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Abstract— In this paper, we propose a Deep Imitative Q-
learning (DIQL) method to synthesize control policies for
mobile robots that need to satisfy Linear Temporal Logic
(LTL) specifications using noisy semantic observations of their
surroundings. The robot sensing error is modeled using prob-
abilistic labels defined over the states of a Labeled Transition
System (LTS) and the robot mobility is modeled using a Labeled
Markov Decision Process (LMDP) with unknown transition
probabilities. We use existing product-based model checkers
(PMCs) as experts to guide the Q-learning algorithm to con-
vergence. To the best of our knowledge, this is the first approach
that models noise in semantic observations using probabilistic
labeling functions and employs existing model checkers to
provide suboptimal instructions to the Q-learning agent.

I. INTRODUCTION

Formal languages, such as LTL, can be used to describe
robot motion planning problems that range beyond point-
to-point navigation [1], e.g. complex tasks in environments
that can be modeled as transition systems [2]–[6] or MDPs
[7]–[11]. In these problems, uncertainty in the robots or the
workspace increases the difficulty in synthesizing robot mo-
tion plans [12]. Motion planning problems under uncertainty
have been studied extensively in [7]–[11], [13]–[25]. Often,
uncertainty in the control actions is captured by the transition
probabilities in the MDP [7]–[11], [20]–[23], [25]. However,
sensing uncertainty typically gives rise to POMDPs [16],
[18], [20], that usually require history-dependent controllers
and are computationally very challenging to solve.

In this paper, we consider robots that take noisy semantic
observations of their surroundings and are responsible for
accomplishing complex tasks captured by LTL formulas.
Specifically, we model robot motion using Labeled Markov
Decision Processes (LMDPs) and sensing uncertainty by
defining probabilistic labels in the Labeled Transition System
(LTS) that give rise to probabilistic atomic propositions with
unknown probabilities. This way we can model noise in
semantic observations, e.g., due to the inability of the robot
to accurately distinguish between different regions in space
such as a master bedroom and a guest room. To synthesize a
policy that maximizes the probability of satisfying the LTL
specification, we propose a deep imitative Q-learning (DIQL)
approach where a Q-learning agent is mentored by product-
based model checkers (PMCs). Existing imitation learning
methods [26]–[30] require human experts to provide exact
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and optimal instructions to the learning agent, in contrast to
our approach that only requires PMCs to provide suboptimal
instructions that the learning agent can refine to synthesize
an optimal control policy.

To the best of our knowledge, the most relevant works are
[11], [13], [14], [20]–[24], [31]. Although the Q-learning
method proposed in [11] can be applied directly to the
problem under consideration, it is inefficient because it does
not take in to account sensing information and it requires
extremely large numbers of sampled data as well as training
steps to learn the optimal Q-function due to the low sample
efficiency [32], [33]. Similarly, [22]–[24] develop learning
based methods to solve MDPs under LTL specifications but
do not incorporate sensing information. In [13], [14], only
point-to-point navigation tasks are considered, and in [20]
only finite horizions are considered and memory-dependent
controllers are required. In contrast, in our approach the LTL
specifications are satisfied by infinite paths and memoryless
controllers are sufficient. In addition, in [21], [22] the con-
struction of Accepting Maximal End Components (AMECs)
are necessary, however, the method we propose can avoid
this process, it can handle large-scale environments, and it
can still synthesize a policy even if AMECs do not exist.

The paper is organized as follows: In Section II, we
review necessary background. In Section III, we formulate
the learning problem. In Section IV, we develop the DIQL al-
gorithm. In Section V, numerical experiments are presented.
Conclusions are drawn in Section VI.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we briefly review preliminaries on LTL,
LTSs, LMDPs and deep Q-learning.

