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ABSTRACT
Deep brain stimulation (DBS) is an effective procedure to treat mo-

tor symptoms caused by nervous system disorders such as Parkin-

son’s disease (PD). Although existing implantable DBS devices can

suppress PD symptoms by delivering fixed periodic stimuli to the

Basal Ganglia (BG) region of the brain, they are considered inef-

ficient in terms of energy and could cause side-effects. Recently,

reinforcement learning (RL)-based DBS controllers have been de-

veloped to achieve both stimulation efficacy and energy efficiency,

by adapting stimulation parameters (e.g., pattern and frequency of

stimulation pulses) to the changes in neuronal activity. However,

RL methods usually provide limited safety and performance guaran-

tees, and directly deploying them on patients may be hindered due

to clinical regulations. Thus, in this work, we introduce a model-

based offline policy evaluation (OPE) methodology to estimate the

performance of RL policies using historical data. As a first step, the

BG region of the brain is modeled as a Markov decision process

(MDP). Then, a deep latent MDP (DL-MDP) model is learned using

variational inference and previously collected control trajectories.

The performance of RL controllers is then evaluated on the DL-

MDP models instead of patients directly, ensuring safety of the

evaluation process. Further, we show that our method can be inte-

grated into offline RL frameworks, improving control performance

when limited training data are available. We illustrate the use of our

methodology on a computational Basal Ganglia model (BGM); we

show that it accurately estimates the expected returns of controllers

trained following state-of-the-art RL frameworks, outperforming

existing OPE methods designed for general applications.

KEYWORDS
Deep Brain Stimulation, Reinforcement Learning, Variational Infer-

ence

1 INTRODUCTION
Millions of individuals in the US are affected by nervous system

disorders, such as Parkinson’s disease (PD) [34] and epilepsy [14].

Deep brain stimulation (DBS) is effective in treating such disorders

by delivering electric pulses to the basal ganglia (BG) region of the

brain through an implantable device [4, 12, 13, 37], as illustrated
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award FA9550-19-1-0169, as well as the NSF CNS-1652544, CNS-1837499 and CNS-

2112562 awards.

in Fig. 1. Existing commercial DBS devices can be programmed to

provide stimuli with fixed parameters (e.g., pulse frequency and

amplitude) and switch on/off following pre-defined protocols –

i.e., switching on predefined thresholds for certain physiological

biomarkers.
1
The programming of the implantable pulse genera-

tor is patient-specific and the detailed configurations are obtained

by leveraging the physician’s domain expertise, as well as trial-

and-error for fine-tuning [39]. However, the configuration process

(sometimes referred as device programming) is time-consuming,

and stimulating with constant high frequency and amplitude sig-

nificantly shortens the battery life of the implantable device and

can result in serious side effects, such as induced dyskinesia [6].

Consequently, there has been significant recent interest in closed-

loop DBS; the main focus has been on developing adaptive DBS

(aDBS) methods that can turn on/off stimulation or adjust the in-

tensity using very simple adaptation methods (e.g., ramp-based

increase) when specific biomarker signals cross predefined thresh-

olds [2, 3, 6, 30, 31]. Specifically, various neurosignals such as BG

local field potentials (LFPs) and internal electroencephalography

(iEEG), as well as measurements from external wearable devices

(e.g., accelerometer readings and electromyography) have been

used as feedback signals, with the thresholds manually obtained by

physicians looking over data collected from trials. Although still

in early development, such approaches have shown potential to

reduce energy consumption and side effects of stimulation [19, 31];

however, currently aDBS still requires substantial efforts to config-

ure the devices such that desirable stimulation efficacy and energy
efficiency are jointly attained.

Reinforcement learning (RL) has demonstrated its strengths in

solving sophisticated control problems from various cyber-physical

system (CPS) domains including robotics, smart transportation,

etc [7, 9, 17, 35, 41]. Several recent works leverage RL to derive

closed-loop controllers for DBS [16, 18, 36, 39]. Specifically, [18, 36,

39] propose the use of EEG and LFP signals to define the state space

of the RL environment, followed by temporal difference or fitted

Q-iteration algorithms to learn RL control policies that can select

appropriate stimulation frequencies to reduce energy consump-

tion. Although these methods can improve energy efficiency, the

resulting controllers are patient-agnostic since periodic stimuli are

still used across different patients. On the other hand, in [16], deep

1
The use of ON/OFF switching for DBS devices has not been FDA approved;

currently, only research devices, with specific research study protocols, can do this.
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actor-critic RL is used to design optimal stimuli patterns specific

to each patient. The approach not only enables the controller to

jointly achieve better stimulation efficacy and energy efficiency, but

also to adapt to neurological changes over time (e.g., changes in the

severity of PD symptoms, taking medications such as levodopa).

However, evaluating the performance of RL controllers for phys-

iological control implemented by medical devices (either the final

or a control policy active in a specific learning iteration) remains a

significant challenge. Unlike testing in benchmark environments

(e.g., [8], robotics or video games simulators), where a trained RL

controller can be directly deployed (and potentially subsequently

updated), the procedures of evaluating new controllers on patients

are highly scrutinized, where the controller’s effectiveness and

safety need to be demonstrated even before experiments start [38].

Consequently, it is imperative to develop frameworks that can eval-

uate the performance of RL controllers in an offline manner (i.e.,
without direct testing on patients).

In this paper, we introduce a model-based offline policy evalua-

tion (OPE) methodology to accurately estimate the performance of

RL-based DBS controllers without the need of deploying them in
vivo, which ensures safety of the evaluation process. More impor-

tantly, we also demonstrate that the OPE module can be integrated

into offline RL training frameworks, resulting in better-performing

DBS policies even with limited training data. Our methodology

starts by modeling the neuronal activity in the BG region as a

Markov decision process (MDP). Then, we design a probabilistic

machine learning model using variational inference [25], which we

refer to as the deep latent Markov decision process (DL-MDP); using

historical interactions, the model enables capturing the activity

of BG neurons, as well as the transitions in the MDP, in response

to DBS stimuli. Finally, the DL-MDP is used to interact with the

RL controllers that are to be evaluated, and we show how the ex-

pected return (i.e., control performance) of each controller can be

extrapolated from the resulting trajectories.

The problem of evaluating RL controllers offline has attracted

significant attention in general, and some existing OPEmethods [10,

15, 21, 32, 40, 47, 48, 50, 51] could be adapted to the DBS scenarios

considered in this work. However, these methods mostly adopt the

idea of importance sampling (IS) where the importance weights

are shown to result in high variance in estimating the expected

returns of RL policies, especially when the system has a long hori-

zon [10, 32], as is the case for DBS. For example, in [40], a self-

normalized step-wise IS method is developed to reduce the scale of

importance weights, which is capable of decreasing the variance. In

addition, [21, 48] propose the use of additional value estimators for

variance reduction. On the other hand, [10, 32, 50, 51] introduce a

distribution correction estimation family of OPE methods, which

estimate the correction ratio of the stationary distribution used

for generating importance weights; thus, the results are expected

to be associated with lower variance. However, such methods are

shown to introduce bias in estimations while compensating for

high variance [47]. As a result, these methods may not be suitable

for the medical scenarios considered in this work, as it is crucial to

devise an accurate OPE method for DBS controllers.

To evaluate our methodology for DBS controllers, we adopt a

commonly used computational Basal Ganglia Model (BGM) [44] as

the testbed; the BGM facilitates the use of various DBS research

Figure 1: Deep brain stimulation (DBS): the implantable pulse
generator is placed in the patient’s chest, and multi-contact
electrodes that can record local field potentials (LFPs) and
deliver stimulation are implanted in the basal ganglia (BG).

platforms [16, 22]. Specifically, we first train two types of controllers

to change stimulation pulse patterns and frequencies, respectively,

following state-of-the-art RL frameworks (i.e., deep actor-critic [16,

29, 43] and deep Q-learning [35]). Then, the introduced OPEmethod

is used to estimate the expected return resulting from the use of

these RL controllers, with the errors being evaluated using the

mean squared errors (MSEs) and rank correlations. Compared to

the existing IS based OPE baselines [32, 40], our approach results

in estimations with low variances, achieving consistently better

performance in terms of both metrics. In addition, we show that the

OPEmodule can be integrated into offline RL frameworks, leading to

improved performance even when limited training data is available,

which is critical for medical scenarios (as described in Section 2.1.2).

The contributions of this work are three-fold: (𝑖) to the best

of our knowledge, this is the first method to evaluate RL-based

DBS controllers in an offline manner, reducing the level of direct

interactions needed between the patient and controllers during the

evaluation and learning; (𝑖𝑖) our OPE approach is shown to be more

effective compared to existing OPE methods designed for general

applications; and (𝑖𝑖𝑖) we show that the OPE method can be easily

integrated into offline RL training frameworks, improving control

efficacy even with limited training data.

This paper is organized as follows. Section 2 briefly overviews

DBS and the computational BGM, as well as motivates the need for

OPE of DBS controllers, which is considered in this work. Section 3

describes the RL frameworks to design DBS control policies that

can adapt stimulation (i) patterns, or (ii) frequencies. In Section 4,

the OPE approach and the integration of OPE into RL training are

introduced. Our methodhodology is evaluated in Section 5, before

discussion and avenues for future work are presented in Section 6.

2 PRELIMINARIES AND MOTIVATIONS
In this section, we briefly introduce the preliminaries of DBS and

the computational Basal Ganglia model (BGM). We refer readers

to [16, 22, 29, 43, 44] for in-depth reviews.

2.1 Deep Brain Stimulation: The Need for OPE
2.1.1 Parkinson’s Disease and Deep-Brain Stimulation. PD origi-

nates from degenerative changes in the BG region and can cause var-

ious motor symptoms including bradykinesia and rigidity [11, 26].

