving tasks. We list the additional
hyper-parameters of transformer we choose for BC, DT, and
D2T2 in Table X, and TT in Table XI.

B. Stochastic Frozenlake

FrozenLake environment is a standard toy text environment
in Open AI gym with discrete action and state spaces in
dimensions of 4 and 16 respectively. In Fig. 4, we show that
the agent starts with Start point to achieve Goal along with
Frozen while avoiding Hole. To modify it as a stochastic
environment, the setup can be referred to in Section IV and
[49].

Our D2T2 integrates vanilla DT with TD learning. For
stochastic FrozenLake task, we follow the hyper-parameters

and codebase used in [49] with the well-trained Q-learning
model under the hyper-parameters in [32]. We add extra
code to replace RTG with our learned value functions after
transformer-based behavior cloning on steering guidance.

C. CARLA Benchmark

We evaluate our method on the CARLA NoCrash [30], [39]
benchmark whose goal is to navigate in a suburban town to
a desired goal waypoint from a predetermined start waypoint
without crash, considering safety as a priority [6], [40] in
tasks such as autonomous driving. The benchmark consists of
2 towns Town01 and Town02, each with 25 different routes.
We train our method D2T2 as well as all the baselines on
the Town01 dataset and then evaluate them in the unseen
Town02 routes.

NoCrash task is relatively more realistic and difficult
compared with tailgate driving task. The state space includes
various parameters such as relative heading error, distance
from the target lane center, ego vehicle speed, relative distance
to the leading vehicle (or max sensing range if none), speed
of the leading vehicle (or max speed if none), and distance
to the upcoming red light (or max sensing range if none).
The reward consists of an increase with higher speed, a
slight penalty for land deviations, and a huge penalty for
crashes or traffic infractions. The trajectory terminates when
the car crashes, incurs an infraction, times out, or reaches its
destination.

Next, we evaluate our method on a modified version of
the CARLA Leaderboard benchmark following the setting
in [24]. Compared with NoCrash Benchmark, the policy
is learned to change lanes in urban or highway situations.
Since the goal is not just following the leading vehicle, 8
additional variables are included in the state space, providing
the distance and speed of surrounding vehicles in each of the
4 diagonal directions.

Our D2T2 integrates vanilla DT with TD learning. We
keep the general Transformer hyper-parameters consistent
as [24] with 4 layers of self-attention blocks with 8 heads
and 128 as an embedding size. We add extra code to replace
RTG with our learned value functions after transformer-based
behavior cloning on steering guidance.

D. D4RL Suites

Although our D2T2 aims to address stochastic problems,
we also provide comprehensive studies on near-deterministic
tasks in Gym-MuJoCo suite (Table III), AntMaze-v2 suite
(Table XIII), and FrankaKitchen-v0 suite (Table XII. We
do conduct experiments for Gym-MuJoCo tasks on D2T2
without learning latent representation. However, we do not
list it in Table III because they are relatively less challenging
compared with AntMaze and FrankaKitchen tasks so that the
performance difference between with and without VAE is not
significant.

On the other hand, The performance of D2T2 in AntMaze
and FrankaKitchen tasks will be influenced by the dimension
of the state/steering guidance space and the difficulty level
of the data experience for imitation in high-dimensional

TABLE IX
THE VALUE OF THE CONTEXT k IN THE LIST OF [3, 4, ..., 10]

Metric 3 4 5 6 7 8 9 10

Return 0.76±0.06 0.82±0.03 0.86±0.03 0.83±0.055 0.85±0.014 0.81±0.04 0.83±0.027 0.83±0.045

TABLE X
THE HYPER-PARAMETER USED FOR BC, DT, AND D2T2 FOR TAILGATE

DRIVING

Hyper-parameters Values

Discount factor 1.0
No of layers 4
No of heads 8
No of embed 16
action weight 5
reward weight 1
value weight 1
Batch Size 256
Learning Rate 0.0001

TABLE XI
THE HYPER-PARAMETER USED FOR TT FOR TAILGATE DRIVING

Hyper-parameters Values

Discount factor 0.99
No of layers 4
No of heads 8
No of embed 16
action weight 5
reward weight 1
value weight 1
Batch Size 256
Learning Rate 0.0006

TABLE XII
AVERAGED NORMALIZED SCORES ON FRANKAKITCHEN-V0 SUITE. WE

USE THE RESULTS REPORTED FROM THE RVS PAPER FOR BC, RVS-G AND

RVS-R, AND THE RESULTS FROM THE IQL PAPER FOR CQL AND IQL.
WE REPORT THE MEAN AND FOR OUR METHOD OVER 10 SEEDS. NOTE

THAT D2T2-n INDICATES LEARNING D2T2 WITHOUT LATENT

REPRESENTATION. SINCE DT DOES NOT REPORT ITS OFFICIAL RESULTS,
WE DO NOT INCLUDE IT HERE FOR FAIR COMPARISON.

