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Abstract— In this work, we present RadCloud, a novel real-
time framework for directly obtaining higher-resolution lidar-
like 2D point clouds from low-resolution radar frames on
resource-constrained platforms commonly used in unmanned
aerial and ground vehicles (UAVs and UGVs, respectively);
such point clouds can then be used for accurate environmental
mapping, navigating unknown environments, and other robotics
tasks. While high-resolution sensing using radar data has
been previously reported, existing methods cannot be used
on most UAVs, which have limited computational power and
energy; thus, existing demonstrations focus on offline radar
processing. RadCloud overcomes these challenges by using a
radar configuration with 1/4th of the range resolution and
employing a deep learning model with 2.25× fewer parameters.
Additionally, RadCloud utilizes a novel chirp-based approach
that makes obtained point clouds resilient to rapid movements
(e.g., aggressive turns or spins) that commonly occur during
UAV flights. In real-world experiments, we demonstrate the ac-
curacy and applicability of RadCloud on commercially available
UAVs and UGVs, with off-the-shelf radar platforms on-board.

I. INTRODUCTION

Light detection and ranging (lidar) sensors are often re-
ferred to as the golden standard for applications requiring
highly accurate and dense 3D point clouds [1]. For example,
the common Velodyne VLP-16 Puck has a horizontal angular
resolution of 0.1◦ and a range resolution of 2 mm [2]. Such
high ranging and angular resolutions make lidar sensors par-
ticularly well suited for various applications including map-
ping, navigation, surveying, and advanced driver assistance
systems [3], [4]. However, these sensors also have poor per-
formance in low-visibility environments like fog and smoke.
Additional drawbacks include high cost, large form factors
(i.e., size), and higher power consumption compared to other
ranging sensors on the market. For example, the VLP-16
lidar requires a separate interface box, consumes 8 W of
power during nominal operation, has a mass of 830 g, and
costs $4,600 [2], [5], with drone-mounted sensors costing
even more [6]. Thus, most lidars are ill-suited for resource-
constrained vehicles, such as small to midsize UAVs.

On the other hand, millimeter-wave (mmWave) radio de-
tection and ranging (radar) sensors are cheaper, smaller,
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lighter, and consume far less power while also providing
accurate ranging information even in adverse weather and
lighting conditions [7]–[9]. For example, the commercially
available TI-IWR1443 mmWave radar sensor has a typical
power consumption of 2 W, weighs 245 g, and the full eval-
uation kit costs only $398 [10], [11]. Due to the large signal
bandwidth of up to 4 GHz, mmWave radars can achieve cm-
level range resolutions (e.g., 4 cm for TI-IWR1443 [7], [12]).

However, radars suffer from poor angular resolution. For
example, the TI-IWR1443 has a maximum azimuth resolu-
tion of 30◦ [13]. Thus, our goal is to enable real-time, af-
fordable, and high-resolution sensing on resource constrained
vehicles (e.g., UAVs) by using deep learning to overcome the
traditional resolution limits of radar sensors.

In particular, this work introduces RadCloud, a novel real-
time framework for efficient generation of high-resolution
lidar-like 2D point clouds using low-resolution radar data
for resource-constrained unmanned vehicles (e.g., UAVs and
UGVs). While several recent works have explored high-
resolution sensing and mapping applications using mmWave
radar sensors [14]–[16], [16]–[22], they all have limitations
such as only working on specific applications, relying on
highly accurate position information (e.g., [16]–[20]) or not
working in real-time (i.e., using offline processing). To start,
[23] utilized a deep learning model to better detect real
objects and filter out false radar defections to achieve higher
quality point clouds. Also, [14], [15] focus on generating
accurate 3D bounding boxes from radar data, but can only
identify specific objects (e.g., vehicles) in the environment.
By contrast, RadCloud generates a lidar-like point cloud
from raw radar data for the entire environment, including
stationary objects like walls. Similarly, RadCloud does not
require position information and allows the sensing platform
(i.e., the vehicle) to follow any trajectory.