Such symptoms can be captured by the changes in local field po-

tentials (LFPs), or electrical potentials, from the globus pallidus pars
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Figure 2: Activity of model neurons in the thalamus (TH)
and globus pallidus pars interna (GPi). Substantial patho-
physiological patterns can be found in PD brain without DBS
stimulation (middle row). Such effects are reduced signifi-
cantly using periodic stimulation at 180 Hz (bottom row).

interna (GPi) and thalamus (TH) sub-regions in the BG. DBS devices

can record these potentials through electrodes implanted into the

BG, as shown in Fig. 1. In healthy GPi and TH, the neurons follow
sporadic spiking (i.e., neuron activations) at a stable firing rate.

However, when affected by PD, pathological neuron activations can

be found in TH and GPi, captured by reduced triggering potentials

and clustered spiking, respectively (see Fig. 2).

Two quality of control (QoC) metrics can be used to evaluate

such abnormal neuronal activities quantitatively (e.g., [16, 22, 44]).
Error Index (EI) captures the ratio of erroneous firings in TH, while
the clustering of spikes in GPi causes increased spectral density

in the beta band (i.e., frequencies in the [13, 35]𝐻𝑧 range). Both
metrics are defined in Section 2.2 and Appendix B.

Implantable DBS devices can also deliver stimulation pulses to

GPi or subthalamic nucleus (STN) part of the BG, to suppress PD

symptoms. Specifically, the device can continuously generate trains

of short voltage pulses at a high frequency (about 180𝐻𝑧), which ac-

tivate the BG around the electrode [28]. As shown in Fig. 2 (bottom

row), erroneous TH activations are corrected by the stimuli. How-

ever, it is worth noting that the spiking frequency in GPi increased

after DBS, compared to healthy brains. This could potentially lead to

side-effects such as speech impairment and facial contraction, espe-

cially when the stimuli are too strong [5]. Furthermore, constantly

stimulating with high frequencies significantly reduces the battery

lifetime of the DBS device. Consequently, it is important to design

DBS controllers that are not only effective but also energy-efficient.

2.1.2 The Necessity of OPE for Learning-based DBS Control. As
discussed in Introduction, several RL-based controllers have shown

promising results in balancing control efficacy and stimulation effi-

ciency by enabling adaption to changes of BG neuronal activities

on-the-fly. For example, [16] adopts deep actor-critic RL methods to

generate control policies that can adjust the time-intervals between

two consecutive stimulation spikes (i.e., pulse patterns). However,
substantial training data, obtained from extensive interactions with

the plant/environment, is usually necessary to learn suitable con-

trollers [23], especially for control of complex physiological pro-

cesses. This, on the other hand, may be intractable in real world.

Figure 3: Typical timeline for training RL-based DBS con-
trollers in clinical studies. During trials, only limited data
can be collected for updating and evaluating the controllers,
since patients are only occasionally available and a physi-
cian’s approval is required before using each new controller.

During clinical trials/studies, patients may participate in studies

sparsely over time (e.g., once in a month). Moreover, before each

trial starts, any controller needs to be assessed by a physician [38],

which further limits the amount of time left for performance evalu-

ation and data collection for future training/improvements.

A typical timeline to train learning-based DBS controllers is sum-

marized in Fig. 3. During each trial, one is expected to focus on eval-

uating and collecting new data resulted from the use of (currently)

top-performing controllers (Phase 𝐼 ). In what follows, the control

policies are updated following suitable training procedures (e.g., us-
ing different sets of hyper-parameters) to improve the likelihood of

producing a better candidate to be deployed at the next trial (Phase

𝐼 𝐼 ). Then, a few controllers, which can potentially result in better

performance, need to be determined (Phase 𝐼 𝐼 𝐼 ). Otherwise, all of

them would have to be evaluated at the next available trial (Phase

𝐼𝑉 ). Although techniques such as offline RL [29, 35] can facilitate

Phase 𝐼 𝐼 , there exist a critical need to fill in the blank of Phase 𝐼 𝐼 𝐼 .

OPE refers to methods that can approximate the performance of

RL-based controllers using historical data, i.e., without requiring the
patients to be presented while evaluating RL policies, which aligns

with the objectives and constraints of Phase 𝐼 𝐼 𝐼 . However, most

existing OPE methods, such as [10, 15, 21, 32, 40, 47, 48, 50, 51], are

heavily based on importance sampling (IS) and could result in incon-

sistent estimations due to the high variance of the ISweights [10, 32].

In contrast, in this work, we introduce a model-based OPE that can

robustly and accurately learn a belief space using variational infer-

ence [25], in order to capture and reconstruct neuronal activities in

the BG. Consequently, the learned model can be used to interact

with each controller candidate extensively; thus, can evaluate their

performance thoroughly. In addition, as we introduce in Sec. 4.2, the

OPE can also be integrated into offline RL frameworks to improve

efficacy of the learned policies, even with limited training data.

2.2 Computational Basal Ganglia Model
We exploit the BGM introduced in [44], which was also adopted

in [16, 22]. The BGM models four important sub-regions in the

BG region of the brain, from which the effects of PD can be quan-

titatively captured; specifically, they are GPi, TH, STN and globus
pallidus pars externa (GPe), and the connectivity among the regions

is illustrated in Fig. 4. The system (i.e., neuronal) dynamics as well

as information transmitted among neurons can be captured by elec-

trical potentials of the neurons. Due to space constraints, details

about the BGM are provided in Appendix B.
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Figure 4: An overview of the computational BGM. The DBS
stimulation is applied to the STN, after which it is propagated
to the other sub-regions. Sensorimotor cortex (SMC) inputs
are also considered, which send activations to thalamus (TH)
and are essential for computing the error index (EI).

Two QoC metrics are used to quantify the severity of PD symp-

toms (see e.g., [16, 22, 44] and references within), EI and beta power
spectral density (𝑃𝛽 ). Moreover, they can also be used to evaluate

the efficacy of DBS, by capturing the changes in EI and 𝑃𝛽 before

and after when the stimulation is applied.

EI is defined as the portion of erroneous TH neuron activations

in response to sensorimotor cortex (SMC) inputs.2 Empirically, from

Fig. 2 it can be observed that substantial erroneous TH neuron

activations exist in the PD brain without DBS, resulting in higher

EI as shown in Fig. 5. Furthermore, such effects can be mitigated by

using periodic DBS at 180 Hz (or as we show in Section 3, by e.g.,
the RL-based stimulation pattern controller with an average 45 Hz

pulse frequency).

The other metric, 𝑃𝛽 , measures the power spectral density of GPi
neuron potentials within the beta band. It can distinguish between

the oscillations of GPi neuronal activities exhibited in healthy and

PD brains. As shown in Fig. 6, 𝑃𝛽 is exaggerated in the case of PD;

i.e., 𝑃𝛽 of the PD brain without DBS is significantly higher than

for a healthy brain. Similar to EI, 𝑃𝛽 can be reduced using periodic

DBS at 180 Hz, or as we will show, RL-based controllers. Note that,

as discussed in Section 2.1.1 and Fig. 2, 180 Hz periodic DBS pulses

may reduce 𝑃𝛽 to below the level present in healthy brains, due to

the spike overflow.

3 RL FOR DBS CONTROLLER DESIGN
We start by adopting the approach proposed in [16] to design RL

control policies that change stimulation patterns for the BGM (Sec-

tion 3.1). Furthermore, we extend this approach to allow for the

RL-based design of controllers that adapt stimulation frequencies
(Section 3.2). The performance of both types of controllers will be

evaluated by the OPE method introduced in Section 4.

3.1 DBS Pattern Control
To design RL policies that automatically adapt DBS stimuli patterns

to the changes in neuronal activities and PD symptoms, an MDP

model needs to be formulated as the environment uponwhich the RL
agents can be trained. Specifically, the MDP should characterize the

neuron activities in the BGM as well as their responses to DBS stim-

ulation. It is usually formulated as a 6-tupleM = (S, 𝑠0,U,P, 𝑅,𝛾),
where each of its elements is introduced as follows.

2
Healthy brains could also respond to 𝑆𝑀𝐶𝜏 erroneously with a low probability

(< 0.1%).

DBS ONDBS OFF

Figure 5: Error Index (EI) over time in model PD brains with-
out and with various types of stimulation, as well as model
healthy brains. The RL-based pattern controller with the av-
erage 45 Hz stimulation, RL controller that adapts frequency
of the stimulation, and (standard) periodic stimulation at
180Hz all reduce the EI in PD brains to the levels as in healthy
(i.e., non-PD) brains.

State Space S. The states of MDP should capture the status of

neurons the BG region, characterized by the BGM. Specifically, the

state at a discrete time step 𝑡 , 𝑠𝑡 , can be defined as a sequence of

EI and 𝑃𝛽 sampled at a fixed rate,𝑚 ∈ Z+, over a window of size

𝑇𝑤 , i.e.,

𝑠𝑡 =

[
𝑒 (𝑡 ) , 𝑒 (𝑡+𝑚) , 𝑒 (𝑡+2𝑚) , . . . , 𝑒 (𝑡+𝑇𝑤−𝑚)
𝛽 (𝑡 ) , 𝛽 (𝑡+𝑚) , 𝛽 (𝑡+2𝑚) , . . . , 𝛽 (𝑡+𝑇𝑤−𝑚)

]
; (1)

here, the 𝑒 ( ·) ’s and 𝛽 ( ·) ’s represent the EI and 𝑃𝛽 evaluated at

𝑙 = 𝑇𝑤/𝑚 number of equally-spaced intervals within the window,

respectively, 𝑇𝑤 ∈ Z, 𝑙 ∈ Z+ and 𝑠𝑡 ∈ R2×𝑙
.
3
The initial state 𝑠0

is determined following the initialization of the electrical poten-

tials vector of the BGM (i.e., the vector v introduced in (29) in

Appendix B) which, in addition to the SMC response, is the source
of stochasticity in the BGM [22, 44].