A. LTL Specifications

The basic ingredients of LTL are a set of atomic propo-
sitions AP , the boolean operators, i.e., conjunction ∧, and
negation ¬, and two temporal operators, next © and until
U . LTL formulas over a set AP can be constructed based on
the following grammar: φ ::= true | ξ | φ1 ∧ φ2 | ¬φ | ©
φ | φ1 U φ2, where ξ ∈ AP . For the sake of brevity we
abstain from presenting the derivations of other Boolean and
temporal operators, e.g., always �, eventually ♦, implication
⇒, which can be found in [34]. Any LTL formula can be
translated into a DRA defined as follows [34].

Definition 2.1 (DRA): A DRA over 2AP is a tuple Rφ =
(Q, q0,Σ, δ,F) where Q is a finite set of states; q0 ⊆ Q
is the set of initial states; Σ = 2AP is the input alphabet;
δ : Q × Σ → Q is the transition function and F =



{(G1,B1), . . . , (Gn,Bn)} is a set of accepting pairs where
Gi,Bi ⊆ Q, i ∈ {1, . . . , n}.

A run of Rφ over an infinite word ωΣ =
ωΣ(1)ωΣ(2)ωΣ(3) · · · ∈ Σω is an infinite sequence
ωQ = ωQ(1)ωQ(2)ωQ(3) · · · , where ωQ(1) ∈ q0 and
ωQ(k + 1) ∈ δ(ωQ(k), ωΣ(k)) for all k ≥ 1. Let Inf(ωQ)
denote the set of states that appear infinitely often in ωQ.
Then, a run ωQ is accepted by Rφ if Inf(ωQ) ∩ Gi 6= ∅ and
Inf(ωQ) ∩ Bi = ∅ for at least one pair i ∈ {1, . . . , n} of
accepting states i = 1, . . . , n [35].

B. Robot Sensing Model
In this paper, we model the robot workspace W ⊆

Rd, d = 2, 3 as an LTS defined as follows.
Definition 2.2 (LTS): An LTS is a tuple T =

(Π, U, δt,Π0,AP, LI , L∗, LH) where Π = {πi|i ∈ [1, n]} is
the set of regions; U = {ui|i ∈ [1,m]} is the set of control
inputs; δt : Π×U → 2Π is the transition function; Π0 ⊆ Π
is the set of initial regions; AP = {api|i ∈ [1, k]} is the set
of atomic propositions; LI : Π → 2AP is a probabilistic
labeling function that maps regions πi ∈ Π to labels based
on instantaneous sensor observations; L∗ : Π → 2AP is the
ground-truth labeling function that maps regions πi ∈ Π to
the ground truth labels and LH : Π → 2AP is a labeling
function that maps regions πi ∈ Π to labels based on a
history of sensor observations.

Specifically, we define the instantaneous sensing model as

LI(πi) =

{
L∗(πi) with probability p1,
2AP\L∗(πi) with probability 1− p1,

(1)

where πi ∈ Π are the regions and we assume that p1 > 0.5.
Moreover, we define sensing buffers Eπi that store the history
of observations until the current step t as

Eπit = {Xπi
k }, k ∈ [1, nπit ], (2)

where Xπi
k = 1 if LI(πi) = L∗(πi), Xπi

k = 0 if LI(πi) 6=
L∗(πi) and nπit denotes the size of Eπit . Then, the labeling
function LH is defined as

LH(πi) =

{
L∗(πi) if Y πik > nπit /2,
2AP\L∗(πi) if Y πik ≤ n

πi
t /2,

(3)

where Y πik =
∑n

πi
t
i=1X

πi
k . In what follows, we use LH in (3)

as the robot sensing model. The use of the empirical average
in (3) can correct for errors in the instantaneous observations
in (1). In the above definitions, Xπi

k are Bernoulli random
variables drawn from a distribution D, while Y πik are bino-
mial random variables with parameters (nπit , p1). Finally, we
make the following assumptions on Π and LI , respectively.

Assumption 2.3: For all πi ∈ Π, there is at most one
proposition defined over πi. As a result, LI(πi) contains
at most one element.