Outside of traditional radar processing methods, [16], [21],
[22] present methods of converting radar data into lidar-
like point clouds for the purposes of indoor mapping. While
[16], [21], [22] post-process radar scans of a particular scene
or indoor environment to create final lidar-like point cloud
mapping, RadCloud directly converts radar data frames into
2D lidar-like point clouds in real-time. Thus, enabling the
use of the generated point clouds for other purposes like
real-time navigation (in addition to mapping) and SLAM.

To the best of our knowledge, only [24] recently presented
a method of directly converting raw radar data into lidar-
like point clouds using a modified U-Net architecture [25].



Fig. 1: Radar Signal Processing Pipeline.

However, the previously recorded radar data, sampled at
the highest resolution for the radar sensor, were processed
offline. On the other hand, we experimentally discovered that
common UAV compute platforms (e.g., Intel NUC) cannot
process the raw data from the radar at sufficient rates to
support the highest resolution radar configurations from [24].
Hence, RadCloud utilizes radar data with 1/4th the maxi-
mum possible range resolution. Moreover, the use of lower-
resolution radar data allows for the use of a model with less
depth and 2.25× fewer parameters than the model from [24],
reducing computational overhead. Despite these constraints
due to the real-time radar processing, we show that RadCloud
model generates sufficiently accurate (non-inferior to [24])
2D lidar-like point clouds with 90% of predictions having
errors <40 cm compared to the ground truth lidar data.

Additionally, [24] utilized the 40 most recent single-chirp
frames to improve the accuracy of the generated point cloud.
Yet, even with high radar sampling rates and offline process-
ing, we find that this approach becomes significantly less ac-
curate during rapid changes in orientation or direction (e.g.,
rapid vehicle turning or spinning). Thus, in contrast to such
frame-based approach using the previous 2 s of sensing data,
we utilize 40 radar chirps collected over a period of 8 ms. In
real-world experiments, deploying RadCloud on a UAV and a
UGV, we demonstrate that this chirp-based approach is much
more resilient to aggressive maneuvers. To the best of our
knowledge, this is the first work to implement a completely
real-time framework for directly converting radar data into
2D lidar-like point clouds on resource-constrained vehicles.

This paper is organized as follows. Sec. II overviews the
employed radar signal processing pipeline. Sec. III describes
the system model, starting with the radar setup, before intro-
ducing the deep learning model used to generate the high-
resolution point clouds. Sec. IV presents the experimental
setup for RadCloud evaluation, followed by evaluation re-
sults (Sec. V), and concluding remarks (Sec. VI). Additional
resources, including code and datasets are available at [26].

II. BACKGROUND: RADAR SIGNAL PROCESSING

We consider a frequency-modulated continuous wave
(FMCW) radar sensor. Here, the radar’s transmitter (Tx)
transmits a specifically constructed signal into the environ-
ment. The signal reflects off objects which are then received
by the radar’s receiver (Rx). While radar sensors can detect
an object’s range, velocity, and angle, in this initial work we
only focus on the range and angle information. The pipeline
we employ is composed of three steps (Fig. 1).

Step 1 : Tx and Rx chirps. For each frame, the radar
transmits a series of “chirps” whose frequency increases
linearly over time. In our framework, we transmit up to 40
chirps per frame (see Sec. III). Here, we use the following
notation: S denotes the chirp slope, fc denotes the chirp
start frequency, and fIF denotes the intermediate frequency
(IF) from mixing the Tx and Rx signals. Thus, the Tx signal
for a single chirp in the radar frame is given by [27]–[29]

x(t) = ej(2πfc·t+πS·t2). (1)
If we assume that the environment is stationary, the time that
it takes for the transmitted signal to propagate to a target at
range of d and back at the speed of light (c) is given by
td = 2d/c. Thus, the received signal can be captured as

y(t) = ARx · ej[2πfc(t−td)+πS(t−td)
2], (2)

where ARx denotes the received signal amplitude.