Action SpaceU. We consider changing the stimulation pattern

every 𝑇𝑤 steps, so the actions the RL agent can take at time 𝑡 are

𝑢𝑡 = [𝑢 (𝑡 ) , 𝑢 (𝑡+𝑚) , 𝑢 (𝑡+2𝑚) , . . . , 𝑢 (𝑡+𝑇𝑤−𝑚) ], (2)

where 𝑢𝑡 ∈ {0, 1}𝑙 , and 𝑢 (𝑡+𝑛 ·𝑚) = 1 (or 0) means a stimulation

pulse is triggered (or not) at step 𝑡 + 𝑛 ·𝑚 for all 𝑛 ∈ [0, 𝑙 − 1) ⊂ Z.

Transition Dynamics P : S × U → S. The RL agent interacts

with the MDP environment following the mechanism such that,

every time after 𝑠𝑡 is sampled, the agent applies DBS stimulation

following pattern 𝑢𝑡 (i.e., the action) and the environment responds

with the EI and 𝑃𝛽 readings over the next window as

𝑠𝑡+𝑇𝑤 =

[
𝑒 (𝑡+𝑇𝑤 ) , 𝑒 (𝑡+𝑇𝑤+𝑚) , 𝑒 (𝑡+𝑇𝑤+2𝑚) , . . . , 𝑒 (𝑡+2𝑇𝑤−𝑚)
𝛽 (𝑡+𝑇𝑤 ) , 𝛽 (𝑡+𝑇𝑤+𝑚) , 𝛽 (𝑡+𝑇𝑤+2𝑚) , . . . , 𝛽 (𝑡+2𝑇𝑤−𝑚)

]
. (3)

The interactions between the RL agent and the environment over

a finite horizon 𝑇 ·𝑇𝑤 (𝑇 ∈ Z+ and 𝑇 < ∞) can be summarized as

follows. After initialization, the environment provides 𝑠0 and the

agent chooses 𝑢0. Then, the environment responds with 𝑠 𝑗 ·𝑇𝑤 , after

3
Without loss of generality, here we assume that𝑇𝑤 is a multiple of𝑚.
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DBS ONDBS OFF

Figure 6: Beta power spectral density (𝑃𝛽 ) over time in
model PD brains without and with various types of stimula-
tion, as well as in healthy brains. The RL pattern controller
with the average 45 Hz stimuli, RL controller that adapts
stimulation frequency, and (standard) periodic stimuli at
180 Hz all reduce 𝑃𝛽 to the levels as in model healthy brains.

which the action 𝑢 𝑗 ·𝑇𝑤 is taken immediately, for all 𝑗 ∈ [1,𝑇 ] ⊂ Z.
Since both the states and actions are updated every 𝑇𝑤 steps, we

can simplify notations 𝑠 𝑗 ·𝑇𝑤 and 𝑢 𝑗 ·𝑇𝑤 , to 𝑠 𝑗 and 𝑢 𝑗 , respectively, in
the rest of this paper.

4
Furthermore, as in [16], we consider each 𝑢 𝑗

to contain the same number of pulses equivalent to stimulating at

a fixed frequency less than the maximally allowed rate, 𝑓 < 𝑓𝑚𝑎𝑥 ,

where in clinical practice 𝑓𝑚𝑎𝑥 ≈ 180 𝐻𝑧 (e.g., [12, 33]).

Reward Function 𝑅 : S × U × S → R. An immediate reward

𝑟 𝑗 = 𝑅(𝑠 𝑗 , 𝑢 𝑗 , 𝑠 𝑗+1) is received by the RL agent after taking action

𝑢 𝑗 at 𝑠 𝑗 and observing the new state 𝑠 𝑗+1. The reward function,

𝑅, can be designed to promote the proper actions taken at each

state, as well as to penalize the ones that can cause undesirable

consequences. Specifically, we consider the reward function

𝑅(𝑠 𝑗 , 𝑢 𝑗 , 𝑠 𝑗+1) =


𝑟𝑎, if 𝑒 𝑗+1 < 𝜉𝑒 and ¯𝛽 𝑗+1 < 𝜉𝛽 ;

𝑟𝑏 , if 𝑒 𝑗+1 ≥ 𝜉𝑒 and ¯𝛽 𝑗+1 < 𝜉𝛽 ;

𝑟𝑏 , if 𝑒 𝑗+1 < 𝜉𝑒 and ¯𝛽 𝑗+1 ≥ 𝜉𝛽 ;

𝑟𝑐 , if 𝑒 𝑗+1 ≥ 𝜉𝑒 and ¯𝛽 𝑗+1 ≥ 𝜉𝛽 ;

(4)

here, 𝑒 𝑗+1 = 1

𝑙

𝑙−1∑
𝑘=0

𝑒 ( ( 𝑗+1)𝑇𝑤+𝑘𝑚) and
¯𝛽 𝑗+1 = 1

𝑙

𝑙−1∑
𝑘=0

𝛽 ( ( 𝑗+1)𝑇𝑤+𝑘𝑚)

are the average EI and 𝑃𝛽 over the window𝑇𝑤 captured by the state

𝑠 𝑗+1; 𝜉𝑒 , 𝜉𝛽 ∈ R are the thresholds; and 𝑟𝑎 >> 𝑟𝑏 > 0 > 𝑟𝑐 . In other

words, a large positive reward 𝑟𝑎 is given if the averages of both

EI and 𝑃𝛽 are below the thresholds, 𝜉𝑒 and 𝜉𝛽 respectively, after

stimulating following the pattern in 𝑢 𝑗 . Similarly, a smaller positive

reward 𝑟𝑏 , or a negative reward 𝑟𝑐 , is issued by the environment if

the action 𝑢 𝑗 only results in one of the QoC metric to go below the

threshold, or both metrics to go above the thresholds, respectively.

Discounting Factor 𝛾 . Finally, we also consider a discounting

factor 𝛾 ∈ [0, 1) ⊂ R, which is a constant essential for deriving the

learning objectives in below.

Before introducing the RL objective, we first define the control

policy 𝜋 and accumulated return 𝐺 𝑗 of an MDP.

4
Here we slightly abuse notation 𝑗 by considering 𝑗 ∈ [0,𝑇 ] ⊂ Z.

Definition 3.1 (Control Policy of an MDP). A policy 𝜋 of an
MDPM is a function, 𝜋 : S → U that maps the set of states S to
the set of (control) actionsU.

Definition 3.2 (Accumulated Return). Given an MDPM and
a policy 𝜋 , the accumulated return over a finite horizon starting from
the stage 𝑗 and ending at stage 𝑇 , for 𝑇 > 𝑗 , is defined as

𝐺 𝑗 =
∑︁𝑇−𝑗

𝑘=0

𝛾 𝑗+𝑘𝑟 𝑗+𝑘 , (5)

where 𝑟 𝑗+𝑘 is the return at the stage 𝑗 + 𝑘 .

Now, given an MDP with its dynamics P remaining unknown
along with a pre-defined reward function 𝑅, the goal of RL is to

find a policy 𝜋 that maximizes the expected return

𝐽 (𝜋) = E𝑠,𝑢∼𝜌𝜋 ,𝑟∼𝑅 [𝐺0], (6)

where 𝜌𝜋 = {(𝑠0, 𝑢0), (𝑠1, 𝑢1), . . . |𝑢 𝑗 = 𝜋 (𝑠 𝑗 )} is the sequence of
states and actions drawn from the trajectory distribution deter-

mined by 𝜋 . As a result, the optimal policy 𝜋∗ can be obtained as

𝜋∗ = argmax

𝜋
𝐽 (𝜋) . (7)

In [16], a deep actor-critic RL framework [29] is adapted to design

policies that map states to corresponding stimulation patterns. It is

shown effective in handling the large state and action space of the

environment, significantly reducing EI and 𝑃𝛽 over a finite horizon.

As we adapt this method, here, we briefly overview it while we refer

readers to [16] for details. We start with defining the state-action

value functions, or the 𝑄-value functions.

Definition 3.3 (State-Action Value Function). Given an
MDPM and policy 𝜋 , the state-action value function𝑄𝜋 (𝑠,𝑢), where
𝑠 ∈ S and 𝑢 ∈ U, is defined as the expected return for taking action
𝑢 when at state 𝑠 following policy 𝜋 , i.e.,

𝑄𝜋 (𝑠,𝑢) = E𝑠,𝑢∼𝜌𝜋 ,𝑟∼𝑅 [𝐺0 |𝑠,𝑢] . (8)

The method from [16] utilizes an actor 𝜋𝜃𝑢 (𝑠) : S → U and a

critic 𝑄𝜃𝑐 (𝑠,𝑢) : S × U → R, parameterized by neural networks

(NNs) with weights 𝜃𝑢 and 𝜃𝑐 , to approximate the optimal pol-

icy 𝜋∗ and 𝑄-values 𝑄𝜋∗ (·, ·), respectively. Unlike [29], the NN

architectures with weights 𝜃𝑐 and 𝜃𝑢 are specifically designed to-

ward deriving stimulation pulse patterns in DBS. To obtain the

optimal policy in (7), the objective (6) can be re-formulated w.r.t.
the state-action value functions as

𝐽𝛽 (𝜋𝜃𝑢 ) = E𝑠∼𝜌𝛽

[
𝑄𝜃𝑐

(
𝑠, 𝜋𝜃𝑢 (𝑠)

) ]
; (9)

here, 𝛽 : S → U is the exploration policy that is usually obtained

by introducing disturbance to the actor 𝜋𝜃𝑢 to ensure sufficient ex-

ploration of the environment, and 𝜌𝛽 = {(𝑠0, 𝑢0), (𝑠1, 𝑢1), . . . |𝑢 𝑗 =
𝛽 (𝑠 𝑗 )} is the state-action visitation distribution obtained over 𝛽 .