Assumption 2.4: The sensor LI only gathers information
from the set of regions Πap = {πi ∈ Π|L∗(πi) 6= ∅} that
have been labeled by some ap ∈ AP . For the set of regions
Π¬ap = {πi ∈ Π|L∗(πi) = ∅} that have not been labeled
by any ap ∈ AP , the sensor does not gather information
from them. Hence LI(πi) 6≡ ∅, ∀πi ∈ Πap and LI(πj) ≡
∅, ∀πj ∈ Π¬ap.

C. Robot Motion Model

Robot mobility in the workspace can be represented by an
MDP defined as follows.

Definition 2.5 (MDP): An MDP is a tuple M =
(S, s0,A, P,R, γ), where S is a finite set of states; s0 is the
initial state; A is a finite set of actions; P is the transition
probability function defined as P : S × A × S → [0, 1];
R : S ×A×S → R is the reward function; γ ∈ [0, 1] is the
discount factor.

In order to capture the uncertainty both in the robot
controller and sensor, we extend Definition 2.5 to include
probabilistic labels giving rise to an LMDP.

Definition 2.6 (LMDP): An LMDP is a tuple M =
(M,LH, ZT ), where M is an MDP; LH : S → 2AP is
the labeling function that is inherited from the LTS and
ZT : S → Π is the function that maps the set of states
S to the set of regions Π defined in the LTS.

In this paper, we assume that the transition probability
function P and the ground truth labeling function L∗ is
unknown. Finally, we define the policy of an LMDP M as
follows.

Definition 2.7 (Policy of LMDP): A deterministic policy
τ of an LMDP M is a function, τ : S → A, that maps
each state s ∈ S to an action a ∈ A.

Observe that given an initial state s0 and a policy τ , an
infinite path uτ of the LMDP is generated under the policy
τ , defined as an infinite sequence uτ = s0, s1, . . . , st, . . . ,
where st ∈ S is the state of the LMDP at the stage t. Note
that, given an action at due to the policy τ , a transition from
st ∈ S to st+1 ∈ S in the LMDP occurs with probability
P (st, at, st+1), and a scalar reward rt is generated.

D. Deep Q-learning

Deep Q-learning returns an optimal policy τ∗ of a LMDP
M by minimizing the following loss function iteratively:

J(θ, θ′) =E(s,a,s′,r)∼B[Q(s, a; θ)−R (s, a, s′)

− γQ
(
s′, τ̂ (k)(s′); θ′)

)2

], (4)

where β is an exploration policy, such as ε-greedy, ρβ

is the state visitation distribution over policy β, Q(·|·; θ)
is the state-action value function evaluated from a policy
network parameterized by θ, Q(·|·; θ′) is the state-action
value function evaluated from a target network parameterized
by θ′, τ̂ (k)(s′) = argmaxaQ(s′, a; θ′) is the target policy at
state s′ in iteration k and B = {(s, a, s′, r)|s, s′ ∼ ρβ ; r ∼
R; a ∼ β} is the empirical training buffer that collects all
prior experiences. We refer to [11], [36] for a complete
review of deep Q-learning.

E. Problem Definition

Consider a robot operating in a workspace W ⊆ Rd, d =
2, 3 and let the motion of the robot be captured by an LMDP
M = (M,LH, ZT ), as defined in Definition 2.6. Moreover,
consider an LTS T = (Π, U, δt,Π0,AP, LI , L∗, LH) that
is constructed and maintained using real-time sensing data



Algorithm 1 DIQL Algorithm
Input: θ,B,max epi,max step, s0, q0,M, T , Rφ
Begin:

1: Initialize ω∗P |Q ← null
2: while ω∗P |Q == null do
3: Gather sensing information by (3)
4: Construct RPA P = T ⊗Rφ
5: Synthesize an optimal accepting sequence ωP of P
. [37]

6: if an ωP is found then
7: ω∗P |Q ← Concatenate(Unique(Pre(ωP |Q)),
Unique(Suf(ωP |Q)))

