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Abstract—Digital microfluidic biochips (DMFBs) based on
a micro-electrode-dot-array (MEDA) architecture provide fine-
grained control and sensing of droplets in real-time. However,
excessive actuation of microelectrodes in MEDA biochips can lead
to charge trapping during bioassay execution, causing the failure
of microelectrodes and erroneous bioassay outcomes. A recently
proposed enhancement to MEDA allows run-time measurement
of microelectrode health information, thereby enabling synthesis
of adaptive routing strategies for droplets. However, existing syn-
thesis solutions are computationally infeasible for large MEDA
biochips that have been commercialized. In this paper, we propose
a synthesis framework for adaptive droplet routing in MEDA
biochips via deep reinforcement learning (DRL). The framework
utilizes the real-time microelectrode health feedback to synthesize
droplet routes that proactively minimize the likelihood of charge
trapping. We show how the adaptive routing strategies can be
synthesized using DRL. We implement the DRL agent, the MEDA
simulation environment, and the bioassay scheduler using the
OpenAI Gym environment. Our framework obtains adaptive
routing policies efficiently for COVID-19 testing protocols on
large arrays that reflect the sizes of commercial MEDA biochips
available in the marketplace, significantly increasing probabilities
of successful bioassay completion compared to existing methods.

I. INTRODUCTION

Digital microfluidic biochip (DMFB) technology enables
the automated manipulation of fluid droplets on the micro-
scale. The ability of DMFBs to efficiently execute bio-
chemical protocols has led to its usage in a wide range
of applications, including point-of-care clinical diagnostics,
biomolecular recognition, air-quality monitoring, and Rapid
Acceleration of Diagnostics (RADx) [1], [2], [3], [4], [5]. A re-
cent enhancement to DMFB technology is microelectrode-dot-
array (MEDA), which like DMFBs, uses microelectrodes to
manipulate droplets based on the electrowetting-on-dielectric
(EWOD) principle. In contrast to DMFBs, MEDA biochips
are fabricated using TSMC 0.35 µm CMOS technology [6],
[7], resulting in relatively smaller microelectrodes that can be
dynamically clustered in runtime to form various microfluidic
modules such as droplet mixers or splitters. In addition,
MEDA biochips offer real-time droplet sensing capabilities
via capacitive-sensing at the microelectrode level [8], [9].

Microelectrode degradation is a major concern associated
with both DMFBs and MEDA biochip [10]. Specifically,
repetitive charging and discharging of a microelectrode, charge
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trapping, and the degradation of the insulating layer drastically
reduces the EWOD force generated by the microelectrode,
potentially leading to failures at the bioassay level. Techniques
proposed to mitigate the impact of microelectrode degradation
on bioassay execution can be classified into reactive and pre-
ventive. Reactive techniques aim to recover from errors after
their occurrence during bioassay execution; examples include
droplet remixing and resplitting [11], dynamic reconfiguration
of the biochip [12], [13], and adaptive routing based on
the knowledge of the fault map [14]. In contrast, preventive
techniques aim to proactively predict and avoid failures. In
this category, a recently proposed technique is adaptive routing
based on the sensing of microelectrode health levels [15].

Reinforcement learning-based droplet routing has been pro-
posed for adaptive droplet routing in DMFBs [14]. A draw-
back of this method is that it is reactive, i.e., it detects
microelectrode degradation after a fault occurs during runtime
and adapts the learned policy based on the fault occurrence.
Such reactive adaptation to the relatively rapid degradation of
microelectrodes is especially detrimental for applications such
as flash chemistry that require fast time to response [16].

Formal synthesis combined with the monitoring of micro-
electrode health status has been proposed to synthesize droplet
routing strategies in MEDA [15]. While such a framework can
provide routing strategies with formal (probabilistic) guaran-
tees, the lack of scalability with respect to the biochip size
limits the practical applicability of this method. For instance,
synthesizing a routing strategy for a mere 30× 30 biochip
takes an average of nine seconds [15] and is repeated for
each microfluidic operation, which is unacceptable for time-
sensitive bioassays [16]. In addition, state-of-the-art biochips
incorporate a large number of microelectrodes. For example,
aQdrop from Sharp Life Science includes 41000 microelec-
trodes [17], which is at least an order of magnitude larger than
what is feasible using the synthesis method described in [15].
With the explosion of the state space and the inefficient storage
of strategies, the problem of formally pre-synthesizing droplet
routing strategies for such biochips becomes infeasible.