Then, the parameters of the actor, 𝜃𝑢 , can be updated iteratively

following gradient ascent, i.e., for the learning rate 𝛼𝑢

𝜃 ′𝑢 ← 𝜃𝑢 + 𝛼𝑢∇𝜃𝑢 𝐽𝛽 (𝜋𝜃𝑢 ). (10)

To update the critic, 𝜃𝑐 is set to minimize

𝐽𝛽 (𝜃𝑐 )=E𝑠 𝑗 ,𝑢 𝑗 ,𝑠 𝑗+1∼𝜌𝛽 ,𝑟∼𝑅
[(
𝑟 + 𝛾𝑄𝜃𝑐 (𝑠 𝑗+1, 𝜋𝜃𝑢 (𝑠 𝑗+1)) −𝑄𝜃𝑐 (𝑠 𝑗 , 𝑢 𝑗 )

)
2

]
,

which can be obtained using gradient descent, i.e.,

𝜃 ′𝑐 ← 𝜃𝑐 − 𝛼𝑐∇𝜃𝑐 𝐽𝛽 (𝜃𝑐 ). (11)
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Using this RL-based approach, we obtained a control policy that

can adjust DBS pulse patterns, whose average stimulation frequency

is equivalent to 45 Hz in the periodic cases (i.e., they stimulate

the same amount of pulses within each 𝑇𝑤 ). On the other hand, as

shown in Fig. 7 (top row) this controller effectively corrects majority

of erroneous firings in both TH and GPi. Furthermore, it reduces EI

and 𝑃𝛽 to the level as in healthy brains, as shown in Fig. 5 and 6.

3.2 DBS Frequency Control
We also investigate the use of RL to design controllers that adapt

the frequency of periodic DBS stimulation pulses, since frequency

adaptation is commonly considered to have significant potential

for aDBS [36, 39, 45, 49, 52]. Specifically, the policy is expected

to choose a stimulation frequency from a discrete set of integers
between 0-180, as 180 Hz is usually used in open-loop DBS devices

and can suppress most PD symptoms indiscriminately to different

levels of neuronal activities in the BG region [12, 33]. Therefore,

we define the action space of the MDP in this setting as 13 equally-

spaced integers sliced from [0, 180] ⊂ Z, i.e.,

𝑢 𝑗 ∈ {0, 15, 30, · · · , 165, 180}, (12)

while the state space and transition dynamics remain the same

as defined in Section 3.1. We also modify the reward function to

account for energy consumption, such as introducing penalties

while stimulating with large frequencies, i.e.,

𝑅(𝑠 𝑗 ,𝑢 𝑗 ,𝑠 𝑗+1)=


𝑟𝑎 −𝐶 · 𝑢 𝑗 , if 𝑒 𝑗+1 < 𝜉𝑒 and ¯𝛽 𝑗+1 < 𝜉𝛽 ;

𝑟𝑏 −𝐶 · 𝑢 𝑗 , if 𝑒 𝑗+1 ≥ 𝜉𝑒 and ¯𝛽 𝑗+1 < 𝜉𝛽 ;

𝑟𝑏 −𝐶 · 𝑢 𝑗 , if 𝑒 𝑗+1 < 𝜉𝑒 and ¯𝛽 𝑗+1 ≥ 𝜉𝛽 ;

𝑟𝑐 −𝐶 · 𝑢 𝑗 , if 𝑒 𝑗+1 ≥ 𝜉𝑒 and ¯𝛽 𝑗+1 ≥ 𝜉𝛽 ;

(13)

here, 𝐶 ∈ R is a constant balancing the scales between 𝑟 ’s and 𝑢 𝑗 .
5

Since the action space of this problem is sparse and dramatically

smaller than for the MDP for pattern adaptation from Section 3.1,

deep Q-networks (DQNs) [35] can be used to derive control policies

as they are sufficient for such (i.e., smaller) discrete action spaces.

In this case, only a critic 𝑄𝜃𝑞 (𝑠,𝑢), parameterized by an NN with

weights 𝜃𝑞 , needs to be trained to minimize

𝐽𝛽 (𝜃𝑞)=E𝑠 𝑗 ,𝑢 𝑗 ,𝑠 𝑗+1∼𝜌𝛽 ,𝑟∼𝑅
[(
𝑟 + 𝛾𝑄𝜃𝑞 (𝑠 𝑗+1, 𝜋𝜃𝑞 (𝑠 𝑗+1)) −𝑄𝜃𝑞 (𝑠 𝑗 , 𝑢 𝑗 )

)
2
]
;

the resulting policy defined over the critic is then

𝜋𝜃𝑞 (𝑠 𝑗 ) = argmax

𝑢
𝑄𝜃𝑞 (𝑠 𝑗 , 𝑢) . (14)

Consequently, 𝜃𝑞 can be updated following gradient descent, i.e.,

𝜃 ′𝑞 ← 𝜃𝑞 − 𝛼𝑞∇𝜃𝑞 𝐽𝛽 (𝜃𝑞). (15)

Fig. 7 (bottom row) shows scenario when the obtained RL-based

controller chooses to stimulate at 75 Hz in a 4-second period, which

corrects most of the pathological activations in the two sub-regions.

As a result, it effectively reduces EI and 𝑃𝛽 (Figs. 5 and 6). In general,

the RL controller capable of pattern adaptation outperforms the

one with periodic stimuli where only frequency can be adapted;

it achieves acceptable EI and 𝑃𝛽 levels for lower average pulse

frequency as it can both change the average stimulation frequency

5
Note that in (4) we do not need the extra term since the number of pulses (i.e.,

energy consumption) across all 𝑢 𝑗 ’s remains the same.

Figure 7: Activity of model neurons in TH and GPi after stim-
ulating with RL-based pattern (top) and frequency (bottom)
controllers for 4 s. The stimulation pulses are shown at the
top of each sub-plot (in red); GPi neural activity is displayed
at a reduced rate as it is originally too dense to be visualized.

Figure 8: The architecture of the DL-MDP, capturing the prior
𝑝𝜓 (𝑧 𝑗 ), encoder 𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ) and decoder 𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 ).

and timing. However, unlike the frequency controller, it is currently

not supported by existing FDA-approved DBS device hardware.

4 MODEL-BASED OFFLINE POLICY
EVALUATION

In this section, we introduce a model-based approach to solve the

OPE problem. We then show how to integrate the OPE method into

offline RL training frameworks, which allows the agent to update

and evaluate the policies more efficiently during training.

In Section 3, we showed how to learn DBS controllers (i.e., con-
trol policies) that can adjust stimulation artifacts (i.e., patterns or
frequencies) responding to the changes in neuronal activities. How-

ever, as previously discussed, it is important to demonstrate the

efficacy of the RL controllers before patient trials start. We formally

define the OPE as follows.

Problem 1 (Offline Policy Evaluation). Consider a target
policy 𝜋 , and off-policy trajectories 𝜌𝜇 = {(𝑠0, 𝑢0), (𝑠1 , 𝑢1), . . . |𝑢 𝑗 =
𝜇 (𝑠 𝑗 )}, collected following a behavioral policy 𝜇 ≠ 𝜋 , over anMDPM
capturing the BG neuronal activities. The goal of the OPE is to estimate
the expected return of the target policy 𝜋 , i.e., E𝑠,𝑢∼𝜌𝜋 ,𝑟∼𝑅 [𝐺0].

4.1 Deep Latent MDP Model for OPE
We introduce a model-based approach for OPE of DBS controllers.

Specifically, a deep latent MDP (DL-MDP) model is learned us-

ing variational inference [25], capturing the transition dynamics

and rewards of the MDP using trajectories obtained following a

behavioral policy 𝜇, i.e., 𝜌𝜇 = {(𝑠0, 𝑢0), (𝑠1 , 𝑢1), . . . |𝑢 𝑗 = 𝜇 (𝑠 𝑗 )}.
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The formulation of DL-MDPs follows from the general Bayesian

inference frameworks [25] and they consist of three components,

i.e., priors, posteriors and sampling distributions. Specifically, a DL-

MDP includes: (𝑖) a set of priors 𝑝𝜓 (𝑧 𝑗 ), parameterized by𝜓 , over

the latent variable space (LVS)Z ⊂ R𝑑 , where 𝑑 ∈ Z+ is a hyper-
parameter; the priors are usually represented by the parametric

family of distributions such as multivariate Gaussian and represent

one’s belief over the latent distribution of the states, Z, before

sampling, whereZ can be seen as the feature space characterizing

high-level representations over the state space S; (𝑖𝑖) the encoder
(or approximated posterior) 𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ), parameterized by 𝜙 , which

maps theMDP state 𝑠 𝑗 ∈ S, obtained at stage 𝑗 , to the latent variable
𝑧 𝑗 ∈ Z; note that the true posterior 𝑝𝜓 (𝑧 𝑗 |𝑠 𝑗 ) cannot be obtained
due to the intractable marginal distribution (see (19)); however,

the variational inference framework allows it to be approximated

using 𝑞𝜙 (see Theorem 4.1 as well as [25] for more details); and

(𝑖𝑖𝑖) a decoder (or sampling distribution) 𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 | 𝑧 𝑗 , 𝑢 𝑗 ), which
enforces the transition from stage 𝑗 to 𝑗 + 1 in the corresponding

MDP and reconstructs the next state 𝑠 𝑗+1 and reward 𝑟 𝑗 conditioned
on the latent variable 𝑧 𝑗 and action 𝑢 𝑗 .

As a result, the DL-MDP is used to interact with an RL agent via

𝑧 𝑗 ∼ 𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ), (16)

𝑠 𝑗+1, 𝑟 𝑗+1 ∼ 𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 ) . (17)

Specifically, the DL-MDP first maps the state at stage 𝑗 , 𝑠 𝑗 , into the

latent variable 𝑧 𝑗 by sampling from the distribution 𝑞𝜙 . After the

agent takes action𝑢 𝑗 , the DL-MDP responds with the next state 𝑠 𝑗+1
and reward 𝑟 𝑗 . Fig. 8 shows the mapping flow from 𝑠 𝑗 , 𝑢 𝑗 to 𝑠 𝑗+1, 𝑟 𝑗 .