Step 2 : Dechirping and IF signal generation. Next, the
IF signal is obtained by mixing the Tx and Rx signals

sIF(t) = x(t) · y∗(t) = AIF · ej2πfIF·t ,̧ (3)
where fIF := 2S·d

c , λ = c/fc is the signal wavelength, and
AIF is the amplitude of the IF signal [29]. Then, the IF
signal is put through a low-pass filter (typically removing all
IF frequencies above 10–20 MHz) and sampled by an analog-
to-digital converter (ADC) at a rate fsamp. For each chirp, a
total of NSamp I-Q samples are recorded.

Step 3 : Range-Azimuth response. Using a fast Fourier
transform (FFT), commonly called the “RangeFFT”, the IF
frequency corresponding to a target is estimated; the target’s
range is determined using dobject = fIF

2S · c. The range
resolution (dres – the minimum distance between two objects
detectable by a radar) and maximum range (dmax) are [13]

dres =
c
2B

, dmax =
fsamp · c

S
. (4)

mmWave radars use multiple receive elements to deter-
mine the angle of an object in the environment. The angular
resolution for objects at boresight is defined as θres = 2/NRx
(radians), where NRx is the number of Rx antennas [13]. By
sampling the IF signal, a 2D FFT can be used to compute a
Range-azimuth response (Fig. 1); e.g., the TI-IWR1443 radar
with 4 Rx elements achieves a maximum θres of 28.6◦.

III. RADCLOUD DESIGN

We designed RadCloud to operate completely in real-time
while also being robust to rapid movements commonly ex-
perienced by UAVs and UGVs. These design goals impacted
our system design in several ways.

A. Radar Setup

Unlike all previous work, which employs offline process-
ing of highest resolution radar data, our system processes the
raw sensor data in real-time. This is an important distinction
as most UAV platforms do not have a high enough com-
putational bandwidth to support the instantaneous data rates
required to process radar sensor data at the highest resolution.

We use the TI-IWR1443 radar sensor to perform sensing,
and the TI-DCA1000 data capture card to send the raw data



Fig. 2: RadCloud framework overview.

to the host [11], [30], [31]. This platform has been used in
most previous works involving mmWave radar (e.g., [16],
[21], [22], [24], [32]). Here, the radar sends complex-valued
samples of the IF signal, sIF(t), captured at rate fsamp, where
each sample is 4-Byte (16-bit integer for real and 16-bit
integer for complex). Thus, operating the radar at the maxi-
mum fsamp of 18.75 MSa/s requires the platforms to support
an instantaneous data rate of 2.4 Gbps [11], [30], [31].

Unfortunately, many UAV platforms do not have suffi-
ciently high computation bandwidth to support data sent at
such high instantaneous rates due to limited computational
resources. Also, radar configurations with NSamp ≥ 90
require multiple packets per chirp (due to the maximum Eth-
ernet packet size of 1462 B [31]). For our platform, we em-
pirically decided to operate the radar with fsamp = 2 MSa/s
(instantaneous data rate of 256 Mbps) and NSamp = 641 to
ensure real-time data processing and avoid packet losses.

Radar Configuration. Given the constraints imposed by
the considered UAV platforms, we selected a radar con-
figuration that maximized the range resolution (dres) while
achieving a maximum range (dmax) of roughly 10 m. Thus,
our final configuration utilized chirps with S =35 MHz/µs,
fsamp =2 MSa/s, and NSamp = 64, achieving a chirp band-
width (B) of 1.12 GHz. From (4), we achieve a dres =
13.3 cm and dmax =8.56 m. Compared with previous works
(e.g., [24] that used the maximum B = 4 GHz with NSamp =
256 to achieve dres = 3.7 cm and dmax = 9.59 m), the real-
time data streaming constraints restrict our system to utilizing
radar data with roughly 1/4th the range resolution. Finally,
we note the radar configuration only performs 2D sensing in
light of the sensor’s 6 dB elevation beamwidth of ±20◦.

