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Attacks on Distributed Sequential Control
in Manufacturing Automation

Zivana Jakovljevic , Member, IEEE, Vuk Lesi , and Miroslav Pajic , Senior Member, IEEE

Abstract—Industrial Internet of Things (IIoT) represents
a backbone of modern reconfigurable manufacturing sys-
tems (RMS), which enable manufacturing of a high product
variety through rapid and easy reconfiguration of manufac-
turing equipment. In IIoT-enabled RMS, modular equipment
is built from smart devices, each performing its own tasks,
whereas the global functioning is achieved through their
networking and intensive communication. Although device
communication contributes to the system reconfigurability,
it also opens up new security challenges due to poten-
tial vulnerability of communication links. In this article, we
present security analysis for a major part of RMS in which
manufacturing equipment is sequentially controlled and
can be modeled as discrete event systems (DES). Control
distribution within DES implies communication of certain
events between smart modules. Specifically, in this work,
we focus on attacks on communication of these events.
In particular, we develop a method for modeling such at-
tacks, including event insertion and removal attacks, in
distributed sequential control; the method is based on the
supervisory control theory framework. We show how the
modeled attacks can be detected and provide a method for
identification of communication links that require protec-
tion to avoid catastrophic damage of the system. Finally,
we illustrate and experimentally validate applicability of our
methodology on a real-world industrial case study with re-
configurable manufacturing equipment.

I. INTRODUCTION

INDUSTRIAL implementation of Internet of Things (IoT)
and cyber–physical systems (CPS) significantly changes the

way we manufacture, leading to the evolution of manufacturing
systems to a new level known as Industry 4.0 [1]. Industry 4.0
factory is a smart factory able to meet the requirements of each
individual customer through implementation of reconfigurable
manufacturing systems (RMS) [2]. RMS are based on modular
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Fig. 1. Examples of reconfigurable manufacturing equipment. (a) Run-
ning example: Configuration of the system for parts marking. (b) Case
study: Configuration of the system for parts manipulation.

equipment that is physically and functionally reconfigurable and
can be rapidly and easily adapted to manufacturing of different
products [3], [4]; Fig. 1 presents an example of a reconfigurable
pneumatic device. To facilitate reconfigurability, the modularity
should be achieved not only in terms of mechanical elements, but
also in equipment/tool control, where each mechanical module
is augmented by its own local controller (LC) with commu-
nication and computation capability, representing a smart IoT
device.

Control system modularity leads to a shift from the classical
IEC 62264 hierarchical industrial automation pyramid to dis-
tributed control systems [1], where control is realized through
peer-to-peer communication of networked devices that create
industrial IoT (IIoT) [5]. In distributed control of manufactur-
ing systems, each control task is realized through coordinated
operations of a number of smart devices that comprise the con-
sidered reconfigurable equipment, with the corresponding LCs
communicating relevant information to each other in order to
achieve the desired system behavior. On the other hand (usually
wireless), communication between LCs introduces new security
challenges [6] since communication link may be prone to attacks
by adversaries.

In IIoT systems, end-to-end (including communication) secu-
rity guarantees are of crucial importance [7]. There are different
ways to protect communication between devices, such as the
use of cryptographic mechanisms to provide continuous or in-
termittent authentication or adding watermarking/random noise
signals (e.g., [8]–[10]). Yet, all such methods introduce addi-
tional computation/communication overhead, increase commu-
nication latency [11], and should be applied only when necessary
in resource constrained IIoT-enabled RMS.

Different types of cyberattacks have been reported
(e.g., in [12]), including replay attacks where attacker records
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sensor/actuator signals in one period of time and replays them
in another, or covert attacks where adversary secretly takes over
control from the supervisor, with the goal to remain undetected.
For all attacks, it is common that they are not random (opposite
to failures) and that adversaries are deceptive and insidious in
their goals—e.g., intention to remain stealthy and to achieve
negative effect on the system performance. Usually the attack-
ers have some a priori knowledge about the system obtained
through different cyber–physical intelligence attacks [13], such
as eavesdropping.

While the attacks in continuous-time control systems [12],
[13] have gained significant attention, attacks in discrete event
systems (DES) were only recently explored [14]–[24]. Supervi-
sory control theory (SCT) models DES as generators of formal
languages whose behavior can be captured by finite state ma-
chines (FSM) [25]. Since SCT and FSM were successfully em-
ployed for fault detection in DES, their application in studying
DES attacks, as done in this article, represents a natural ex-
tension. An approach for modeling and detection of actuator
enablement/disablement and sensor removal/insertion attacks in
remotely supervised plants is presented in [14]. System under
attacks is modeled using FSM and SCT frameworks, whereas
attacks detection and prevention of system from reaching unsafe
state is based on DES fault diagnosis. Similar approach for
man-in-the-middle sensor attacks is presented in [15], whereas
the defense strategy for attacks from the work in [14] and [15]
is given in [26]. Furthermore, Lima et al. [22] provides the
mechanisms for implementation of security modules for the
attacks from the work in [15].