In this paper, we address the problem of designing efficient
droplet routing policies for MEDA biochips with proactive
mitigation of microelectrode degradation via a deep rein-
forcement learning (DRL) framework. Our framework uses
offline DRL to train a deep neural network (DNN) on a
MEDA simulation environment, and online DRL to adapt to
the degradation rates of individual biochips. In contrast to



formally synthesized strategies [15], the proposed framework
efficiently stores droplet routing policies for all possible rout-
ing jobs as a DNN, eliminating run-time delays and making
it more suitable for time-sensitive bioassays [16]. Since our
framework does not require state space enumeration, the DNN
adopts a parametrized action space where droplet movements
depend on its size, reducing the time required to complete
a routing job compared to the usage of single- or double-
step movements [14], [15]. Moreover, our framework can be
utilized for large MEDA biochips employed in practice [17].

The contributions of this paper are as follows.
• We propose a DRL droplet routing framework for MEDA

that exploits feedback about the microelectrode health.
• We develop a stochastic model for MEDA that is suitable

for the DRL framework, where we utilize a parametrized
action space and adaptive droplet movement.

• We design a DNN specific for the MEDA environment to
ensure the scalability of the framework, and we further show
training results for various environment configurations.

• We validate the degradation model used in this paper by
fabricating PCB prototypes and measuring the degradation
of electrodes under voltage actuation.

• We evaluate the proposed framework for COVID-19 testing
bioassays and compare this solution to exiting methods.
The rest of this paper is structured as follows. Section II

provides background on MEDA biochips, microelectrode
degradation and adaptive routing. Section III introduces the
proposed online DRL framework for adaptive droplet routing.
Section IV provides the DNN training details. Section V
compares the performance of the proposed DRL framework
to existing methods for adaptive droplet routing, before con-
cluding the paper in Section VI.

II. BACKGROUND AND MOTIVATION

A MEDA biochip manipulates fluids as discrete droplets of
picoliter volume using EWOD [18]. Multiple microelectrodes
can be dynamically grouped to form a fluidic module (e.g.,
splitter or mixer) during bioassay execution. A typical MEDA
biochip is composed of an array of identical microelectrode
cells (MCs). Each MC consists of a microelectrode, an
electronic control circuit, and a sensing circuit that enables
real-time sensing of droplets. In each operational cycle, the
sensing circuit discharges and charges the microelectrode, and
measures the charging time. The charging time is used to
detect whether a droplet is present over the microelectrode.
To obtain the positions of on-chip droplets, the sensing results
of all the microelectrodes are shifted out using a scan chain.

A number of failure mechanisms for DMFBs has been iden-
tified [19]. Some are related to manufacturing defects; post-
fabrication testing can be used to screen for such defects [20],
[21]. However, charge trapping in the dielectric layer and
degradation of the insulator can result in microelectrode degra-
dation [22], [23]. If an electrode is degraded during bioassay
execution, fluidic operations associated with this degraded
electrode will fail, resulting in bioassay failure [24], [14].
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Fig. 1: Example for droplet coordinates at time steps k and k + 1.

Hence, to reliably execute bioassays on MEDA biochips, we
must proactively avoid the use of degraded microelectrodes.

To overcome the problem of electrode degradation in
EWOD devices, an adaptive droplet routing method using
reinforcement learning was recently proposed [14], employing
DRL models to dynamically learn the degradation process in a
biochip. However, this approach suffers from a key limitation:
in order to provide reliable routing pathways, the model needs
to learn from the interaction history of the degraded electrodes.
Thus, it is possible that some fluidic operations may fail when
the RL agent first encounters the degraded electrode, i.e., the
agent has not yet learned the degradation process.

Finally, a new MC design, using the inherent capacitive
sensing for microelectrode health monitoring, was recently
proposed for MEDA [15], along with effective formal synthe-
sis methods that exploits the health status of microelectrodes.

III. MEDA MODELING FOR DRL

We now introduce a MEDA biochip model that aids in
effective learning of droplet routing strategies. For notation
used in the model: Z, N0 and R denote the set of integer,
natural, and real numbers, respectively. We use U{i, j} and
U(a, b) to denote the discrete (i.e., over integers) and the
continuous (i.e., over reals) uniform distributions over Ji, jK
and [a, b], respectively.