B. Deep Learning (DL) Model

We develop a DL model based on the U-Net archi-
tecture [25], which takes in a normalized Range-Azimuth
response from the radar (in polar coordinates) and outputs
a quantized grid representing the lidar-like point cloud (in
polar coordinates). The output point cloud is then converted
into the 2D cartesian coordinates that can be used for nav-
igation, mapping, or other point cloud detection algorithms.
Fig. 2 presents an overview of the RadCloud framework.

1Empirical observations showed a significant number of dropped Ethernet
packets for configurations requiring multiple Ethernet packets per chirp.

Model Input. For each radar chirp, we compute a complex-
valued range-azimuth response (Step 3 from Sec. II) with 64
range bins and 64 azimuth bins2. To convert the response
into a format that can be used by a DL model, we start
by taking the magnitude of the complex data, applying a
threshold to filter out very weak reflections3, and normalize
the response to between 0 and 1. While the field of view
of the radar is theoretically ±90◦ due to the Rx element
spacing, we only use parts of the Range-Azimuth response
that are within ±50◦ as this is the horizontal 6 dB beamwidth
of the radar, and the radar’s angular resolution significantly
decreases at angles outside of this field-of-view [13], [30].

Compared to [24], which utilized 2 s worth of previous
frames to improve model accuracy, we empirically decided
to employ 40 chirps from a single radar frame, requiring
only 8 ms of total radar sensing time, i.e., a 250× reduction.
Thus, the final input to the model is a 40×64×484 tensor
corresponding to the 40 normalized range azimuth responses.

Our chirp-based approach is particularly important be-
cause a radar’s view of the environment changes rapidly
when the platform experiences rapid movement (e.g., a vehi-
cle spinning/turning quickly or moving at high speeds). For
the previous frame-based approach [24], this causes the scene
captured in the first few frames to vary drastically compared
to the scene captured in the last few frames. As we show
in Sec. V, the performance of these frame-based models
noticeably degrades when moving rapidly because the sensed
environment can change significantly over several frames in
such cases. Thus, we show that our chirp-based approach
significantly improves robustness to aggressive maneuvers.

Model Output. We take three steps when pre-processing
the ground-truth lidar data used to train and evaluate our
model’s performance. To start, we filter the lidar point cloud
so that it has the same azimuth field of view as the input
radar data. Next, we obtain a 2D lidar point cloud by
only keeping points with −20 cm ≤ z ≤ 10 cm to filter

2The 64 azimuth bins are achieved by zero-padding the azimuth FFT’s
input to 64 bins to increase the smoothness of the generated response. The
resulting azimuth FFT has an FFT bin resolution (different from θres) of
1.8◦ at boresight and 15◦ at 90◦ off of boresight [13], [30].

3We filter out all reflections that are 45 dB less than the maximum
reflected signal power as such reflections are often just noise.

4The reduction of the azimuth dimmension from 64 to 48 occurs due to
the narrowing the radar’s FOV from ± 90◦ to ±50◦.



Fig. 3: UGV and UAV experimental platforms.

out undesired ground detections and in light of the radar
sensor’s 2D configuration. Here, we match the input and
output dimensions by converting the Cartesian point cloud
to polar coordinates and then quantizing the points into a
64×48 polar grid with a horizontal resolution of 2.08◦ and a
range resolution of 13.3 cm. Thus, to obtain a lidar-like point
cloud from the model’s prediction, we convert the prediction
grid into a set of Cartesian points.

Model Architecture. We use a simplified U-net architec-
ture [25] to generate the higher resolution point clouds. The
primary benefit of this architecture is its encoder-decoder
structure. In our case, the encoder progressively downsam-
ples the input data while capturing key context and feature
information from the input radar data. Then, the decoder
outputs the higher resolution point cloud by generating
features from the encoded data while also preserving spatial
information through the use of skip connections [25].