Intelligent adversary with a priori knowledge about super-
visor‘s performance that arbitrary alters sensors’ readings is
modeled in [16], as well as a supervisor robust to these attacks.
[17] models event insertion/removal attacks as SCT-based pro-
jections that map observed into corrupted events strings through
events replacing or inserting, whereas [18] studies replay and
covert attacks in DES and proposes the detection method based
on permutation of controller inputs and outputs on the plant and
supervisor side. In addition, Fritz et al. [23] consider the attacks
that completely take over the control over plant for a certain
time period. Furthermore, Zhang et al. [19] and Ges et al. [20]
propose methods for design of stealthy attacks in such systems.
Recent review of the state of the art in application of SCT and
FSM in DES attacks modeling and detection is given in [24].

Existing works in modeling and analysis of attacks on DES
consider attacks on sensor and actuator signals in the case of a
remote plant and a supervisor that carries out centralized control
(e.g., [17], [21], and [24]). On the other hand, the distribution of
control tasks to smart devices within RMS and intensive commu-
nication between them bring about new security challenges. For
example, each cylinder from Fig. 1(a) is a smart cylinder (with
integrated limit switches and control valve) that is augmented
by its own LC; the control of the system for parts marking is
distributed over two LCs that intensively communicate, enabling
control of the desired system behavior. In distributed sequential
control for RMS, control can be captured as a DES [25]. In
such systems, every IIoT-enabled LC is closely connected to the
corresponding plant module, whereas signals (events) that are

communicated between remote LCs (i.e., smart devices) may be
vulnerable to attack.

Consequently, in this article, we focus on security analysis
of distributed control systems for industrial automation, specif-
ically addressing network-based attacks on event communica-
tion. To the best of our knowledge, these kinds of attacks have
not been considered in the past. Attacks on communicated events
in such systems could lead to an undesirable sequence of system
actions, and the system should be prevented from generating un-
safe sequence of events that can lead to catastrophic damage. We
present an SCT-based modeling approach to capture common
attacks—event insertion and removal in distributed sequential
control. Furthermore, we introduce a method for attack detection
and identification, focusing on safety-critical attacks that could
violate safety requirements of system operation. To minimize
computation and communication cost, we show how to deter-
mine a set of events whose communication should be protected to
ensure safe system operation while minimizing security-related
overhead.

Since our focus is on network-based attacks on sequential
controllers in industrial automation systems, we are mainly
considering impact on the automation due to false-data injection
attacks as well as denial-of-service attacks, which prevent some
of the messages from being delivered to the controllers.1 Such
attacks have been previously investigated in the other CPS
domains where continuous control is applied, as in [27]–[29],
where, e.g., attacks on power-grid infrastructure as well as on
continuous control via SCADA systems were considered. On the
other hand, we do not consider the origin of the attacks—e.g., the
type of software/hardware vulnerability exploited by the attacker
to launch the attack. The security-aware framework for industrial
automation, which we introduce in this article, enables system
designers to provide a formal proof about the attack-detectability
and performance for the wide class of attacks, by employing a
wide-range of tools for analysis of SCTs, such as [30].

The rest of this article is organized as follows. Section II
briefly presents a method that is used for distribution of sequen-
tial controllers for RMS into LCs, whereas Section III maps
such LCs into the SCT formalism. In Section IV, we present a
method for attack modeling, which allows for the identification
of events whose communication should be protected, which
Section V further elaborates. In Section VI, the application of
our security-aware methodology is presented on a real-world
industrial case study. Finally, Section VII concludes this article.