MEDA Training Environment: Consider a MEDA biochip
of size W×H, denoting the number of MCs in each row and
column, respectively. Following [15], we model a droplet as
a quadruple δ = (xa, ya, xb, yb) ∈ ∆, where ∆ ⊂ N4

0 is the
set of all possible droplets. A routing task is characterized by
the initial (start) and target (goal) droplet locations, denoted
by δs and δg , respectively. We use δ(k), k ∈ N0, to denote
the droplet location at the kth control step. Fig. 1 shows an
example of the droplet location.

Let (i, j) be the coordinates of a given MC; Dij ∈ [0, 1] be
its degradation level, where 1 indicates a fully healthy MC and
0 a fully degraded; and nij ∈ N0 be the total number of control
steps at which the MC was actuated. The degradation level can
be estimated as D(n)

ij = τ
nij/cij
ij ∈ [0, 1], where cij ∈ R>0 and

τij ∈ [0, 1) are parameters controlling the degradation rate.
Those parameters are generally unknown, although their range
can be experimentally estimated [22]. The degradation level
of an MC can be measured through the health measurement



Algorithm 1: Procedure for Computing Number of Steps

Input: Droplet δ : (xa, ya, xb, yb); goal δg : (xag , yag , xbg , ybg);
action a ∈ A

Output: Signed distance (λx, λy)
1 (∆x,∆y)← (xag − xa, yag − ya)
2 (w2, h2)← (⌊(xb − xa + 1)/2⌋, ⌊(yb − ya + 1)/2⌋)
3 if a∈{aN, aNE, aNW} then λy ← h2 − (h2−∆y)1{0<∆y<h2}
4 if a∈{aS, aSE, aSW} then λy ← −h2 + (h2+∆y)1{−h2<∆y<0}
5 if a∈{aE, aNE, aSE} then λx ← w2 − (w2−∆x)1{0<∆x<w2}
6 if a∈{aW, aNW, aSW} then λx ← −w2 +(w2+∆x)1{−w2<∆x<0}

unit [15]. Given a health measurement unit with b-number of
bits, the MC measured health is captured by

H
(n)
ij = ⌊2b ·D(n)

ij ⌋ = ⌊2b · τnij/cij⌋. (1)

On the droplet manipulation level, MEDA biochips support
single-step movements in the cardinal directions Ad , double-
step movements in the cardinal directions Add , and move-
ments in the ordinal directions Add′ . The action space for
droplet manipulation is hence defined as A = Ad∪Add∪Add′ .
The probability that an action is successful largely depends on
the health level of the group of microelectrodes — referred
to as the frontier set — primarily responsible for generating
the EWOD force for the action to be performed. We employ
the probabilistic transitions modeling from [15]. Each action,
along with the current droplet location, determines the group
of microelectrodes to be actuated. We use U ∈ {0, 1}W×H to
denote the actuation pattern matrix (pattern, for short), where
Uij = 1 indicates that the microelectrode is actuated.

Parametrized Action Space: In contrast to the traditional
action space where each action is associated with an exact
number of steps to move, the parameterized action space
determines only the direction towards which the droplet is
to move, while the number of steps is defined based on the
droplet size, shape, and its location relative to the goal. The
parametrization of the action space serves multiple purposes.
First, it reduces the dimensionality of the model by reducing
the action space size. Second, it unifies the action set across
different droplet shapes and sizes, enabling the usage of one
trained agent for the entire range of droplet sizes. Finally, it
allows for moving a droplet beyond two steps at a time.

We define the parameterized action space as the set A =
{aN, aS, aE, aW, aNE, aNW, aSE, aSW}. Let (λx, λy) ∈ Z be the
signed distance (distance, for short) associated with the adap-
tive action a ∈ A. Algorithm 1 presents the procedure for
computing (λx, λy) given the current droplet location δ, goal
location δg , and action a. Basically, the procedure computes
the distance based on the droplet size and the movement
direction, while avoiding overshooting the goal location. For
instance, the droplet shown in Fig. 1 is of size 4×3. Since
the maximum reliable distance for the droplet to travel is
(λx, λy) = (⌊w/2⌋, ⌊h/2⌋) = (2, 1), the adaptive action aNE
attempts to move the droplet one and two steps in the east and
north directions, respectively, within the same control cycle.

Observation Space: At each control step k, the DRL agent
can observe the current sensor matrix Y ∈ {0, 1}W×H and
the health matrix H(k). For a droplet δ = (xa, ya, xb, yb),

Yij = 1 for all (i, j) ∈ Jxa, xbK × Jya, ybK, while Yij = 0
indicates no droplet is sensed at the indicated MC. In addition,
the observation space incorporates the goal location δg and the
biochip area allocated for routing.