The final model architecture is shown in Fig. 2. To ensure
our model’s real-time performance on resource constrained
platforms, we implemented a simplified model architecture
with fewer layers and less depth compared to the model
from [24]; our model utilizes ∼7.7 M parameters compared
to the ∼17.5 M parameters used by [24], demonstrating a
2.25× reduction in the number of parameters. As we show
in the following sections, this simpler model allows us to
achieve real-time frame rates, even on CPU-only machines.

Loss Function. As shown in [24], utilizing a combination of
Binary Cross Entropy (BCE) loss and Dice loss is particu-
larly effective when converting radar data to lidar-like point
clouds. Here, the BCE loss seeks to force each predicted
pixel to be as close to the actual value as possible while the
added Dice loss helps to make the predicted features sharper.
Similar to [24], we weighted the BCE loss to be 0.9 while
weighting the Dice loss by a factor of 0.1.

IV. EXPERIMENTS

A. Experimental Platform

We demonstrate the real-world capability of RadCloud by
implementing it on a common vehicle platform.

Radar. We utilize the commercially available TI-IWR1443
radar to sense the environment and the TI-DCA1000 data
capture card to stream the raw radar data to the edge compute
platform in real-time [11], [30], [31]. Here, we implemented
a ROS-compatible real-time streaming interface in Python to
obtain data from the TI-IWR1443 via the TI-DCA1000.

Lidar. To obtain ground truth information, we use the
popular VLP-16 Puck lidar sensor [2], [5]. Here, we ensure

Fig. 4: Training and Testing Environments.

a consistent extrinsic calibration between the radar and lidar
sensors by mounting the radar sensor 7 cm below and 10 cm
in front of the lidar sensor, enabling the model to ‘learn’ the
relative position of the radar with respect to the lidar.

Vehicle Computer. We implement our entire real-time
framework on the NUC7i5BNH as our vehicle computing
platform [33]. Unlike previous works (e.g., [24]), which use
powerful Jetson platforms with an integrated GPU, our plat-
form only has a dual-core 3.4 GHz Intel i5 CPU and no GPU.
We highlight that we are the first to implement a completely
real-time system, including streaming data from radar to
the NUC7i5BNH, range-azimuth response computation, and
generating high-resolution 2D lidar-like point clouds. While
we operate our system at 10 frames per second, we achieved
average frame rates above 15 frames per second when testing
our full pipeline on the NUC7i5BNH. Overall, the full ROS-
compatible framework is implemented in over 7,000 lines of
code, which is responsible for the real-time capturing of radar
data and its conversion into lidar-like 2D point clouds.

Robotic Platforms. We mount the RadCloud platform on a
Kobuki ground vehicle and a DJI Matrice 100 drone [34],
[35] (Fig. 3). While we were able to mount the VLP-16 lidar
onto the ground vehicle, we were unable to mount it on the
drone due to the size and weight limitations on the drone.
Thus, we utilize the ground vehicle platform to assess model
performance and the drone-based platform to demonstrate the
feasibility of our framework in airborne environments.

B. Experimental Setup

Training, Validation, and Test Datasets. For training, vali-
dation, and initial testing of the RadCloud model, we capture
time-synchronized radar and lidar frames, sampled at a frame
rate of 10 Hz, across 7 different environments including labo-
ratories, corridors, and building lobbies (Fig. 4). To improve
model robustness, we also drive the ground vehicle along
various trajectories including turns, spinning, and straight-
line movement at a range of angular and linear velocities. We
recorded a total of 87,476 samples for training, validation,
and testing; we used 66,609 samples for training, 11,755
samples for validation and parameter tuning, and 9,112 sam-
ples for testing. The test dataset was recorded independently
from the training and validation datasets, and it included
unique trajectories. Thus, we were able to assess our model’s
performance when operating in the “same” environment.