II. DISTRIBUTING SEQUENTIAL CONTROL

TASKS TO SMART DEVICES

Before considering security challenges in distributed sequen-
tial control, which are the topic of this article, we briefly outline
the method from [31] that we use for distribution of control tasks
to the LCs. We utilize this method since it is strongly related to
the IEC 60848 and IEC 61131-3 standards that are commonly
employed in practice for control specification. Furthermore, this

1On the other hand, since DES do not consider timing information, there is
no need to address attacks that result in information only being delayed.
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Fig. 2. Running example: (a) global CIPN, (b) CIPN1 representing
the behavior of LC1, and (c) CIPN2 representing the behavior of LC2
(notation of places and transitions from CIPN are given in parentheses);
x == 1 represents input reading allocated to the transition, whereas
x = 0/1 denotes output assignment allocated to the place; Send com-
mands are marked green, and receptive transition conditions red.

is a top-down approach, starting from a description of the system
functionality as a whole and then distributing control tasks to
LCs; thus, the representation of the LCs’ functionalities and
their relation to the overall control system is transparent and
easily understandable. However, the results of this article (which
considers attacks in distributed DES control) are not limited to
the utilized method for distribution of control tasks and they can
be applied to any distributed DES control regardless the way
LCs are generated (using another approach, such as e.g., [32],
or manually).

The method in [31] is based on control interpreted Petri nets
(CIPNs) [33] that are captured as bipartite graphs with vertices
referred to as places (denoted by P and graphically presented by
circles) and transitions (denoted by T and graphically presented
by bars), as illustrated in Fig. 2. The state of a CIPN is rep-
resented by a marking, which assigns one token to some of the
places and which is dynamically changed by transitions firing. In
CIPNs, transitions firings are synchronized with sensing events,
whereas actuator outputs (commands) are issued from marked
places.

The sequential control distribution starts from a CIPN-based
high-level description of the desired system behavior when all
sensors and actuators are connected to a centralized controller
(referred to as global CIPN). Once a global CIPN is defined,
and input and output signals are mapped into LCs with physi-
cal access to corresponding sensors and actuators, the method
automatically generates local CIPNis, i = 1, . . . , N describing
LCs executed on IIoT-enabled smart devices that communicate
between each other to achieve coordination—e.g., Send com-
mands in Fig. 2. We describe this in more detail using our running
example, introduced ahead.

TABLE I
RUNNING EXAMPLE: SIGNALS MAPPING TO LCS

Example 1: We consider a system for parts marking shown in
Fig. 1(a),2 which consists of two double-acting cylinders (A and
B) controlled by bistable dual control valves 5/2 (2 positions, 5
ports); the valves are activated/deactivated by signals introduced
in Table I . Cylinders are also equipped with proximity sensors
for detecting limit positions. System operation starts when the
start switch (st in Table I) is pressed. The system’s work cycle
is described by the following sequence:

B + B − A+ B + B − A− (1)

where X+ denotes advancement and X− retracting of cylinder
X (X ∈ {A,B}). Cylinders represent smart devices with inte-
grated LCs where the assignment of dual control valve activating
signals and sensor signals to LCs is given in Table I.

From the behavior of system described in (1), we obtain a
global CIPN shown in Fig. 2(a) that captures the functional
specification for sequential control of the whole system. Using
the procedure given in [31], from the global CIPN, we obtain
each CIPNi describing local control behavior for LCi [see
Fig. 2(b) and (c)], while ensuring the desired overall system
behavior (as with the centralized controller). To achieve this, the
LCs coordinate by communicating certain events. For example,
LC2 [see Fig. 2(c)], while at place P 2

4 (P4), sends information
about rising edge at b0 to LC1 [see Fig. 2(b)] which receives
this information at T 1

init(T3) or at T 1
5 (T3), depending on the

CIPN1 marking and marks P 1
2 (P4). In this way, the sequence

T3P4 captured in the global CIPN [see Fig. 2(a)] is achieved in
the distributed setup. �

III. MODELING DISTRIBUTED SEQUENTIAL CONTROL

CIPNs are commonly used to model DES since they provide
easily understandable graphical representation, especially in
case of parallel processes. On the other hand, DES can also be
represented as finite state automata (FSA). Since FSA provide
convenient formalisms for modeling attacks on DES [34], in this
work, we transform each CIPNi to FSA, utilizing procedures
given in [35] and [36], within the SCT framework [25].

In SCT, all possible behaviors of a to-be-controlled-physical
modules, which we will refer to as plants (e.g., cylinders
in Fig. 1) can be represented as an FSA denoted by Gi =
(Qi, Ei, f i, qi0), where Qi is the finite set of states, Ei is the
finite set of events,f i : Qi × Ei∗ → Qi is the transition function
(here, ∗ denotes Kleene star), and qi0 denotes the initial state of
Gi. Such plant can be regarded as a generator of a language
Li(Gi) that contains stringswi such thatLi(Gi) := {wi ∈ Ei∗ :
f i(qi0, w

i)!}, where ! denotes that the f i(qi, wi) is defined.