To learn such a DL-MDP, we first enrich the trajectories that will

be used for training, by including into each tuple the rewards fol-

lowing the reward function as well as the next states; this results in

𝜌𝜇 = {(𝑠0, 𝑢0, 𝑟0, 𝑠1), (𝑠1, 𝑢1, 𝑟1, 𝑠2), . . . |𝑢 𝑗 = 𝜇 (𝑠 𝑗 ),
𝑟 𝑗 = 𝑅(𝑠 𝑗 , 𝑢 𝑗 , 𝑠 𝑗+1)}.

(18)

Then, we learn the DL-MDP by maximizing the sum of marginal

log-likelihood∑︁𝑇−1

𝑗=0

log𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 ) =
∑︁𝑇−1

𝑗=0

log

∫
Z

∫
S

∫
U

[
𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )

𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 )𝜇 (𝑢 𝑗 |𝑠 𝑗 )𝑝 (𝑠 𝑗 )
]
𝑑𝑠 𝑗𝑑𝑢 𝑗𝑑𝑧 𝑗 , (19)

where 𝑝 (𝑠 𝑗 ) is the probability of ending up in state 𝑠 𝑗 at stage 𝑗 ,

which could be estimated using Monte Carlo methods. However,

it is intractable to integrate over the latent spaceZ as it remains

unknown. Hence, variational inference can be used to learn a DL-

MDP by maximizing a lower bound of (19), which is referred to as

the evidence lower bound (ELBO).

The next result provides a way to derive the ELBO for DL-MDP.

Theorem 4.1 (ELBO for DL-MDP). Consider deterministic policy
𝜇, and assume that there exist 𝜖 ∈ (0, 1) such that for each action
𝑢 ∈ U, there always exist a set of states ˜S𝑢 ⊂ S from which the
action 𝑢 is taken following 𝜇. Furthermore, the states in ˜S𝑢 can be
visited infinitely often, i.e., exists 𝜖 s.t. 0 < 𝜖 ≤

∫
˜S𝑢 𝑝 (𝑠)𝑑𝑠 ≤ 1. Then,

an ELBO for any tuple (𝑠 𝑗 , 𝑢 𝑗 , 𝑠 𝑗+1, 𝑟 𝑗 ) ∼ 𝜌𝜇 can be obtained as

log 𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 ) ≥ −𝐾𝐿
(
𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ) | |𝑝𝜓 (𝑧 𝑗 )

)
+ log 𝜖

+ E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
[

log𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 )
]
, (20)

where 𝐾𝐿(·| |·) is the Kullback–Leibler (KL) divergence [27].

The proof can be found in Appendix C.

In practice, it was shown that introducing a constant (i.e., hyper-
parameter) 𝜅 ∈ R to the ELBO, provides more flexibility for the

model to focus on learning disentangled latent representations (i.e.,
using smaller 𝜅) or maximizing the likelihood for 𝑠 𝑗+1 and 𝑟 𝑗 (i.e.,
using larger 𝜅) [20]. Therefore, the learning objective is set to be

max

𝜙,𝜓
L(𝜙,𝜓 ; 𝜌𝜇 ) =

𝑇−1∑︁
𝑗=0

(
− 𝜅 · 𝐾𝐿

(
𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ) | |𝑝𝜓 (𝑧 𝑗 )

)
+ E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )

[
log𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 )

] )
. (21)

Gradient descent [24] can be used to optimize (21) following the

reparameterization trick [25]. Specifically, the prior for the latent

variable is usually set to be the centered isotropic multivariate

Gaussian 𝑝𝜓 (𝑧) = N(𝑧; 0, I). For the MDP we consider, both the

encoder 𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ) and decoder 𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 ) can be captured

by multivariate Gaussian distributions with the mean and diagonal

covariance determined by 𝜙 and𝜓 , respectively.

Furthermore, both 𝜙 and𝜓 can be represented by NNs taking as

inputs the variables that the encoder and decoder are conditioned

on in (21), respectively – i.e.,

𝜙 𝑗 = [𝜇 𝑗
𝜙
, 𝜎

𝑗

𝜙
]𝑇 = 𝑓1 (𝑠 𝑗 ), (22)

𝜓 𝑗 = [𝜇 𝑗
𝜓
, 𝜎

𝑗

𝜓
]𝑇 = 𝑓2 (𝑧 𝑗 , 𝑢 𝑗 ), (23)

with 𝑓1 and 𝑓2 captured by NNs. Then, 𝑧 𝑗 , 𝑠 𝑗+1, 𝑟 𝑗 can be obtained

via 𝑧 𝑗 ∼ N
(
𝜇
𝑗

𝜙
, (𝜎 𝑗

𝜙
)2I

)
and [𝑠 𝑗+1, 𝑟 𝑗 ]𝑇 ∼ N

(
𝜇
𝑗

𝜓
, (𝜎 𝑗

𝜓
)2I

)
, with

I being the identity matrix. The reparameterization ensures the

gradients to be tractable, by replacing the sampling process with

𝑧 𝑗 = 𝜇
𝑗

𝜙
+ 𝜎 𝑗

𝜙
· 𝜖𝜙 , (24)

[𝑠 𝑗+1, 𝑟 𝑗 ]𝑇 = 𝜇
𝑗

𝜓
+ 𝜎 𝑗

𝜓
· 𝜖𝜓 , (25)

with 𝜖𝜙 ∼ N(0, I) and 𝜖𝜓 ∼ N(0, I) that could be treated as con-

stants during training (i.e., gradient back-propagation). Specifically,
by defining 𝑧 𝑗 = 𝑔1 (𝜇 𝑗𝜙 , 𝜎

𝑗

𝜙
) and [𝑠 𝑗+1, 𝑟 𝑗 ]𝑇 = 𝑔2 (𝜇 𝑗𝜓 , 𝜎

𝑗

𝜓
), we have

[𝑠 𝑗+1, 𝑟 𝑗 ]𝑇 = 𝑔2

(
𝑓2 (𝑧 𝑗 , 𝑢 𝑗 )

)
= 𝑔2

(
𝑓2

(
𝑔1

(
𝑓1 (𝑠 𝑗 )

)
, 𝑢 𝑗

))
, where the

gradients of 𝑓1, 𝑓2, 𝑔1, 𝑔2 could be obtained using the chain rule. We

refer to [25] for more details about the reparameterization.

Remark 4.2. Note that the major difference between the DL-MDP
and the regular variational auto-encoders (VAEs) proposed in [25] is
that VAEs were originally designed to reconstruct samples to be similar
to the training inputs. As a result, there do not exist temporal corre-
lations between the inputs and outputs. Moreover, the encoder 𝑞𝜙 is
usually discarded after training since during sampling the latent vari-
able 𝑧 can be obtained directly using the prior 𝑝𝜓 (𝑧). However, in the
MDP environment we consider, temporal correlations are imperative
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between two consecutive stages, following from the Markov prop-
erty [46]. Therefore, the sampling process described in (16) and (17)

enforces such correlations, and thus the ELBO specific to the setting
we consider had to be considered and derived. In addition, the encoder
𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ) will not be discarded after training.

Consequently, after training, the target policy 𝜋 can be evaluated

by interacting with the learned DL-MDP
ˆM following (16) and (17),

and by choosing 𝑢 𝑗 = 𝜋 (𝑠 𝑗 ) for all 𝑗 . Then, the accumulated re-

turn (5) is obtained using the rewards issued from the DL-MDP.

4.2 Integrating OPE into RL Training
As described in Section 2.1.2, in the real world, access to trajectories,

that can be used to train RL policies, is usually limited. As illus-

trated in Fig. 3, new training data may only become available very

sparsely over a specific period of time (i.e., between two scheduled

patient visits). Althoughwhen a patient is not present, a few patient-

specific controller candidates can be trained leveraging offline RL

methods [29, 35, 43] using historical data, it is unclear which one

could result in better performance until they are all tested at the

next available trial. Thus, it is critical to devise efficient learning

pipelines when limited training resources are accessible.

Alg. 1 in Appendix E introduces an efficient offline RL training

framework, in the context of training DQNs, utilizing the OPE

method introduced in Section 4.1. Specifically, it takes as input the

MDPM as defined in Section 3, the DL-MDP
ˆM, the set of policies

Π = {𝜋 (1)
𝜃𝑞
, 𝜋
(2)
𝜃𝑞
, . . . }, each parameterized by a corresponding NN,

that will be updated and used to collect trajectories for training and

evaluation, a constant 𝑓𝑝𝑎𝑡𝑖𝑒𝑛𝑡 specifying the frequency in terms of

when the patient is available for DBS control evaluation (i.e., once
in 𝑓𝑝𝑎𝑡𝑖𝑒𝑛𝑡 number of training episodes), another constant 𝑓𝑒𝑣𝑎𝑙
indicating the frequency the polices in Π are evaluated by OPE, and

a buffer B to store the trajectories collected during patient trials.

The algorithm starts by initializing the parameters of the DL-

MDP
ˆM, as well as all policies inΠ. It also randomly assigns a policy

𝜋
( ·)
𝜃𝑞
∈ Π to the variable 𝜋̃𝜃𝑞 which will be updated online and used

to collect trajectories once the patient becomes available (i.e., trials).
Lines 5-15 of Alg. 1 correspond to the case when the patient is

available; thus, the policy currently stored in 𝜋̃𝜃𝑞 is updated online

by directly interacting with the patient, and the state-action tuples

(𝑠,𝑢, 𝑠 ′, 𝑟 ) collected are appended to the buffer B. For simplicity,

here we only use a single tuple to update the policy; yet, it can be

extended to batch updates (see [16]). When the patient becomes

unavailable (i.e., lines 17-19), all policies in Π are updated offline,

using the data in B. Finally, the OPE method is used to evaluate all

policies in Π every 𝑓𝑒𝑣𝑎𝑙 number of episodes (lines 21-29). Specifi-

cally, the parameters of DL-MDP are first updated using the data

in B, after which it is used to interact with each policy 𝜋
( ·)
𝜃𝑞
∈ Π

to estimate the expected return over𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 + 1 steps. Then, the

policy with the maximum estimated return is assigned to 𝜋̃𝜃𝑞 .