Unseen Environment Test Dataset. In addition to the 7
environments used for training, validation, and initial testing,
we also recorded an additional 4,767 samples in 3 unseen
environments that the model had not previously been trained
on. We used the results of this “unseen environment” dataset
to assess the model’s performance when operating in unfa-
miliar environments, similar to how a UAV or a UGV may
be used to map or navigate in unknown environments.

Rapid Movement Test Dataset. Finally, we record a third
dataset specifically to evaluate our model’s resiliency to rapid
movements (e.g., spinning, fast turns, and high speed move-
ments) commonly encountered by UAVs and UAGs. While
both the training and test set do include some aggressive
movements, the majority of radar and lidar frames were
recorded at relatively slower speeds. Thus, we recorded an
additional 784 samples while driving the UGV along differ-
ent trajectories at maximum speed and rotational velocity, to
enable evaluating the model’s performance in such situations.

C. Evaluation Metrics

We utilize the commonly used Chamfer and Modified
Hausdorff metrics to evaluate the accuracy of RadCloud
model’s predicted point cloud compared to the ground truth
point cloud obtained from the lidar [36]–[38]. Here, we
define the Chamfer distance (CD) as

CD(S1, S2) =
1

2|S1|
Σ

x∈S1

min
y∈S2

d(x, y) +
1

2|S2|
Σ

y∈S2

min
x∈S1

d(x, y),

(5)
and Modified Hausdorff distance (MHD) as

MHD(S1, S2) = max
{

med
x∈S1

min
y∈S2

d(x, y), med
y∈S2

min
x∈S1

d(x, y)

}
,

where d(x, y) denotes the Euclidean distance i.e., ||x− y||22.

D. Comparison to Baseline

We were unable to compare our model’s performance
with the model from [24] as the input and output data
dimensions for RadCloud model are different than the one
used by [24]. Thus, we train two additional models that
utilize the previous frame-based approach to compare our
model with such a ‘baseline’. Specifically, we train a model
that uses the previous 20 (single-chirp) frames and another
model that uses the previous 40 (single-chirp) frames.

V. RESULTS

In this section, we present the results from our experimen-
tal evaluations, comparing our with the baseline models.

A. Performance in Same and Unseen Environments

Fig. 5 presents the CDFs of the CD and MHD for the Rad-
Cloud model and the two baseline models, operating in the
previously seen (e.g., same as training) environments and
unseen environments. Table I and Table II summarize the key
metrics for each distribution. The results show that our chirp-
based approach is nearly as good as the previous frame-based
approaches at generating high-resolution point clouds from
low-resolution radar data. This is further supported by Fig. 6
showing a predicted point cloud from the RadCloud model.

RadCloud
Significantly

Better

(b) (c)(a)

Same Environment Unseen Environment Rapid Movement

Fig. 5: Error distributions for (a) same environment, (b)
unseen environments, and (c) during rapid movements

TABLE I: Error Comparison - Same Environment
Metric Units RadCloud 20 frames 40 frames

Cham. (Mean) m 0.20 0.18 0.18
Cham. (Median) m 0.14 0.13 0.14
Cham. (90%) m 0.40 0.36 0.38
MHaus. (Mean) m 0.12 0.11 0.11
MHaus. (Median) m 0.09 0.09 0.09
MHaus. (90%) m 0.23 0.20 0.23

TABLE II: Error Comparison - Unseen Environment
Metric Units RadCloud 20 frames 40 frames

Cham. (Mean) m 0.27 0.27 0.26
Cham. (Median) m 0.26 0.24 0.24
Cham. (90%) m 0.46 0.45 0.45
MHaus. (Mean) m 0.22 0.19 0.20
MHaus. (Median) m 0.15 0.09 0.14
MHaus. (90%) m 0.41 0.40 0.40