2This system is similar to one of the systems used for illustration of control
tasks distribution in [31].
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Fig. 3. Running example: (a) Automaton G1 modeling behavior of
cylinder A, (b) automaton G2 representing cylinder B, (c) automaton
S1 ′ obtained from controller CIPN1 [see Fig. 2(b)], (d) automaton S1

equivalent to S1 ′
representing LC1, and (e) automaton S2 representing

LC2 obtained from CIPN2 [see Fig. 2(c)]. Events that supervisors send
are marked green and the events that they receive are marked red.

Behavior of N plants within the system can be captured as the
FSA G obtained by parallel composition of Gi, i = 1, ..., N ,
denoted by G = ||iGi.

For each plant, events in Ei can be partitioned as Ei =
Ei

o ∪ Ei
uo, where Ei

o and Ei
uo are the sets of observable and

unobservable events, respectively. Similarly, the set Ei can be
partitioned into the sets of controllable (Ei

c) and uncontrollable
events (Ei

uc) such that Ei = Ei
c ∪ Ei

uc. Since each physical
plant modeled as Gi is locally controlled by an LC specified
by CIPNi, sensor signals assigned to CIPNi transitions be-
long to Ei

uc, while actuator signals assigned to the places are
in Ei

c.
With distributed sequential control, LCi provides controlled

behavior of the plant Gi through a feedback control loop by
imposing supervisor Si that restricts the language Li(Gi) by
disabling certain events. Supervisor is only aware of observable
events Ei

o obtained from the set Ei by the natural projection
P i
o : Ei∗ → Ei∗

o where 1) P i
o(ε) = ε, with ε denoting the empty

string; and 2) P i
o(w

iti) = P i
o(w

i)ti if ti ∈ Ei
o, and P i

o(w
iti) =

P i
o(w

i) if ti /∈ Ei
o. Such supervisor can be realized using au-

tomaton Si = (Qi
s, E

i
s, f

i
s, q

i
0s). Here, in addition to observable

events from Ei, Si contains events that are received (communi-
cated) from other supervisors Sj , j = 1, ..., i− 1, i+ 1, ..., N ;
we denote these events as cij,k, where k denotes different events
if more than one event is communicated from supervisor Sj to
Si. Thus, Ei

s = Ei
o ∪ {∪j ∪k cij,k}. Sj transmits cij,k to Si on

the transition from state qjc for which f j(qjc , c
i
j,k)! to the state

f j(qjc , c
i
j,k).

Finally, the coordinated operation of all supervisors Si (i.e.,
all controllers) in the system is captured by S = ||iSi, while
the controlled loop behavior of the system as a whole can be
represented as S ×G, where × denotes the product operator.

Running example continued: All possible failure free be-
haviors of cylinders A and B are captured by automata G1

and G2 [see Fig. 3(a) and (b)], respectively. Here, E1 =
E1

o = {ap, a1, am, a0}, with E1
c = {ap, am}, and E2 = E2

o =
{bp, b1, bm, b0, st}, with E2

c = {bp, bm}. LC1 and LC2 imple-
ment supervisor controllersS1 ′

andS2, respectively, as shown in
Fig. 3(c) and (e); these supervisors are obtained from CIPNi in
Fig. 2(b) and (c). To simplify the presentation, automaton S1 ′

is

Fig. 4. Running example: Supervisor S = S1||S2; in state notation
x, y: x, y refer to states from S2 and S1, respectively. In parallel com-
position, a transition on shared event can occur only if both automata
are in a state where such transitions are enabled—e.g., transition on b0
(shared for S1 and S2) from (1,1) cannot occur as S2 has no transition
from (1) on b0.

replaced by equivalent automatonS1 [see Fig. 3(d)]3. To capture
event communication between controllers LC1 and LC2, S1 and
S2 have the following events sets: E1

s = {ap, a1, am, a0, b0}
where b0 = c1

2,1, and E2
s = {bp, b1, bm, b0, st, a1, a0} where

a0 = c2
1,1, and a1 = c2

1,2. Communicated events are marked
green in transmitting and red in receiving supervisor in Fig. 3(c)–
(e); these events model Send commands from Fig. 2. The con-
joint operation of S1 and S2—i.e., S = S1||S2—is graphically
presented in Fig. 4. �

IV. MODELING IMPACTS OF ATTACKS IN DISTRIBUTED

SEQUENTIAL CONTROL

In this article, we assume that the attacker may compromise
events communicated between LCs. Using the LC representation
from Section III, the compromised events for supervisor Si are
all the events that Si receives from and transmits to other LCs,
captured in sets Ei

rx
and Ei

tx
:

Ei
rx

=
⋃
j

⋃
k

cij,k ⊆ Ei
s, Ei

tx
=

⋃
i

⋃
k

cji,k ⊆ Ei
s. (2)

Since sequential control does not capture timing-related in-
formation and, thus, communication delays do not impact cor-
rectness of the system operation, in such systems, we have to
consider two possible types of attacks: 1) event insertion, where
a controller Si receives an event cij,k before Sj sends it (i.e.,
withoutSj sending it), and 2) event removal, where an event sent
to a controller Si from a controller Sj is not received. These at-
tacks capture standard denial-of-service and false-data injection
attacks [12], whereas attacks such as man-in-the-middle, which
swap one event for another, can be obtained with a combination
of these two attacks.

In this section, we focus on capturing impacts of such attacks
on system operation. We assume that the attacker’s goal is to
affect the performance of the system without being immediately
revealed; note that there is a number of attacks that can be easily
detected, such as inserting events like b0 when automaton S1 is
in, e.g., state 3 [see Fig. 3(d)]. In addition, we assume that the
attacker knows the current states of the plants and supervisors,
and can use this information to plan his attacks. Finally, the
attacker is not able to compromise protected communication
links as integrity of these links is ensured with the use of

3All automata operations throughout the article are carried out in DESUMA
software [30], where the equivalence of automata S1 ′

and S1 is checked.
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standard cryptographic mechanisms for which the attacker does
not possess the shared secret keys.

A. Insertion Attack

Let us consider the insertion attack that inserts event cij,k ∈
Ei

rx
; to simplify our notation, we use sir to denote the “regular”

event (cij,k) and sia the event inserted by the attacker. To avoid
being immediately revealed, the attacker has to insert event sia
only while the supervisorSi is in a state qir for which f i

s(q
i
r, s

i
r)!.

To achieve this, the attacker employs his knowledge of the
current state of Si.

Therefore, we will model the attacks that cannot be im-
mediately revealed and that can affect the system behavior.
Here, for every event that can be inserted, we need to capture
effects of such attack on the supervisor that receives the event,
and, as we describe ahead, modify the corresponding plant
model to ensure that adding a new event does not prevent the
plant model from evolving (as the plant-generated events are
not directly affected by the inserted event). With attack event
sia that inserts sir at state qir ∈ Qi

s for which f i
s(q

i
r, s

i
r)!, S

i

transitions to the state f i
s(q

i
r, s

i
r) since Si considers that real

sir is received. Thus, the LCi under attack can be modeled as
automatonSi

a = (Qi
s, E

i
sa, f

i
sa, q

i
0s)withEi

sa = Ei
s ∪ {sia} and

f i
sa(q

i, si) =

{
f i
s(q

i, si), if si ∈ Ei
s and f i

s(q
i, si)!

f i
s(q

i, sia), if si = sia and f i
s(q

i, sir)!
. (3)

Hence, using (3), a transition labeled sia is added in parallel with
the transition labeled sir to capture that the inserted event will
lead the supervisor to the same state as the real event.

On the other hand, when event sia is inserted by the attacker,
the plant modeled by Gi can be at any state qig for which
f i(qig, s

i
n)!, where sin is event such that f i

sa(f
i
sa(q

i
s, s

i
a), s

i
n)!—

i.e., event following sia in Si
a. To model the receptiveness of the

plant to the attack, we add a loop with sia to every state qig in
the Gi and generate the model of the physical plant under attack
sia, denoted by Gi

a. Automaton Gi
a = (Qi, Ei

ga, f
i
ga, q

i
0) where

Ei
ga = Ei ∪ {sia} and f i

ga is defined as

f i
ga(q

i, si) =

⎧⎪⎨
⎪⎩

f i
s(q

i, si), if si ∈ Ei and f i(qi, si)!

qi, if si = sia and f i(qi, sin))!

and f i
sa(f

i
sa(q

i
s, s

i), sin)!

. (4)

The second part of relation (4) models that the plant does not
change the state on the attack event, but on the following event as
imposed by the supervisor. Finally, the overall system behavior
under attack GA is captured by GA = (||iSi

a)× (||iGi
a), where

Si
a = Si and Gi

a = Gi if LCi is not under attack.
Running example continued: We illustrate the modeling of

the insertion attack on communicating b0 between LC2 and LC1

in the running example—i.e., S1 from Fig. 3(d) is attacked by
inserting “fake” b0a. Using our approach, models of LC1—S1

a

and cylinder A—G1
a under attack are derived (see Fig. 5).