8: else
9: continue

10: end if
11: end while
12: for epi = 0 to max epi− 1 do
13: s← s0, q ← q0, x← (s, q)
14: for step = 0 to max step− 1 do
15: a← β̂(x) . Follow exploration policy
16: Get s′ following the dynamics inM after taking

action a
17: q′, r ← CheckRabin(s, q, s′) . [11]
18: x′ ← (s′, q′)
19: Append tuple (x, a, r, x′) to B
20: Sample data batch from B and update θ by

minimizing the loss (4) through gradient descent [36]
21: s← s′, q ← q′, x← x′

22: if x is terminal state then
23: break
24: end if
25: end for
26: end for
27: τ(·)← argmaxa′Q(·, a′; θ)
28: return π

obtained by the robot. Then, the problem that we address in
this paper can be summarized as follows.

Problem 1: Given an LMDPM = (M,LH, ZT ) with un-
known transition probabilities P , an unknown set of ground
truth atomic propositions AP and an LTL specification φ,
find a policy τ that maximizes the probability that the
resulting trajectory tr(τ) = s0, s1, s2, ..., sk, ... satisfies φ,
where sk ∈ S ∀ k ≥ 0, sk+1 ∼ P (sk, τ(sk), ·) ∀ k ≥ 0.

III. DEEP IMITATIVE Q-LEARNING ALGORITHM

In this section, we propose a DIQL algorithm to solve
Problem 1. Specifically, we design PMCs which take real-
time sensing information as input and provide suboptimal
instructions to the Q-learning agent during the exploration
step within the deep Q-learning framework proposed in
[36] to design optimal control policies that maximize the
probability of satisfying an LTL specification φ.

To construct a PMC, we first define a Rabin product
automaton (RPA) as follows [35].

Algorithm 2 Acquire Instruction from PMC
Input: T , Rφ, q, s, ω∗P |Q, M, C
Begin:

1: Gather sensing information by (3)
2: Reset Π0 as ZT (s)
3: if q exists in ω∗P |Q then
4: Locate q in ω∗P |Q and store the index into idx
5: q̂ ← ω∗P |Q[idx+ 1]
6: Get set L ← {l ∈ 2AP |q̂ ∈ δ(q, l)} from Rφ
7: φ′ ← ♦(

∨
l∈L

l) . Set new LTL

8: Construct Rφ′ given φ′

9: P ′ ← T ⊗Rφ′

10: Synthesize an optimal accepting run ωP′ =
ωP′(1)ωP′(2)ωP′(3) · · · of P ′

11: Set â as the u ∈ U that satisfies ωP′(2)|Π ∈
δt(ωP′(1)|Π, u)

12: else
13: â← random action
14: end if
15: return â

Definition 3.1 (RPA): A RPA is defined by P = T ⊗
Rφ = (SP , s

0
P , δP ,Σ,FP) where SP = Π × Q is the set

of states; s0
P = Π0 × q0 is the initial state; δP : SP ×

Σ → SP is the transition function where δP((πi, qj), σ) =
{(π′i, q′j) ∈ SP |q′j ∈ δ(qj , LH(πi)),∃ u ∈ U, π′i ∈
δt(πi, u)}; Σ = 2AP is the input alphabet and FP =
(Π× G1,Π× B1), . . . , (Π× Gn,Π× Bn) is the Rabin ac-
ceptance condition.

Since the RPA is still a DRA, the accepting run of P
over an infinite word ωΣ = ωΣ(1)ωΣ(2)ωΣ(3) · · · ∈ Σω

is also a infinite sequence ωP = ωP(1)ωP(2)ωP(3) · · · ,
where ωP(1) ∈ s0

P and ωP(k+1) ∈ δP(ωP(k), ωΣ(k)). The
sequence ωP can be projected into a sequence of T denoted
by ωP |Π = ωP(1)|ΠωP(2)|ΠωP(3)|Π · · · , and a sequence
of Rφ denoted by ωP |Q = ωP(1)|QωP(2)|QωP(3)|Q · · · .
A run ωP is accepted by P if Inf(ωP) ∩ (Π× Gi) 6= ∅ and
Inf(ωP ) ∩ (Π×Bi) = ∅ for at least one pair i ∈ {1, . . . , n}
of accepting states i = 1, . . . , n.