TABLE III: Error Comparison - Aggressive Maneuvers
Metric Units RadCloud 20 frames 40 frames

Cham. (Mean) m 0.26 0.35 0.37
Cham. (Median) m 0.20 0.24 0.31
Cham. (90%) m 0.53 0.83 0.81
MHaus. (Mean) m 0.17 0.32 0.34
MHaus. (Median) m 0.13 0.13 0.17
MHaus. (90%) m 0.39 0.82 0.87

As shown, our model’s output is almost identical to
the ground truth lidar point cloud, demonstrating that the
RadCloud model is well suited for converting low-resolution
radar range-azimuth responses to high-resolution lidar-like
2D point clouds. We also highlight how our model does a
good job of capturing complex shapes in the environment
like various corner shapes. The results also show that the
RadCloud model still generates accurate point clouds even in
unseen environments, enabling its use on UAVs and UAGs to
map or navigate unseen environments. Finally, we highlight
the accuracy of our model’s predictions with over 90% of
generated point clouds having a CD less than 46 cm and a
MHD less than 41 cm when compared to the ground truth
lidar point cloud, even in unseen environments.

B. Rapid Movement Performance

Fig. 5(c) presents the CDFs of the CD and MHD for
our model and the two baseline models during aggressive
maneuvers, whereas Table III summarizes the key metrics
for each distribution. Compared to the other scenarios, the
performance of the frame-based models noticeably degrades



Fig. 6: Input radar data, ground truth point cloud, and
predicted point cloud for nominal operation. The bottom row
shows the format at the inputs/outputs of the model. The top
row shows the data in a Cartesian format.

Fig. 7: Generated point clouds during rapid movements.

in cases of fast movements. For example, the 20 frames
model went from 90% of predictions having a CD less than
36 cm and an MHD less than 20 cm, to 90% of predictions
having a CD less than 83 cm and an MHD less than 82 cm.
By contrast, RadCloud only experiences slight increases in
both CD and MHD while also performing noticeably better
than the previous frame-based models.

As presented in Fig. 7, RadCloud’s model still manages
to detect the main features of the environment while the 40
frames model fails to detect large features in the environment
due to the rapid movements. Overall, these results show that
our model is significantly more resilient to aggressive ma-
neuvers compared to the previous frame-based approaches.

C. UAV Case Study
As discussed in Sec. IV, we mounted the radar and a NUC

platform onto a commercially available DJI Matrice 100
drone [35]. While we were not able to obtain ground truth
information due to the size and weight of the lidar sensor, this
case study demonstrates the feasibility and practicality of the
RadCloud real-time framework. We flew the drone inside the

Fig. 8: Performance on a Drone Based Platform.

environment pictured in Fig. 8. Here, we highlight that the
model was not trained on this environment nor did we train
the model on a drone platform. This is particularly notable
as the radar experiences different dynamics (e.g., vibrations)
on the drone, and the drone’s propellers also add additional
noise and interference to the radar data.

Thus, this case study also demonstrates the RadCloud
model’s performance in unseen environments and on dif-
ferent platforms. Fig. 8 presents one of the predicted point
clouds generated using our model (a more complete video
is available at [26]).As shown, our system still does a
good job of identifying the major features (e.g., walls and
corners of the room), even in unseen environments and
on different platforms. Combined, these results demonstrate
the feasibility and practicality of the RadCloud platform.
Thus, we demonstrate a real-time framework for directly
converting low resolution radar data to 2D lidar-like point
clouds, which can be used for mapping, navigation, and
other purposes on UAVs.