Note that, unlike (18), where the trajectory is collected following

a single policy, the bufferB contains trajectories collected following

a mixture of policies obtained at different training episodes. Also,

the algorithm could be easily extended to actor-critic RL methods,

such as deep deterministic policy gradient (DDPG) [29], by declar-

ing two NNs at the beginning, to represent the actor and critic, and

following updates (10) and (11) in line 12 of Alg. 1.

5 NUMERICAL EXPERIMENTS
We employed the BGM to evaluated the proposed OPEmethodology.

The evaluation was done from two perspectives: (𝑖) estimating the

expected return of a target policy 𝜋 using trajectories obtained by

a behavioral policy 𝜇, and (𝑖𝑖) enhancing RL training with limited

access to the controlled process (i.e., the BGM). All experimental

results were obtained using a server with 3 Nvidia RTX Quadro

6000 GPUs. The deep learning models were implemented in Python

using Tensorflow [1]. The BGM sampling window size was set to

be 𝑇𝑤 = 2 seconds in both case studies. Adam optimizer [24] was

used to calculate the gradients for (10), (11), (15), (24) and (25).

5.1 Expected Return Estimation
We first considered offline estimations of the expected returns, as
defined in (6), w.r.t. 20 target policies {𝜋1, . . . , 𝜋20}, in the context

of two DBS control problems for the BGM, i.e., stimulation pulse

pattern synthesis (Section 3.1) and frequency selection (Section 3.2).

To achieve this, in both cases, the trajectories 𝜌𝜇 , obtained fol-

lowing 4 behavioral policies {𝜇1, . . . , 𝜇4}, were used to train the DL-

MDP. Specifically, 𝜌𝜇 was obtained by deploying each 𝜇𝑖 , 𝑖 ∈ [1, 4],
to the BGM for 15 episodes, with horizon 𝑇 = 200 steps each, and

concatenated together all the trajectories obtained. As a result, it

contained |𝜌𝜇 | = 12, 000 recorded (𝑠 𝑗 , 𝑢 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1) tuples. The details
for synthesizing 𝜋 ’s and 𝜇’s can be found in the next subsections.

In DL-MDP, both the encoder 𝑞𝜙 and decoder 𝑝𝜓 were modeled

by a 2-layer NN with 384 and 128 nodes each. During training, the

learning rate was set to 0.001 and the NNs were trained with 80,000

gradient descent steps. Then, the estimated return of 𝜋𝑖 , 𝑖 ∈ [1, 20],
was estimated by interacting with the DL-MDP for 50 episodes,

following (16) and (17) and choosing 𝑢 𝑗 = 𝜋𝑖 (𝑠 𝑗 ) at all time steps,

followed by averaging the accumulated return (5), over all episodes.

Two existing OPE methods were used as baselines, i.e., the step-
wise weighted IS from [40], and the density estimation IS (DEIS)

from [32], which uses estimated density ratio of stationary state

distributions to reduce variance in IS weights, and is considered a

state-of-the-art OPE approach (details provided in Appendix D). The

methods were evaluated using two metrics: (𝑖) root mean squared

error (RMSE) between the estimated returns and ground-truth re-

turns, obtained by deploying each 𝜋𝑖 to the BGM for 50 episodes and

reporting the averaged accumulated returns over all the target poli-

cies; and (𝑖𝑖) rank correlation, captured by Spearman’s correlation

coefficient [42] between the rank of estimated and ground-truth

returns. Note that the metric (𝑖) evaluates the estimation error made

by OPE, while (𝑖𝑖) inspects if the rank of estimated returns over all

target policies, is aligned with the returns that could be obtained

by directly interacting with the controlled process. To demonstrate

the robustness of each method to system stochasticity, the above

procedure was repeated 3 times for each method, and the resulting

mean and variance for all metrics are reported.

5.1.1 OPE for DBS Pattern Control. Four target policies, {𝜋1, . . . , 𝜋4},
were first obtained by training directly on the BGM for 50 episodes,

with horizon 𝑇 = 200 steps each, using different combinations of

actor and critic learning rates, i.e., {(𝛼𝑢 = 5e-5, 𝛼𝑐 = 5e-4), (𝛼𝑢 =
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Figure 9: RMSE (left) and rank correlation (right) obtained
from the proposed OPE method versus the baselines when
evaluating the RL-based stimulation pattern controllers.

3 6 9 12
Size of Training Dataset (x103)

0

2

4

6

RM
SE

Our DEIS IS

3 6 9 12
Size of Training Dataset (x103)

-0.4

0.0

0.4

0.8

1.2

Ra
nk

 C
or

re
la

tio
n Our DEIS IS

Figure 10: RMSE (left) and rank correlation (right) obtained
from the proposed OPE method versus the baselines when
evaluating the RL-based stimulation frequency controllers.

1e-5, 𝛼𝑐 = 1e-4), (𝛼𝑢 = 5e-6, 𝛼𝑐 = 5e-5), (𝛼𝑢 = 1e-6, 𝛼𝑐 = 1e-5)} as
in (10) and (11). Then, four behavioral policies, {𝜇1, . . . , 𝜇4}, were
obtained by training on the BGM for 10 episodes using the same

hyper-parameters as above. To ensure the target policies could

result in a wide range of expected returns, we also considered

synthetic target policies as suggested in [21], which facilitated illus-

trating the robustness of the OPE methods to policies with various

levels of performance. Specifically, such policies were defined as

𝜋
𝑠𝑦𝑛

𝑖,𝑐
=

{
𝜋𝑖 with prob. 𝑐,

𝜇𝑖 with prob. 1 − 𝑐, 𝑖 ∈ [1, 4] . (26)

By choosing 𝑐 ∈ {.2, .4, .6, .8}, four additional target policies were
defined for each 𝜋𝑖 . The average ground-truth return obtained

across 20 target policies, and 4 behavioral policies, were −0.51 (max

1.56, min −1.59, std 0.93) and −0.91 (max 0.83, min −1.52, std 1.0),

respectively; these were obtained using discounting factor 𝛾 = 0.5.

The resulting RMSE and rank correlation obtained by our OPE

method, DEIS, and IS are shown in Fig. 9. The IS leads to the highest

estimation error and lowest rank correlations, along with the high-

est standard deviations (shown in the error bars) across different

runs of the experiments. In contrast, our approach significantly

outperforms IS in all experimental settings. Furthermore, we also

achieve lower RMSE and higher rank correlation than the state-of-

the-art DEIS; they become more significant once sufficient training

data are provided (i.e., |𝜌𝜇 | ≥ 9 × 10
3
.)

5.1.2 OPE for DBS Frequency Control. Four target policies were
first obtained by training on the BGM for 50 episodes with𝑇 = 200,

using DQN with the architecture same as the critic used in Sec-

tion 5.1.1, and learning rates from 𝛼𝑞 ∈ {1e-3, 1e-4, 5e-5, 1e-5}.
Then, four behavioral policies were obtained by training DQNs

using the learning rates above, but for 10 episodes only. Finally,

16 additional (i.e., synthetic) target policies were generated follow-

ing (26), which resulted in a total of 20 target policies subject to
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Figure 11: Per-episode (non-discounted) accumulated re-
wards obtained by OPE enriched DQN versus vanilla DQN.
Standard deviations over 4 runs are shown in the shadow.

be evaluated by OPE. The average ground-truth return obtained

across 20 target policies, and 4 behavioral policies, were 2.14 (max

3.65, min −0.78, std 1.42) and −0.37 (max 2.08, min −1.7, std 1.25),

respectively, for 𝛾 = 0.5. The results are summarized in Fig. 10,

showing that our method significantly outperforms both baselines

in terms of the two considered metrics.

5.1.3 Summary. As demonstrated above, the proposed method

consistently achieves low RMSE and high rank correlations while

evaluating policies at various levels (i.e., with a wide range of

ground-truth expected returns). This shows that it can effectively

and accurately evaluate the performance of target policies in an of-

fline manner. In addition, the low standard deviations of the metrics

attained in most experiments illustrate that our method is robust

to stochasticity from the controlled physical process/environment.

5.2 Enhanced RL Training with Limited Data
In this case study, we employ Alg. 1 to learn policies that adjust stim-

ulation frequencies, with the patient represented by the BGM that is

only occasionally available for trials. We set that the total number of

training episodes𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 50, the horizon𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 200, BGM

comes online every 𝑓𝑝𝑎𝑡𝑖𝑒𝑛𝑡 = 5 episodes, and the OPE method was

called one episode before the BGM becomes available. In addition,

four policy candidates were considered (i.e., Π = {𝜋1, 𝜋2, 𝜋3, 𝜋4}),
and each of them follows a different 𝛼𝑞 ∈ {1e-3, 1e-4, 5e-5, 1e-5}.

The performance of Alg. 1 was compared to a baseline that simply

sets the policy being updated once the BGM was available, 𝜋̃𝜃𝑞 , to

a policy randomly sampled from Π. Fig. 11 shows the accumulated

rewards obtained at each episode resulting from Alg. 1-derived

policy versus the baseline. Specifically, the mean and standard

deviation over 4 different runs (i.e., following 4 random seeds) are

reported. Non-discounted returns are used since they capture the

raw performance propagated from each step. It can be observed that

the OPE-enriched RL leads to consistently higher returns, especially

at the later stage (i.e., ≥ 25 episodes) where the mean performance

is always greater than the best one obtained by the regular DQN;

thus, showing effectiveness of our OPE-enhanced RL framework.

6 DISCUSSION AND CONCLUSION
In this work, we have developed a model-based OPE method that

can estimate the performance of RL-based DBS controllers using

historical data, which facilitate safe (i.e., no patient interactions

needed) and effective evaluations in clinical settings. Furthermore,
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we have shown how the OPE approach can be integrated into offline

RL frameworks to allow for efficient controller training.