Environment BC RvS-G RvS-R CQL IQL D2T2-n D2T2
kitchen-complete-v0 65.0 50.2 1.5 43.8. 62.5 61.1±0.9 62.3±1.4
kitchen-partial-v0 38.0 51.4 0.5 49.8 46.3 43.1±2.0 47.8±2.5
kitchen-mixed-v0 51.5 60.3 1.1 51.0 51.0 51.2±1.3 52.2±1.9
average-Kitchen-v0 51.5 54.0 1.0 48.2 53.3 51.8 54.1

Start

Goal

Frozen

Hole

Fig. 4. Visualization of the stochastic FrozenLake task.

DT D2T2-n D2T2

(a) Antmaze-medium-diverse-v2

DT D2T2-n D2T2

(b) Antmaze-large-play-v2

Fig. 5. Evaluation among DT, D2T2-n, and D2T2. The goal of both certain
environments is at the top right corner and the path is recorded in green.
(a): Antmaze-medium-diverse-v2. (b): Antmaze-large-play-v2

problems. Therefore, we learn steering guidance over latent
representation and report different versions of D2T2 for
ablation study, where D2T2-n denotes the algorithm learning
without latent representation.

FrankaKitchen tasks contain the experience that is easier
to imitate [13], so we observe that D2T2-n (without latent
steering guidance) is still competitive in Table XII but rela-
tively poorly on the AntMaze tasks in Table XIII. With latent
steering guidance as input to D2T2, it performs comparably
to the best-performing prior method, CL, on AntMaze tasks
while CL is only developed for goal-conditioned offline RL.
Specifically, in Fig. 5 we show that D2T2-n is already able to
get closer to the goal compared with vanilla DT while D2T2
can even extract information, resulting in better performance.

Our D2T2 integrates vanilla DT with TD learning. For

TABLE XIII
AVERAGED NORMALIZED SCORES ON ANTMAZE-V2 SUITE. WE USE THE RESULTS REPORTED FROM THE RVS PAPER FOR BC AND RVS-G, AND THE

RESULTS FROM THE IQL PAPER FOR CQL AND IQL. FOR SPLT AND CL, WE USE THE RESULTS REPORTED FROM THEIR OWN PAPERS RESPECTIVELY.
WE REPORT THE MEAN AND FOR OUR METHOD OVER 10 SEEDS. NOTE THAT D2T2-n INDICATES LEARNING D2T2 WITHOUT LATENT REPRESENTATION.

Environment BC RvS-G DT CL SPLT CQL IQL D2T2-n D2T2

umaze-v2 54.6 65.4 65.6 79.8±1.4 70.5 74.0 87.5 65.2±2.7 87.9±0.7
umaze-diverse-v2 45.6 60.9 51.2 77.6±2.8 40.2 84.0 62.2 52.7±1.1 69.9±1.9

average-umaze-v2 50.1 63.2 58.4 78.7 55.4 79.0 74.9 59.0 78.9

medium-play-v2 0.0 58.1 1.0 72.6±2.9 25.0 61.2 71.2 42.5±2.0 72.7±2.3
medium-diverse-v2 0.0 67.3 0.6 71.5±1.3 15.3 53.7 70.0 40.6±0.4 72.6±1.8

average-medium-v2 0.0 62.7 0.8 72.1 20.2 57.5 70.6 41.6 72.7
large-play-v2 0.0 32.4 0.0 48.6±4.4 2.5 15.8 39.6 18.2±1.6 44.1±3.2
large-diverse-v2 0.0 36.9 0.2 54.1±5.5 2.5 14.9 47.5 27.0±2.1 50.8±4.6

average-large-v2 0.0 34.7 0.1 51.4 2.5 15.4 43.6 22.6 49.7

average-Antmaze-v2 16.7 53.5 19.8 67.4 26.0 50.6 63.0 41.0 67.1

D4RL suites, we follow the hyper-parameters and codebase
used in [18] with the well-trained Q-learning model under
the hyper-parameters in [32]. We add extra code to replace
RTG with our learned value functions after transformer-based
behavior cloning on steering guidance.

	Introduction
	Decision Transformers and Stochasticity
	Problem Setup
	Decision Transformers in Deterministic Environments
	Improving Returns-to-Go Signals for Decision Transformers in Stochastic Environments

	D2T2: Decision Tranformers Steered via Temporal Difference Learning
	Learnable Steering Guidance over Latent Representations
	D2T2 Training & Evaluation

	Experiments
	Related Work
	Offline Reinforcement Learning
	Reinforcement Learning as Sequence Modeling
	Integration of Decision Transformers and Q-learning

	Conclusion
	References
	Proof of Theoretical Results
	Method Supplementary
	Experimental Details
	Tailgate Driving
	Stochastic Frozenlake
	CARLA Benchmark
	D4RL Suites