The algorithm contains two phases: PMC initialization
and imitative learning, which are introduced in the following
subsections respectively.

A. PMC Initialization Phase

We initialize the PMC with an optimal rabin sequence
ω∗P |Q that is essential to synthesize control instructions
during the learning phase that follows; see, e.g., [Alg.1, line
16] using the exploration policy, which is introduced with
details in the next subsection as in (5). The initialization
phase starts by initializing the optimal Rabin sequence ω∗P |Q
[Alg. 1, lines 1-11]. Specifically, we set ω∗P |Q as null at
the beginning and perform the following process repeatedly
until ω∗P |Q is found: first, the robot sensor acquires sensing
information using the the noisy robot sensing model (3)
and the outputs of LH are updated accordingly; second, we



Fig. 1. The DRA Rφ corresponding to φ = ♦(A ∧ ♦T ), where q2 is
the initial state and the set of accepting pairs F = {({q0}, ∅)}.

construct a RPA P by taking the product between the LTS T
and the DRA Rφ; third, we synthesize an optimal accepting
run ωP of the RPA P by Alg.3 proposed in [37]; last, if ωP
is found, we concatenate one run of the projected sequence
suffix with unique DRA states Unique(Suf(ωP |Q)) to the
end of the projected sequence prefix with unique DRA states
Unique(Pre(ωP |Q)), as defined in Alg. 3, to ensure that the
suffix runs are correctly learned.

Remark 3.2: Note that the robot has an inaccurate con-
troller which gives rise to the unknown transition probabil-
ities P in the LMDP M . However, in Alg. 1, the RPA P
used by PMC does not take into account this uncertainty and
hence its instructions are considered suboptimal.

B. Imitative Learning Phase

The PMC can be used to provide suboptimal instructions
to the Q-learning agent, as discussed in Alg.2. Specifically,
in the learning phase we train a Q-learning agent that can
refine these suboptimal instructions into an optimal policy.
The learning phase starts by setting the current LMDP state
s as the initial LMDP state s0, the current DRA state q
as the initial DRA state q0 and by forming an s-q tuple
x = (s, q) that is fed into the deep Q-network Q(·, ·; θ)
with neural network (NN) parameters θ and stored in the
experience replay buffer B [Alg.1, line 13]. Then an action
a is sampled from the exploration policy β̂ [Alg.1, line 15]
defined as follows:

β̂(x) =

 random action with probability pr,
follow PMC (Alg.2) with probability pp,
argmaxaQ(x, a; θ) with probability pq,

(5)

where the PMC instructions are obtain by executing Alg. 2
which is discussed in detail later. After performing action
a, the next LMDP state s′ is obtained by following the
dynamics in M [Alg.1, line 16]. The next DRA state q′

and reward r is obtained by executing the CheckRabin
function defined in [11], which basically obtains the next
state q′ and the reward r given an action a, and the next
s-a tuple x′ = (s′, q′) is formed [Alg.1, lines 17-18]. Using
x′, an experience tuple (x, a, r, x′) is formed and stored into
the replay buffer and the parameters of the Q-network, θ,
are updated by performing gradient descent steps with the
data batch sampled from B [36]. Next, s, q, x are set to s′,
q′, x′, respectively [Alg. 1, line 21]. If x is a terminal state,
the current episode is completed [Alg. 1, lines 22-25] and

Algorithm 3 Unique(ω)
Input: A sequence ω
Begin:

1: ω̂ ← [ω[0]]
2: for i = 1 : len(ω)− 1 do
3: if ω[i] ! = ω̂[−1] then
4: ω̂.append(ω[i])
5: end if
6: end for
7: return ω̂

the next episode starts. Note that we terminate every episode
when q ∈ Gi, since the goal of the robot is to learn a policy
so that DRA states q ∈ Gi are visited infinitely often, as
this satisfies the accepting condition of the DRA. At last,
the optimal control policy τ∗ is constructed as [Alg. 1, line
27]:

τ∗(x) = argmaxa′Q(x, a′; θ), (6)

where x = (s, q), s ∈ S, q ∈ Q.
In the rest of this section, we discuss how the PMC

generates instructions for the exploration policy β̂ using
Alg.2. Specifically, first the robot uses the current history
of observations and updates the labels LH using (3). After
that, the initial region Π0 of the LTS T is set to be the
region that corresponds to the current s [Alg.2, line 2]. The
procedure that follows is split into two cases depending on
whether the current DRA state q exists in the optimal Rabin
sequence ω∗P |Q. If q exists in ω∗P |Q, then we identify the
DRA state q̂ that follows q in ω∗P |Q [Alg.2, lines 4-5] and
form a partial LTL φ′ by taking disjunctions of all the
boolean expressions that transition q to q̂ [Alg.2, lines 6-
7], see Example 3.3. Next, we construct a DRA Rφ′ that
corresponds to φ′ and take the product between Rφ′ and T
to form a partial RPA automaton P ′ that is used to synthesize
partial plans that allow the current DRA state q to transition
to q̂ [Alg.2, lines 8-9]. If q does not exist in ω∗P |Q, then a
state q̂ that is necessary for the PMC to give instructions
cannot be identified by [Alg.2, line 5] and as a result it is
trivial to execute the procedures defined in [Alg.2, lines 6-
11]. In this case, the PMC suggest a random action [Alg.2,
line 13].

Example 3.3: In this example we illustrate [Alg. 2, lines
6-7]. Consider the LTL φ = ♦(A∧♦T ) whose corresponding
DRA Rφ is shown in Figure 1. Suppose that the robot is
currently in state q1 and needs to transition to q0. According
to [Alg.2, line 6], L = {¬A ∧ T,A ∧ T} because q0 ∈
δ(q1,¬A ∧ T ) and q0 ∈ δ(q1, A ∧ T ). Then in [Alg.2, line
7], the local φ′ is constructed as φ′ = ♦(

∨
l∈L

l) = ♦((¬A ∧

T ) ∨ (A ∧ T )).

C. Correctness

In this section, we provide theoretical results showing
probabilistic completeness of Alg.1. We start with a lemma



showing that the robot sensing model LH defined in (3) can
reconstruct ground-truth labels for all π ∈ Πap eventually.

Lemma 3.4: Under Assumptions 2.3 and 2.4, for all la-
beled regions π ∈ Πap,

P(Y πk ≤ nπt /2) ≤ e−n
π
t p1(1− 1

2p1
)2/2. (7)

Proof: Using the Chernoff Bound [38], [39] we have
that

P(Y πk ≤ (1− δ)µ) ≤ e− 1
2µδ

2

. (8)

Then, using fact that for a binomial distribution µ = nπt p1

and set δ = 1− 1
2p1

, (8) becomes

P(Y πk ≤
1

2p1
nπt p1) ≤ e−n

π
t p1(1− 1

2p1
)2/2, (9)

which completes the proof.
Lemma 3.4 shows that the probability of reconstructing

an incorrect label using the sensing model (3) converges
to 0 as nπk → ∞. Equivalently, LH(π) → L∗(π) as
nπk →∞, meaning that the sensing model (3) approximates
the ground truth model L∗ when a sufficiently large history
of observations is considered. The completeness of Alg.1
is shown by first showing the completeness of the PMC
initialization phase and then of the imitative learning phase.

In what follows, we assume a long enough history of
observations so that the sensing model (3) returns ground
truth labels, by Lemma 3.4.

Proposition 3.5: Let Assumptions 2.3 and 2.4 hold, and
assume a large enough history of observations in (2) for all
π ∈ Π. Then the PMC initialization phase [Alg.1, lines 1-11]
will eventually find the optimal Rabin sequence ω∗P |Q with
probability 1.