FromS1
a andG1

a (see Fig. 5), as well asS2 andG2 (see Fig. 3),
we obtain the model of the system under such attack—GA (see
Fig. 6); the states that GA could enter after b0 insertion attack
are marked red. The states in GA are denoted by (x, y, z, u),

Fig. 5. Running example under b0 insertion attack on LC1. (a) Automa-
ton S1

a—LC1 under attack. (b) Automaton G1
a—cylinder A under attack.

Fig. 6. Running example—b0 insertion attack on LC1: (states that GA

can enter after attack are marked red).

Fig. 7. Running example—b0 insertion attack on LC1. (a) Automaton
S1
adet representing LC1 under attack with integrated attack detection

state d. (b) Automaton S2
adet representing LC2 with integrated attack

detection state d. (c) Sadet = S1
adet||S2adet .

where x, y, z, and u denote the state of S1, S2, G1, and G2,
respectively. It can be observed that, to remain undetected at the
moment of attack, the attack occurs when S1 is at the state 1 or
4, which are receptive to b0. If the attack occurs while S1 is at
another state, it will be immediately detected.

To illustrate this, in Fig. 7, we provide the supervisors S1
adet

and S2
adet with integrated state d that detects the receipt of an

event at the state that is not receptive to this event. Namely,
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S1
adet [see Fig. 7(a)] is obtained from S1

a [see Fig. 5(a)] by
adding the detection state d and transitions labeled b0 from all
the states not receptive to event b0 to d. Thus, automaton S1

adet

will enter the state d if it receives b0 at states other than 1 and
4. Similarly, automaton S2

adet [see Fig. 7(b)] will enter state
d if it receives a0 or a1 while at states not receptive to these
events. Parallel operation of the supervisors S1

adet and S2
adet

(i.e., Sadet = S1
adet||S2

adet) is presented in Fig. 7(c); in Sadet,
d1–d4 correspond to the entrance of S1

adet and/or S2
adet in the

state d. �
Generally, Si

adet can be derived from Si
a as follows. Si

adet =
(Qi

sdet, E
i
sa, f

i
sadet, q

i
0s) where Qi

sdet = Qi
s ∪ {d} and

f i
sadet(q

i, si) =

⎧⎪⎨
⎪⎩

f i
sa(q

i, si), if si ∈ Ei
sa and f i

sa(q
i, si)!

d, if si ∈ Ei
rx

and ¬ f i
sa(q

i, si)!

.

(5)
Implementing Si

adet instead of Si at LCi leads to immediate
detection of any unexpected event that is received; this includes
the insertion attack if it is not carried out while the supervisor is at
the state that is receptive to the attack event. Conjoint operation
of all Si

adet in the system is presented as Sadet = ||iSi
adet, and it

describes the conjoint behavior of all supervisors with integrated
insertion attack detection implemented at LCs.

In addition to modeling a single insertion attack, a model of
combined insertion attacks and the corresponding system behav-
ior can be similarly obtained. Suppose that the supervisor Si can
be attacked by li different insertion attacks siaj

, j ∈ [1, . . . , li].
Following the presented procedure, all these attacks can be
modeled by Si

aU
, such that the language L(Si

aU
) = ∪jL(S

i
aj
),

where Si
aj

is obtained applying relation from (3) for each of siaj
.

Similarly, we can obtain models of the plants under all insertion
attacks Gi

aU
, as well as the model of the system under all inser-

tion attacks GAU
. Due to the properties of parallel composition,

the language generated by the system under all insertion attacks
modeled by GAU

represents the union of languages generated
by system under isolated attacks.

B. Removal Attack

Let us consider the removal attack that removes the event
cij,k ∈ Ei

rx
that is sent to Si from Sj ; again, to simplify our

notation, we use sir to denote the “regular” event (cij,k) and
introduce event sia to capture the attack. To remove event sir, the
adversary should attack whenSi is at a state qir where f i

s(q
i
r, s

i
r)!,

while Sj is at one of the states f j
s (q

j , sir). Furthermore, Gj

should be in a state f j(qj , sir). As a result of the removal attack,
Si will remain at the state qir, whereas the operation of Sj and
Gj will continue as if attack did not occur. We capture the
described system behavior as follows. The attack on sir at state
qir ∈ Qi

s keeps Si in qir. Thus, LCi under attack can be modeled
as automatonSi

a = (Qi
s, E

i
sa, f

i
sa, q

i
0s)whereEi

sa = Ei
s ∪ {sia}

and f i
sa is expanded by adding self-loops on event sia to the states

qir for which f i
s(q

i
r, s

i
r)!—i.e.,

f i
sa(q

i, si) =

{
f i
s(q

i, si), if si ∈ Ei
s and f i

s(q
i, si)!

qi, if si = sia and f i
s(q

i, sir)!
. (6)

Fig. 8. Running example—b0 removal attack on LC1. (a) Automaton
G2

a representing cylinder B under the attack. (b) Automaton S1
a repre-

senting LC1 under the attack. (c) Automaton S2
a representing LC2 under

the attack.