We evaluated our approach using a computational BGM which

models the neuronal activity of the BG. The results show that

our method can estimate and rank the expected returns of the

target policies precisely, and is robust to stochasticity in the BG

(i.e., plant) and environmental disturbance, as well as target policies

with various levels of performance. Moreover, the second case

study mimics the limited data access setting as in clinical trials.

The improved efficacy of the resulting controller illustrates that

our method can also improve offline RL training of DBS controllers

even when only limited trajectories can be obtained.

As part of future work, the proposed OPE method will be im-

plemented practically in clinical studies to serve as a safe and ef-
fective approach for evaluating learning-based DBS controllers.

Moreover, the OPE framework could also be extended to other

types of more classical (e.g., non-learning) controllers. On the other

hand, although our method lays out the foundation for develop-

ing data-efficient learning-based controllers, it could be potentially

generalized to solve other clinical decision-making problems. For

example, evaluating/creating future treatment plans for PD patients

using their past electrical health records (EHRs). Here, the treatment

plans can be modeled as policies while the EHRs are analogous to

the trajectories used for updating and evaluating them.
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A NOTATION
Here, we define the notation and terms used in the paper. For the

real number, integer and positive integer spaces, we denote them

as R, Z, and Z+, respectively. We also define 1 is the indicator

function, i.e.,

1(𝑥) =
{

1 if condition 𝑥 is satisfied,

0 if condition 𝑥 is not satisfied.

(27)

I is the identity matrix of suitable size. Moreover, 𝑥 ∼ 𝑝 (𝑥) means

that random variable 𝑥 is sampled from distribution 𝑝 (𝑥). We also

use N(𝑥 ; 𝜇,Σ) to denote Gaussian distributions with mean 𝜇 and

covariance matrix Σ over variable 𝑥 . For simplicity, we write 𝑥 ∼
N(𝜇,Σ) during sampling. The KL-divergence between distributions

𝑝 (𝑥) and 𝑞(𝑥) is defined as

𝐾𝐿(𝑝 | |𝑞) = E𝑝
[
log

𝑞(𝑥)
𝑝 (𝑥)

]
. (28)

B COMPUTATIONAL BASAL GANGLIA
MODEL

We now provide details about the BGM introduced in [44]. Assum-

ing that there exist 𝑁 neurons in each sub-region, the state of each

BGM sub-region, at time step 𝑡 , can be represented as a vector of

potentials, i.e.,

v𝑞 (𝑡) = [𝑣𝑞
1
(𝑡), . . . , 𝑣𝑞

𝑁
(𝑡)]; (29)

here, 𝑣
𝑞

𝑖
(·) denotes the electrical potential of the 𝑖th neuron in the

sub-region 𝑞 ∈ {𝑆𝑇𝑁,𝐺𝑃𝑒,𝐺𝑃𝑖,𝑇𝐻 }. Note that [44] showed that

by selecting 𝑁 = 10 the fidelity of BGM is very close to the ones

with 𝑁 >> 10.

The activation of each neuron, at time step 𝑡 , is captured by a

discrete event as 𝑎
𝑞

𝑖
(𝑡) ∈ {0, 1}, defined as

𝑎
𝑞

𝑖
(𝑡) = 1

( [
𝑣
𝑞

𝑖
(𝑡) > ℎ𝑞

𝑖

]
∧
[
∃𝛿 > 0,∀𝜀 ∈ (0, 𝛿], 𝑣𝑞

𝑖
(𝑡 − 𝜀) < ℎ𝑞

𝑖

] )
;

here, 1 is the indicator function, ℎ
𝑞

𝑖
is a pre-defined threshold such

that the neuron is considered activated once the potential 𝑣
𝑞

𝑖
(𝑡),

which has highly nonlinear dynamics, crosses over it.

We formally define the two QoC metrics used to quantify the

severity of PD symptoms (see e.g., [16, 22, 44] and references within),
i.e., EI and beta power spectral density (𝑃𝛽 ). EI is defined as the

portion of erroneous TH neuron activations in response to senso-

rimotor cortex (SMC) inputs at 𝑡 = 𝜏 , i.e., 𝑆𝑀𝐶𝜏 . Specifically, 𝑆𝑀𝐶𝜏
can change the TH neuron potentials, v𝑇𝐻 (𝑡), and should activate

all TH neurons exactly once within a 25𝑚𝑠 window in healthy brains,
i.e., ∀𝑖 ∃!𝑡𝑖 ∈ [𝜏, 𝜏 + 25𝑚𝑠] s.t. 𝑎𝑇𝐻

𝑖
(𝑡𝑖 ) = 1. However, in PD brains,

the TH neurons may not be activated or may respond with multi-

ple activations within the 25𝑚𝑠 window following an SMC input.

Formally, EI is defined as

𝐸𝐼 (𝑡) =

𝑁∑
𝑖=1

𝑡∑
𝑡=𝑡0

𝑎
𝑇𝐻,𝑒𝑟𝑟
𝑖

(𝑡)

𝑁

���𝑆𝑀𝐶𝜏 ��𝑡𝑡0

��� ; (30)

here, 𝑎
𝑇𝐻,𝑒𝑟𝑟
𝑖

(𝑡) ∈ {0, 1}, and 𝑎𝑇𝐻,𝑒𝑟𝑟
𝑖

(𝑡) = 1 (or 0) represents an

erroneous (or correct) TH neuron activation at time 𝑡 , and

���𝑆𝑀𝐶𝜏 ��𝑡𝑡0

���

is the cumulative number of SMC inputs received between the initial

time step 𝑡0 and current step 𝑡 .

The other metric 𝑃𝛽 is defined as

𝑃𝛽 =
1

𝑁

∑︁𝑁

𝑖=1

∫
2𝜋 ·35𝐻𝑧

𝜔=2𝜋 ·13𝐻𝑧

𝑃𝐺𝑃𝑖
𝑖 (𝜔)𝑑𝜔, (31)

where 𝑃𝐺𝑃𝑖
𝑖
(𝜔) is the single-sided power spectral density of the 𝑖th

neuron’s potential in the GPi sub-region.

C PROOF OF THEOREM 4.1.
Proof. We start by simplifying the KL-divergence between 𝑞𝜙

and 𝑝𝜓 – i.e.,

𝐾𝐿

(
𝑞𝜙 (𝑧 𝑗 , 𝑢 𝑗 |𝑠 𝑗 , 𝑠 𝑗+1, 𝑟 𝑗 ) | |𝑝𝜓 (𝑧 𝑗 , 𝑢 𝑗 |𝑠 𝑗 , 𝑠 𝑗+1, 𝑟 𝑗 )

)
(32)

=𝐾𝐿

(
𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ) | |𝑝𝜓 (𝑧 𝑗 , 𝑢 𝑗 |𝑠 𝑗+1, 𝑟 𝑗 )

)
(33)

=E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )

[
log

𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
𝑝𝜓 (𝑧 𝑗 , 𝑢 𝑗 |𝑠 𝑗+1, 𝑟 𝑗 )

]
(34)

=E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
[

log𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )

− log𝑝𝜓 (𝑧 𝑗 , 𝑢 𝑗 , 𝑠 𝑗+1, 𝑟 𝑗 ) + log 𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 )
]

(35)

=E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
[

log𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ) − log𝑝𝜓 (𝑧 𝑗 , 𝑢 𝑗 )

− log 𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 ) + log 𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 )
]

(36)

=E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
[

log

𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
𝑝𝜓 (𝑧 𝑗 , 𝑢 𝑗 )

− log𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 )
]
+ log𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 ) ≥ 0. (37)

Specifically, the transition between (32) and (33) follows from Bayes

rule, i.e.,

𝑞𝜙 (𝑧 𝑗 , 𝑢 𝑗 |𝑠 𝑗 , 𝑠 𝑗+1, 𝑟 𝑗+1) = 𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 , 𝑠 𝑗+1, 𝑟 𝑗+1, 𝑢 𝑗 )𝑞𝜙 (𝑢 𝑗 |𝑠 𝑗 , 𝑠 𝑗+1, 𝑟 𝑗+1) .

Then, the first term can be reduced to 𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ) since 𝑧 𝑗 is indepen-
dent from 𝑠 𝑗+1, 𝑟 𝑗+1, 𝑢 𝑗 by the DL-MDP definition. The second term

can be reduced to 𝑞𝜙 (𝑢 𝑗 |𝑠 𝑗 ) which should always equals to one

since deterministic policies are considered. The transition from (33)

to (34) follows from the definition of KL-divergence. In what fol-

lows, (34) to (37) take advantage of Bayes rule and rearrange terms.