Proof: According to [Alg.1, line 5], a sufficient con-
dition for finding ω∗P |Q is that an optimal accepting run
exists in P and this requires that the set of labels L1 =
{l = L∗(π)| ∀ π ∈ Πap} all appear in the set L2 =
{l = LH(π)| ∀ π ∈ Πap}. This means that LH returns
all the ground truth labels in 2AP for all π ∈ Πap, but not
necessarily at the correct locations. In what follows, we show
that P(L1 = L2) is positive. Specifically, we have that

P(L1 = L2) >
∏

π∈Πap

P(LH(π) = L∗(π)) (10)

=
∏

π∈Πap

P(Y πk > nπt /2) > 0, (11)

where the first inequality follows from the fact that the
probability that all the labels in 2AP are detected at any
locations is larger than the probability that they are detected
at the correct locations, and the second inequality follows
from Lemma 3.4 and the fact that nπk is large enough. Since
P(L1 = L2) > 0 and by Alg.1 all locations will be visited
infinitely many times, we get that eventually L1 = L2 with
probability 1.

Proposition 3.6: After the optimal Rabin sequence ω∗P |Q
has been detected by [Alg.1, lines 1-11], it remains constant
during the entire learning process.

Proof: The optimal Rabin sequence ω∗P |Q only depends
on the transition function of the DRA Rφ which remains
unchanged during the entire learning process, as a result
ω∗P |Q is constant.

Note that Propositions 3.5 and 3.6 show completeness of
the PMC initialization phase [Alg.1, lines 1-11]. The next
proposition shows the completeness of the imitative learning
phase [Alg.1, lines 12-28].

Proposition 3.7: Let Assumptions 2.3 and 2.4 hold, and
assume a large enough history of observations in (2) for all
π ∈ Π. The imitative learning phase [Alg.1, lines 12-28]
is probabilistically complete, meaning that if a policy exists
that maximizes the probability of satisfying the LTL formula
φ, then [Alg.1, lines 12-28] will find it with probability 1.

Proof: The difference between standard Q-learning and
Alg.1 is that here we modify the exploration policy with
PMC instructions, cf. [Alg.1, line 15], returned by Alg.2
which utilizes the optimal Rabin sequence calculated from
[Alg.1, lines 1-11]. To show this result we need to show that
the proposed modification to the exploration policy does not
affect the convergence of standard Q-learning. For this, we
first need to show that the sequence ω∗P |Q returned by [Alg.1,
lines 1-11] is optimal and does not change during training.
This sequence is an input to the Q-learning algorithm that
follows [Alg.1, lines 12-28] and by remaining constant we
ensure that it does not affect convergence of the algorithm.
Second, we need to show that the exploration policy β̂
returned by Alg.2 ensures that the Q-values Q(s, a) for all
state-action pairs are updated infinitely many times as the
number of episodes goes to infinity, as required in Q-learning
for sufficient exploration and as a result the learned policy
can be considered as optimal [40], [41].

To show that ω∗P |Q returned by [Alg.1, lines 2-12] is
constant during training, note that by By Proposition 3.5
the sequence ω∗P |Q will be found with probability 1, while
by Proposition 3.6 it will remain constant across training
steps. As a result even though the labels reconstructed using
sensing information, and the optimal product sequence ωP
can vary at different training steps, ω∗P |Q always remains
optimal and constant. On the other hand, to show that
the exploration policy β̂ returned by Alg.2 still allows for
sufficient exploration, note that according to (5), the robot
performs random actions with probability pr > 0 and
hence β̂ is considered ε-soft, see [40]. Therefore, β̂ satisfies
the assumptions required from an exploration policy in Q-
learning and the resulting policy τ [Alg.1 line 28] is optimal.

Combining Propositions 3.5, 3.6 and 3.7, we obtain that
Alg. 1 is probabilistically complete. Specifically, we have the
following result.