Reward Function: The primary goal in adaptive droplet
routing is for the droplet to reach the target location. Per-
formance metrics in this case include the time and distance
traveled by the droplet. Since excessive actuations of individ-
ual microelectrodes can lead to their premature failure, the
number of actuations per microelectrode is to be incorporated
in the routing process.

Let a(k) be the action taken at step k from state s(k),
resulting in a new state s(k+1). Thus, the reward is defined
as r(k) = αdisr

(k)
dis + αterr

(k)
ter + αactr

(k)
act where rdis, rdeg and

rter are the distance, terminal and action rewards, respectively,
and αi ∈ R are the respective hyperparameters. To incentivize
progression towards the target location, rdis is defined as
r
(k)
dis = D

(
δ(k), δg

)
− D

(
δ(t+1), δg

)
, where D

(
δ(k), δg

)
denotes the Manhattan distance between two droplet locations.
The terminal reward rter aids in faster convergence by asso-
ciating reaching the target location with an additional reward,
defined as r

(k)
ter = 1{δ = δg}. Finally, the action reward ract

penalizes selecting an invalid action, i.e., an action that causes
the droplet to exit the routing job area. The selection of the
hyperparameters αi is discussed in Section IV.

IV. DRL AGENT DESIGN AND TRAINING

A. Training Configurations

We first discuss configuration parameters that affect the
training convergence speed – i.e., MEDA biochip size, droplet
size, the initial and target droplet locations, the initial micro-
electrode degradation levels, and the degradation parameters.

Biochip and Droplet Sizes: For training, we considered
biochips of sizes between 30×30 and 180×180. We trained the
agent for the most common droplet sizes, with droplet width
and height w, h ∈ {2, 3, 4, 5, 6}, where w/h ∈ [0.8, 1.25].
We assume that the droplet size is preserved throughout a
single routing job. Hence, there are two approaches to droplet
size selection during training. In the first, multiple agents are
utilized, where each agent is trained for a specific droplet size.
In the second, the same agent is trained against the range of
droplet sizes. Note that a DNN can be feature-invariant by
training against the range of values for such feature. Moreover,
the exact size of droplets during execution might slightly vary
outside those specific values. Consequently, we opt for training
a single agent in this framework (i.e., the sedone approach).

Initial and Target Locations: In MEDA biochips, a droplet
is either the result of a preceding microfluidic operation or
dispensed by an on-chip dispenser. In the former case, the
droplet location can be anywhere on the biochip; in the latter,
the initial location δs is one of multiple, predefined dispenser
coordinates. Similarly, the target location δg can be either
where a microfluidic module is (e.g., a mixer or a splitter),
or a predefined exit through one of the biochip reservoirs.

For benchmark bioassays, the percentage of routing jobs
involving initial (e.g., dispensing operations) or target (e.g.,
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Fig. 2: Channels comprising the observation space.

TABLE I: CNN layers and their configurations.

Layer Type Activation Size Stride Padding

L1 Convolution ReLU 64 3 1
L2 Convolution ReLU 128 3 1
L3 Convolution ReLU 128 3 1
L4 Fully-connected ReLU 256 3 1
L5 Output ReLU 8 – –

discarding operations) droplets adjacent to one of the biochip
edges is between 20% and 40% [25]. Thus, during training
both the initial and goal locations are sampled from a stratified
distribution. Specifically, we randomly sample δs and δg
at the start of each training episode such that xas, xag ∼
U{2,W−w−1}, and yas, yag ∼ U{2,H−h−1}.

Degradation Parameters: From (1), degradation parame-
ters of microelectrodes affect their degradation rate, although
they are not directly observable to the agent. For training,
we randomly sample the degradation parameters as cij ∼
U(cmin, cmax) and τij ∼ U(τmin, τmax), where the distribu-
tions are experimentally obtained as described in Section V.
On the other hand, the number actuations nij is updated based
on the actuation patterns applied by the agent at each step.

B. DNN Design and Training

We employ a convolutional neural network (CNN) to learn
droplet routing policies due to its potential in preserving
important features of the observation space. As illustrated
in Fig. 2, the input to the CNN is a matrix of size (H,W, 3).
The three channels represent the microelectrode health levels
and routing zone, the goal location, the current droplet loca-
tion. The agent’s goal is to learn a policy that maximized the
expected cumulative reward.