The inequality in (37) holds since the KL-divergence of any two

distributions is greater than or equal to zero. Now by rearranging

the terms we obtain that

log 𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 ) ≥ − E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
[

log

𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
𝑝𝜓 (𝑧 𝑗 , 𝑢 𝑗 )

]
+ E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )

[
log𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 )

]
(38)

= − E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
[

log

𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
𝑝𝜓 (𝑧 𝑗 )

]
+ log𝑝𝜓 (𝑢 𝑗 )

+ E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
[

log𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 )
]

(39)

≥ − 𝐾𝐿
(
log𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 ) | |𝑝𝜓 (𝑧 𝑗 )

)
+ log 𝜖

+ E𝑧 𝑗∼𝑞𝜙 (𝑧 𝑗 |𝑠 𝑗 )
[

log𝑝𝜓 (𝑠 𝑗+1, 𝑟 𝑗 |𝑧 𝑗 , 𝑢 𝑗 )
]
. (40)
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Note that the transition between (38) and (39) follows from the fact

that 𝑧 𝑗 and 𝑢 𝑗 are independent; thus 𝑝𝜓 (𝑧 𝑗 , 𝑢 𝑗 ) = 𝑝𝜓 (𝑧 𝑗 )𝑝𝜓 (𝑢 𝑗 ).
Then, we have 𝑝𝜓 (𝑢 𝑗 ) =

∫
S 𝑝𝜓 (𝑢 𝑗 |𝑠)𝑝𝜓 (𝑠)𝑑𝑠 =

∫
˜S𝑢 𝑝𝜓 (𝑠)𝑑𝑠 ∈

[𝜖, 1] by the assumption. □

D EXISTING IS BASED OPE METHODS
Importance sampling (IS) refers to a statistical technique that can

calculate the expectation of function 𝑓 (𝑥) w.r.t. an unknown distri-

bution 𝑝 (𝑥) using a given distribution𝑞(𝑥) through re-weighting [32],
i.e.,

E𝑝 [𝑓 (𝑥)] = E𝑞
[
𝑓 (𝑥)𝑝 (𝑥)
𝑞(𝑥)

]
. (41)

This technique can be applied in the context of OPE by setting

𝑓 (𝑥) as the accumulated return𝐺0, 𝑝 as the trajectory distribution

𝜌𝜋 over the target policy 𝜋 , and 𝑞 as the trajectory distribution 𝜌𝜇

over the behavioral policy 𝜇. Specifically, suppose that there exist a

total of 𝑛 trajectories in 𝜌𝜇 and each corresponds to horizon 𝑇 , i.e.,

𝜌𝜇 =

{[
(𝑠0,0, 𝑢0,0, 𝑟0,0), . . . (𝑠0,𝑇 , 𝑢0,𝑇 , 𝑟0,𝑇 )

]
, . . . ,[

(𝑠𝑛,0, 𝑢𝑛,0, 𝑟𝑛,0), . . . (𝑠𝑛,𝑇 , 𝑢𝑛,𝑇 , 𝑟𝑛,𝑇 )
]���𝑢𝑖, 𝑗 = 𝜇 (𝑠𝑖, 𝑗 ), 𝑟𝑖, 𝑗 = 𝑅(𝑠𝑖, 𝑗 , 𝑢𝑖, 𝑗 , 𝑠𝑖, 𝑗+1)} . (42)

Then, the expected return over the unknown 𝜌𝜋 can be obtained

as

E𝑠∼𝜌𝜋 [𝐺0] =
1

𝑛

𝑛∑︁
𝑖=1

𝐺
(𝑖)
0

𝑇∏
𝑗=0

𝜋 (𝑢𝑖, 𝑗 |𝑠𝑖, 𝑗 )
𝜇 (𝑢𝑖, 𝑗 |𝑠𝑖, 𝑗 )

; (43)

here, 𝐺
(𝑖)
0

is the accumulated return from the 𝑖th trajectory in 𝜌𝜇 ,

and

𝑇∏
𝑗=0

𝜋 (𝑢𝑖,𝑗 |𝑠𝑖,𝑗 )
𝜇 (𝑢𝑖,𝑗 |𝑠𝑖,𝑗 ) are usually referred to as the IS weights. It con-

tains multiplications of distributions (i.e., behavioral and target

policies) over horizon𝑇 ; thus, it is considered to have high variance

across different trajectories [32, 40]. A common and intuitive way

of reducing the variance is to normalize the IS weights, i.e.,

E𝑠∼𝜌𝜋 [𝐺0] =

𝑛∑
𝑖=1

𝐺
(𝑖)
0

𝑇∏
𝑗=0

𝜋 (𝑢𝑖,𝑗 |𝑠𝑖,𝑗 )
𝜇 (𝑢𝑖,𝑗 |𝑠𝑖,𝑗 )

𝑛∑
𝑖=1

𝑇∏
𝑗=0

𝜋 (𝑢𝑖,𝑗 |𝑠𝑖,𝑗 )
𝜇 (𝑢𝑖,𝑗 |𝑠𝑖,𝑗 )

. (44)

Moreover, the weighted IS is extended to the step-wise weighted IS

in [40], which we used as a baseline in Section 5.1. Specifically, each

reward 𝑟 𝑗 is weighted along a trajectory according to the likelihood

up to stage 𝑗 as, i.e.,

E𝑠∼𝜌𝜋 [𝐺0] =

𝑛∑
𝑖=1

𝑇∑
𝑗=0

𝑇−𝑗∑
𝑘=1

𝛾𝑘−1𝑟 𝑗+𝑘
𝑗+𝑘−1∏
𝑙=𝑗+1

𝜋 (𝑢𝑖,𝑙 |𝑠𝑖,𝑙 )
𝜇 (𝑢𝑖,𝑙 |𝑠𝑖,𝑙 )

𝑛∑
𝑖=1

𝑇∑
𝑗=0

𝑇−𝑗∑
𝑘=1

𝛾𝑘−1

𝑗+𝑘−1∏
𝑙=𝑗+1

𝜋 (𝑢𝑖,𝑙 |𝑠𝑖,𝑙 )
𝜇 (𝑢𝑖,𝑙 |𝑠𝑖,𝑙 )

, (45)

which can be approximated using eligibility traces introduced in [40,

46].

The state-of-the-art density estimation importance sampling

(DEIS), introduced in [32], finds that significant decrease in estima-

tion variance is possible by applying importance weighting directly

on the state space, instead of the trajectory space as in the IS in-

troduced above. The authors start with defining the average state

visitation distribution as

lim

𝑇→∞
©­«
𝑇∑︁
𝑗=0

𝛾𝑡𝑑𝜋,𝑗 (𝑠)ª®¬
/ ©­«

𝑇∑︁
𝑗=0

𝛾𝑡
ª®¬ , (46)

where 𝑑𝜋,𝑗 (·) is the distribution of state 𝑠 𝑗 when executing policy

𝜋 starting from the initial state 𝑠0. Then the expected return over

policy 𝜋 can be calculated as

E𝑠,𝑢∼𝑑𝜋 [𝐺0] = E𝑠,𝑢∼𝑑𝜇
[
𝑑𝜋 (𝑠)𝜋 (𝑢 |𝑠)
𝑑𝜇 (𝑠)𝜇 (𝑢 |𝑠)

𝐺0

]
; (47)

thus, the IS estimator for the RHS of (47) can be obtained as

𝑛∑︁
𝑖=1

𝑇∑︁
𝑗=0

𝛾 𝑗
𝑑𝜋 (𝑠𝑖,𝑗 )𝜋 (𝑎𝑖,𝑗 |𝑠𝑖,𝑗 )
𝑑𝜇 (𝑠𝑖,𝑗 )𝜇 (𝑎𝑖,𝑗 |𝑠𝑖,𝑗 )∑

𝑖′, 𝑗 ′ 𝛾
𝑗 ′ 𝑑𝜋 (𝑠𝑖′, 𝑗′ )𝜋 (𝑎𝑖′, 𝑗′ |𝑠𝑖′, 𝑗′ )
𝑑𝜇 (𝑠𝑖′, 𝑗′ )𝜇 (𝑎𝑖′, 𝑗′ |𝑠𝑖′, 𝑗′ )

𝑟𝑖, 𝑗 , (48)

with 𝑑𝜋 (·) being the only term that is unknown. At last, the authors

introduce various techniques to approximate it such as NNs.

E ALGORITHM FOR INTEGRATING OPE INTO
RL-BASED CONTROL DESIGN

Algorithm 1 OPE enriched offline RL (DQN)

Require: M,
ˆM, Π = {𝜋 (1)

𝜃𝑞
, 𝜋
(2)
𝜃𝑞

, . . . }, 𝑓𝑝𝑎𝑡𝑖𝑒𝑛𝑡 , 𝑓𝑒𝑣𝑎𝑙 , B
Ensure:
1: Initialize the network parameters, 𝜃𝑞 ’s, for all 𝜋

(.)
𝜃𝑞
∈ Π.

2: Initialize the parameters in the DL-MDP
ˆM.

3: 𝜋̃𝜃𝑞 ← 𝜋
(·)
𝜃𝑞

.

4: for 𝑒𝑝𝑖 = 0 to𝑚𝑎𝑥_𝑒𝑝𝑖 do
5: if 𝑒𝑝𝑖 mod 𝑓𝑝𝑎𝑡𝑖𝑒𝑛𝑡 == 0 then ⊲ Interact with the patient
6: Collect from the patient trial EI and 𝑃𝛽 with duration 𝑙 and form the initial state 𝑠0

following (1).

7: 𝑠 ← 𝑠0

8: for 𝑗 = 0 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
9: 𝑢 ← 𝜋̃𝜃𝑞 (𝑠) ⊲ Follow the chosen policy
10: Provide control stimuli𝑢 . In the mean time, collect from the brain EI and 𝑃𝛽 with

duration and form 𝑠′.
11: Calculate reward 𝑟 = 𝑅 (𝑠,𝑢, 𝑠′) .
12: Use tuple (𝑠,𝑢, 𝑟, 𝑠′) to update the corresponding 𝜃𝑞 following (15).

13: Append tuple (𝑠,𝑢, 𝑟, 𝑠′) to the training buffer B.
14: 𝑠 ← 𝑠′
15: end for
16: else ⊲ Train with historical data
17: for 𝑗 = 0 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do

18: Sample (𝑠,𝑢, 𝑟, 𝑠′) ∼ B and update all 𝜋
(.)
𝜃𝑞
∈ Π.

19: end for
20: end if
21: if 𝑒𝑝𝑖 mod 𝑓𝑒𝑣𝑎𝑙 == 0 then ⊲ Evaluate policies using OPE
22: Initialize an empty list𝐺 = [].
23: Update parameters of

ˆM using all data in B following (21).

24: for each 𝜋 (·)
𝜃𝑞
∈ Π do

25: Let 𝜋
(·)
𝜃𝑞

interacts with
ˆM for𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 + 1 steps.

26: Collect rewards and calculate accumulative returns following (5). Append the return

to the end of list𝐺 .

27: end for
28: 𝜋̃𝜃𝑞 ← 𝜋

(argmax𝐺 )
𝜃𝑞

29: end if
30: end for
31: 𝜋∗ ( ·) ← 𝜋̃𝜃𝑞 ( ·)
32: return 𝜋
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