Fig. 9. Running example—b0 removal attack on LC1: (states that GA

can enter after attack are marked red).

Since Si
a does not change the state during attack, the attack will

not influence the behavior of plant Gi.
To model the behavior of the transmitting module

during the attack on the receiving controller, automata
Sj
a = (Qj

s, E
j
sa, f

j
sa, q

j
0s), with Ej

sa = Ej
s ∪ {sia}, and Gj

a =

(Qj , Ej
ga, f

j
ga, q

j
0), withEj

ga = Ej ∪ {sia}, are introduced. Note

that by construction sir ∈ Ej
tx

. The attack has no effect on Sj

and Gj—i.e., they should continue their working cycle as if the
attack did not occur. However, the attack affects operation of the
overall system, which we model by f j

sa and f j
ga defined as

f j
sa(q

j , sj) =

{
f j
s (q

j , sj), if sj ∈ Ej
s and f j

s (q
j , sj)!

f j
s (q

j , sia), if sj = sia and f j
s (q

j , sir)!
(7)

f j
ga(q

j , sj) =

{
f j
s (q

j , sj), if sj ∈ Ej and f j(qj , sj)!

f j
s (q

j , sia), if sj = sia and f j(qj , sir)!
. (8)

Equations (7) and (8) add a transition labeled by sia in parallel
with the transition labeled by sir to capture that LCj is not aware
of the attack, and that it continues operation as if attack did not
occur. The overall behavior of the system under attack GA is
now obtained as in the case of the insertion attack.

Running example continued: We illustrate the modeling of
the removal attack on removal of b0 while transmitting it from
LC2 to LC1, in our running example (b0a). Following the pro-
posed modeling approach, models of LC1 – S1

a, LC2 – S2
a and

cylinder B – G2
a under attack are derived as presented in Fig. 8.

Automaton GA representing the behavior of the system under
b0 removal attack is shown in Fig. 9—It can be observed that the
removal of b0 leads to a deadlock, which stops the work-cycle,
but will not lead to catastrophic damage. �

V. IDENTIFICATION OF UNDESIRED SYSTEM BEHAVIOR

In systems in which two-way communication between LCs
exists—i.e., where Si not only receives information from, but
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Procedure 1: Identification of the Events Whose Commu-
nication Should be Protected.

INPUT:
Ωk

c = {wk
c,1, . . . , w

k
c,lk

}: set of lk strings (events
sequences) that would lead to catastrophic damage CDk,
k ∈ 1, . . . ,M
saj

, j ∈ 1, . . . , P possible attacks
1: for all attacks saj

, j = 1 to P do
2: generate Sajdet, Gaj

, GAjdet, and Obs(GAjdet)
3: for all CDk k = 1 to M do
4: for all strings that lead to CDk, i = 1 to lk do
5: if Obs(GAjdet) accepts wk

c,i then
6: sr corresponding to saj

needs encryption
7: end if
8: end for
9: end for

10: end for

also sends information to other LCs in the network, insertion
attacks will be eventually revealed. Using our running example,
this can be observed, e.g., in the case of S1 that in regular
operation 1) at state 1, receives b0 from S2, while S2 transits
from state 5 to state 6, and 2) sends a1 toS2 during the transition
from state 3 to state 4, while S2 is at state 6 [see Fig. 3(d)
and (e)]. Now, let us assume that S1 is attacked by b0 insertion
attack—i.e., inserting event b0a—while at state 1; then, S2 did
not reach state 6. This is represented in Fig. 7(c) in states 1–5
corresponding to states (1, y, 1, u) in GA from Fig. 6. If S2

reaches state 6 (and sends real b0) before S1 reaches state 4,
S1 will receive real b0 while at state 2 or 3, and attack will be
revealed; this is represented by transitions from states 18 and 23
to state d1 in Fig. 7(c). As an alternative, if S1 comes into state
4 before S2 enters state 6 (i.e., before it sends real b0), it will
send a0 to S2 that is not in the correct state and the attack will
be revealed again as illustrated on transitions from states 19–23
to d2 in Fig. 7(c). Thus, the attack is detected at one of the states
corresponding to GA states (3, y, 2, u), (x, 5, z, 5) (see Fig. 6).
To summarize, by implementing Si

adet instead of Si at LCs, the
insertion attacks will be detected at some point for systems in
which two-way communication is present.