VI. CONCLUSION

In this work, we have presented RadCloud a real-time
framework for directly deriving high-resolution lidar-like 2D
point clouds from low-resolution radar frames on resource-
constrained platforms commonly used in unmanned aerial
and ground vehicles; the high-resolution of the point clouds
enables their use in accurate environmental mapping, navi-
gation in unknown environments, as well as other robotics
tasks. Since existing methods for high-resolution sensing
from radar data cannot be used on resource-constrained plat-
forms, RadCloud has overcome the challenges presented by
these platforms by utilizing a radar configuration with 1/4th
the range resolution and deep learning model with 2.25×
fewer parameters. Further, we have utilized a novel chirp-
based approach making generated point clouds more re-
silient to aggressive turns, spins, and other rapid movements
commonly experienced during UAV and UGV operations.
Finally, we have demonstrated the accuracy and applicability
of RadCloud on commonly used UAVs and UGVs with com-
mercially available radar platforms on board, where we have
achieved average frame rates of 15fps even when operating
on CPU-only platforms with limited computational power.



REFERENCES

[1] P. Dong and Q. Chen, LiDAR remote sensing and applications. CRC
Press, 2017.

[2] V. LiDAR, “VLP-16 User Manual,” Oct. 2018. [On-
line]. Available: https://velodynelidar.com/wp-content/uploads/2019/
12/63-9243-Rev-E-VLP-16-User-Manual.pdf

[3] S. Royo and M. Ballesta-Garcia, “An Overview of Lidar Imaging
Systems for Autonomous Vehicles,” Applied Sciences, vol. 9, no. 19,
p. 4093, Sept. 2019. [Online]. Available: https://www.mdpi.com/
2076-3417/9/19/4093

[4] J. S. Payne, “Autonomous interior mapping robot utilizing lidar
localization and mapping,” Ph.D. dissertation, Monterey, CA; Naval
Postgraduate School, 2020.

[5] “Puck.” [Online]. Available: https://store.clearpathrobotics.com/
products/puck

[6] “Zenmuse L1.” [Online]. Available: https://enterprise.dji.com/
zenmuse-l1

[7] Keysight, “How Millimeter Wave Automotive Radar Enhances
Advanced Driver Assistance Systems (ADAS) and Autonomous
Driving,” Keysight Technologies, Tech. Rep., 2020. [On-
line]. Available: https://www.keysight.com/us/en/assets/7018-06176/
white-papers/5992-3004.pdf

[8] A. Benjamin, “Imaging radar: one sensor to rule
them all,” Texas Instruments, Tech. Rep., 2019. [On-
line]. Available: https://e2e.ti.com/blogs /b/behind the wheel/posts/
imaging-radar-using-ti-mmwave-sensors

[9] M. Gardill, “Automotive Radar - An Overview
on State-of-the-Art Technology,” 2019. [Online]. Avail-
able: https://www.youtube.com/watch?v=P-C6 4ceY64&ab channel=
IEEEMicrowaveTheoryandTechnologySociety

[10] Mouser, “IWR1443Boost.” [Online]. Available: https://www.
mouser.com/ProductDetail/Texas-Instruments/IWR1443BOOST?qs=
5aG0NVq1C4wT7gyvvDbMRw%3D%3D

[11] T. Instruments, “IWR1443 Single-Chip 76- to 81GHz mmWave
Sensor,” Oct. 2018. [Online]. Available: https://www.ti.com/lit/gpn/
iwr1443

[12] K. Ramasubramanian, K. Ramaiah, and A. Aginskiy, “Moving
from Legacy 24 GHz to State-of-the-Art 77-GHz Radar,” Texas
Instruments, Tech. Rep., 2017. [Online]. Available: https://www.ti.
com/lit/wp/spry312/spry312.pdf

[13] S. Rao, “Introduction to mmwave Sensing: FMCW Radars.”
[Online]. Available: https://training.ti.com/sites/default/files/docs/
mmwaveSensing-FMCW-offlineviewing 0.pdf

[14] S. Madani, J. Guan, W. Ahmed, S. Gupta, and H. Hassanieh,
“Radatron: Accurate Detection Using Multi-resolution Cascaded
MIMO Radar,” in Comput. Vision – ECCV’22, S. Avidan,
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