For training, we use the proximal policy optimization (PPO)
algorithm [26], [27] with actor-critic architecture. Unlike pol-
icy gradient methods for reinforcement learning where policy
gradients are updated after reading each data sample, PPO
utilizes a surrogate objective to stabilize the training process
via multiple workers. Algorithm 2 summarizes the procedure
for training the agent to learn droplet routing policies. Each
training episode starts with the initial state (δg,H), sampled
according to the distributions described earlier. After each
step, the number of actuations nij is updated for all MCs
using the actuation pattern matrix U. An episode is terminated
when either the target location is reached, i.e., δ = δg ,
or the maximum number of steps allowed has passed, i.e.,

Algorithm 2: Procedure for Learning Routing Policies
Input: MEDA biochip size

1 for epoch do
2 resample ← ⊤
3 for iter = 1, 2, . . . , Niter do
4 for actor = 1, 2, . . . , Nactor , running in parallel, do
5 if resample = ⊤ then
6 Sample δs, δg , (τij), (cij), and N
7 resample ← ⊥
8 Run current policy π and obtain rewards and new state
9 if (k ≥ kmax) ∨ (δ = δg) then resample ← ⊤

10 if (iter ·Nactor ) mod minibatchsize = 0 then
11 Optimize PPO2 loss function, update current policy π

30×30, 0% 60×60, 0% 90×90, 0% 120×120, 0% 150×150, 0% 180×180, 0%

30×30, 10% 60×60, 10% 90×90, 10% 120×120, 10% 150×150, 10% 180×180, 10%

30×30, 20% 60×60, 20% 90×90, 20% 120×120, 20% 150×150, 20% 180×180, 20%

Fig. 3: Dataflow diagram for transfer learning. An arrow indicates that the
source CNN is used to initialize the training of the destination CNN.

k = 2(W+H). Using the accumulated rewards, the gradients
for each encountered (s, a) are updated.

To avoid catastrophic unlearning, we adopt a dynamic
learning rate scheduler for training. Specifically, the training
process starts with a base learning rate η0. At the end of the
ith epoch, the learning rate is discounted with factor βη only
if the agent performance is above a certain threshold, i.e.,

ηi+1 =

{
max (βη ∗ ηi, ηmin ) success rate > 0.99,
ηi otherwise.

Through hyperparameter optimization, we chose η0 = 3.5 ×
10−4, ηmin = 1.0× 10−6, and βη = 0.7.

To accelerate the training process, we apply transfer learning
as follows. We first train a randomly initialized CNN on
biochips of size 30×30 with no fault injection. Next, we use
the pre-trained base CNN to initialize the training of the CNNs
used for the next biochip size and fault injection level, and the
process is repeated using the new CNNs as shown in Fig. 3.
To facilitate the transfer learning, the input layer size is unified
across all CNNs by scaling the observation matrix from the
original size, i.e., (W,H, 3), to (30, 30, 3). A comparison of
the training performance between random initialization and
transfer learning approaches is discussed in Section V.

V. EXPERIMENTAL EVALUATION

A. Estimation of Degradation Parameters

The first set of experiments aims to validate the degra-
dation model and to estimate the parameters in (1). To this
end, we monitored electrode degradation in several identi-
cal PCB-based DMFBs. Note that these biochips manipulate
droplets using the same EWOD principle as MEDA biochips.
The DMFBs contain electrodes in three sizes: 2×2mm2,
3×3mm2, and 4×4mm2 (see Fig. 4). Four reservoir modules
are placed on two sides of the biochip, and these modules
can dispense different reagent droplets. Each electrode can be
controlled individually, and these control signals come from
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a control board underneath the DMFB. The activation/de-
activation status of each electrode is controlled by a high
voltage relay. Each high-voltage relay IC is controlled by a
configuration bit, and these configuration bits are stored in the
register ICs. The hardware setup used to operate the digital
microfluidic biochip is shown in Fig. 4. To efficiently run the
experiments, we executed the same actuation pattern on two
DMFBs at the same time.

We developed an actuation sequence for the electrodes that
leads to repeated fluidic operations on the biochip. When
executing the actuation sequence, each electrode is actuated
for 1 s for hundreds of times. After executing the sequence,
we actuated an electrode and measured the charging times
needed using an oscilloscope. Because the electrode and the
top plate form a capacitor, and a resistor is placed in series
with the electrode, the charging path is a simple RC circuit.
The effective capacitance of an electrode at time t can then
be derived using VC(t) = Vpp

(
1− e−t/RC

)
, where VC(t) is

the electrode capacitance at time t. Subsequently, the EWOD
force F can be obtained from [28], [29]

F =
C(VC − VT )

2

2

dA(x)

dx
,

where VT = 130V is threshold voltage due to soldermask
insulator [29], A(x) is the area of the droplet over the activated
electrode, and x is the droplet position.