Theorem 3.8: Let Assumptions 2.3 and 2.4 hold, and
assume a large enough history of observations in (2) for all
π ∈ Π. Then, Alg.1 is probabilistically complete.

IV. NUMERICAL EXPERIMENTS

In this section, we illustrate the DIQL algorithm on a
planning task for a single robot. We start with examining



(a) Ground-Truth Envi-
ronment.

(b) Sample
environment with
labels reconstructed by
the sensing model (3).

Fig. 2. Simulation Environments.

Fig. 3. Comparison of the DIQL approach with the pure DQN approach
proposed by [11], the model-based learning approach proposed by [24] and
the tabular Q-learning approach.

the performance of Alg.1 for a 10× 10 discrete grid world,
where each discrete point is associated with a state of an
LMDP that models the robot; see Figure 2(a). The ground
truth set of atomic propositions AP is defined as AP =
{A,B,C, T,∅}, where the atomic propositions A,B, T are
observed in the respective regions shown in Figure 2(a),
while ∅ denotes that nothing is observed.

The robot can take 5 actions: UP, RIGHT, DOWN, LEFT,
NONE, where action NONE means that the robot chooses
to remain idle. The robot has a noisy controller, which can
only execute the desired action with probability 0.8 and
random action otherwise. The initial location of the robot
is at (4, 1). According to Assumption 2.4, the instantaneous
sensing model LI only gathers sensing information from
the regions π ∈ Π if and only if L∗(π) 6= ∅, i.e., states
(2, 7), (5, 2), (8, 8), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), and we
assume that the probability of LI collecting ground truth
labels is 0.8, i.e., p1 = 0.8 in (1). An example of the
environment reconstructed by the robot sening model (3) is
shown in Figure 2(b). We consider the following LTL task
that the robot needs to satisfy

φ = ♦(A ∧ ♦(B ∧ ♦T )) ∧�♦A ∧�♦B ∧�¬C. (12)

In words, the LTL formula in (12) requires the robot to first
visit A, B, and T in this order and visit infinitely often A and
B while always avoiding C. The DRA that corresponds to
φ has 16 states and 241 edges. Figure 3 shows a comparison
between DIQL, the pure Deep Q-Network (DQN) approach
proposed in [11], the model based method developed in
[24] and the tabular Q-learning method [40], where the
specific neural networks architectures and reward functions
are defined as the same as in [11]. It can be seen that
DIQL converges faster and synthesizes a policy that achieves

Fig. 4. Policy synthesized by DIQL.

Fig. 5. Failures from policy synthesized by pure DQN [11].

a higher cumulative reward than the others. The resulting
policy of DIQL is shown in Figure 4. Specifically, each sub-
figure corresponds to the optimal policy of Rabin states q ∈
Q, where in this case Q = {3, 7, 8, 10, 11, 12, 15, 14, 13} and
the optimal trajectory induced from the policy is highlighted
with red boundaries. Note that in the Rabin states 14 and 13,
the robot learns to maintain a safe distance from C instead of
travelling along the shortest path as suggested by the PMC.
The reason is that these two Rabin states are associated with
the suffix run that is executed indefinitely, i.e., to visit A
and B infinitely often, and Alg.1 determines that the optimal
way to maximize the probability of satisfying the LTL is to
remain away from C because of the noisy controller. Figure
5 shows that the policy learned by the pure DQN method
[11] contains several false actions that prevent the robot
from reaching its goal. Thus, the resulting trajectory does not
satisfy the LTL specification. These actions are highlighted
with brown boundaries.

V. CONCLUSION

In this paper, we proposed a DIQL method to synthesize
control policies for mobile robots that need to satisfy Linear
Temporal Logic (LTL) specifications using noisy semantic
observations of their surroundings. We used suboptimal
instructions from PMCs to guide the Q-learning algorithm
and showed that our method outperforms existing methods
in the literature in terms of convergence speed and quality
of the resulting control policy.
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