The degradation results, i.e., increase in capacitance and
decrease in EWOD force, of five DMFBs are shown in Fig. 5
— the capacitance of an electrode grows linearly as we
repeatedly actuate the electrode, decreasing the EWOD force.
The degradation parameters are estimated as τ ∈ [0.5, 0.7] and
c ∈ [500, 800], and are further used for DRL agent training.

B. Evaluation

We next present the results for training agents for various
configurations by showing the mean score of the agents after
each training epochs for biochips of sizes W × H, where
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W = H ∈ {30, 60, 120, 180}. Performance metrics consist of
the mean score, the number of cycles, as well as the success
rate. The metrics are collected after each training epoch by
testing the agent for 500 random routing jobs, and each
experiment is repeated five times. All experiments were carried
out with eight parallel environments and 214 total number of
steps. The training and experiments were conducted on an Intel
Xeon Silver 4208 CPU and an Nvidia RTX 6000 GPU with
24 GB of memory. The training and simulation environment
were implemented using Python, including OpenAI Gym and
Stable-Baselines libraries.

We first trained the CNN on a healthy MEDA biochip, i.e.,
the number of actuations per each microelectrode is reset at the
beginning of each training episode. Fig. 6 presents the CNN
performance metrics versus the number of training epochs.
The trends show that after a low number of epochs, a CNN
learns an effective policy — i.e., the success rate converges to
100% and the score and the average number of cycles stabilize
— at a relatively small number of epochs that ranges from 10
to 40 and increases with the biochip size.

We then deployed transfer learning by using the CNN
trained on healthy MEDA biochips of size 30×30 to initialize
the training of the CNN for the next biochip size, i.e., 60×60.
The process was repeated subsequently for the remaining
biochip sizes. Fig. 7 compares the performance of the CNNs
trained via random initialization against the ones trained via
transfer learning. For all biochip sizes, the transfer learning-
based CNNs were able to learn effective policies within the
first training epoch, exhibiting the same performance that the
CNNs trained via random initialization were able to achieve
after 15 to 40 epochs.

We also tested the robustness of the trained agents against
randomly injected faults at runtime. We used the agents
trained on healthy biochips to initialize the training against
biochips with randomly injected faults. Before each training
episode, a fixed percentage of fully-degraded microelectrodes
are randomly placed in clusters of size 2 × 2. Similar to the
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previous experiments, the trained agents were used to initialize
the training on a higher percentage of faults. Fig. 8 shows the
performance results for training against 10% and 20% fault
injection modes. The trends demonstrate that the agents were
able to adapt to the faults within the first training epoch.

Finally, to evaluate the trained CNNs, we run experiments
where we compare their performance against two baselines: (i)
health-agnostic policies that aim to minimize the time to reach
the target without knowledge of the MC health levels (base-
line), and (ii) formally synthesized strategies using PRISM-
games model checker (formal) [15]. Each policy was used to
execute two benchmark bioassays that are used for COVID-
19 testing: PCR-based (COVID-PCR) and rapid antigen-based
(COVID-RAT), are widely used to detect the presence of the
SARS-CoV-2 virus or the body’s response to infection [25].

Fig. 9 shows the probability of successful bioassay com-
pletion within a given number of cycles k. The graph shows
that the DRL outperforms the policies from the literature by
achieving a significantly higher probability of success. The
gain in performance is primarily due to the utilization of
adaptive movement distance (see Section III). For instance,
DRL successfully executed COVID-PCR within k = 762
with probability p > 0.9, compared to p < 0.4 using the
other policies. In addition, the time needed to obtain a routing
policy from the trained CNN is negligible (t < 0.1 sec) when
compared to the formally synthesized policies where t ranged
from 5 to 48 sec before each routing job.

VI. CONCLUSION

In this paper, we have proposed a deep reinforcement
learning (DRL) framework to address the problem of designing
droplet routing policies for MEDA biochips with proactive
mitigation of microelectrode degradation. The proposed frame-
work utilizes the recently-developed technology of microelec-
trode health monitoring by incorporating the microelectrode
health status into the observation space. Our framework uses
DRL to train CNNs for droplet routing policies in MEDA

biochips. We have shown that the proposed framework is
superior to existing formal synthesis techniques in terms of
the probability of successful bioassay completion and the
scalability with respect to the biochip size.
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