Note that when LCs have, both, sensor and actuator signals,
two-way communication is always present. On the other hand,
if only actuators or sensors are mapped to LC, two-way com-
munication is introduced with acknowledgment signals used
for safety reasons. Thus, the attack will be detected at some
point. Nevertheless, between attack occurrence and detection,
in general, the system will not behave as desired. The question
is whether the system behavior after attack will lead to significant
damage, e.g., to the collision of systems’ elements or manufac-
tured parts damage.

System behaviors that lead to catastrophic damage CDk, k ∈
1, ...,M can be described by a set of undesired event strings
Ωk

c = {wk
c,1, ..., w

k
c,lk

}. The question is whether the system will
exhibit a sequence from Ωk

c , i.e., will CDk occur under attack
event sia before the attack is revealed. Namely, if sia potentially

leads to CDk, then communication of sir between LCs has to
be protected. To answer the question, we employ the automaton
GAdet that represents the system behavior under the attack event
sia. This automaton incorporates states for detection of the event
being received at a wrong state, and it is obtained from Sadet

and Ga, as GAdet = Sadet ×Ga.
Here, GAdet contains the unobservable event4 sia that will

break the chain of events fromΩk
c and cannot be directly used for

checking whether the system will exhibit the behavior specified
by Ωk

c , since the strings from Ωk
c do not contain sia. Event sia

could be easily eliminated from GAdet by a natural projection.
However, this could lead to generation of a nondeterministic
automaton; to solve this issue and to preserve language equiva-
lence, observer Obs(GAdet) of GAdet should be generated [37].
If Obs(GAdet) accepts any string from Ωk

c , than CDk could
happen during the sia attack, and communication of sir should
be protected, as summarized in Procedure 1. It should be noted
that Obs(GAdet) is used offline, during system design, to model
the behavior of the system under attack and to identify com-
munication channels that require protection. The observer that
considers all insertion attacks saj

simultaneously, is obtained
fromGAUdet, and the language L(Obs(GAUdet)) represents the
union of languages L(Obs(GAjdet)).

We illustrate the use of Procedure 1 on our running example.
Running example continued: In the running example, three

insertion and three removal attacks could occur—a0 and
a1 on communication from LC1 to LC2, and b0 on com-
munication from LC2 to LC1. The regular cycle of the
system can be presented by string wr ∈ Σr, where Σr =
{st(bp b1 bm b0 ap a1 bp b1 bm b0 am a0)∗, st}. Mechanical
design of the system [see Fig. 1(a)] is such that marker can come
into the position I to take marking liquid and leave it either in
the horizontal or in the vertical direction (note that in regular
work-cycle approaching and leaving are in vertical direction).
On the other hand, it can enter and leave position II only in the
vertical direction; otherwise the marking liquid could be diffused
over the part thus endangering marking quality. Furthermore, to
ensure part marking, it is necessary that cylinder B reaches end
position before retracting at both, positions I and II. Thus, there
exist three situations that endanger the quality of the process:
1) CD1—marker enters position II from horizontal direction,
2) CD2—marker leaves position II in horizontal direction, and
3) CD3—cylinder B retracts before reaching end position. For
each of these situations, events strings sets Ωk

c can be identified
as presented in Table II.

Obs(GAdet) that contains all possible consequences of inser-
tion attacks on b0 is presented in Fig. 10. It is obtained from
GAdet = Sadet ×Ga, where Sadet = S1

adet||S2
adet (see Fig. 7)

and Ga = G1
a||G2 [see Fig. 5(b) and 3(b)]; states d1–d11 are

derived from states d in S1
adet and/or S2

adet. In case of b0
insertion attack, CD2 could occur (strings w2

c,1, w2
c,2, and w2

c,3).
Fig. 11 represents Obs(GAUdet); it can be observed that in the
case of a1 insertion attack, the occurrence of CD1 is possible
(string w1

c,1). Nevertheless, a0 insertion attack will not have

4By design, the system is not aware that attack signals are attack; thus these
are not observable events.
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TABLE II
RUNNING EXAMPLE: Ωc

k DEFINITION

Fig. 10. Running example—b0 insertion attack: Automaton
Obs(GAdet) that represents all possible system behaviors under
b0 insertion attack.

Fig. 11. Running example—Obs(GAUdet) that represents all possible
system behaviors under a0, a1, and/or b0 insertion attacks.

catastrophic effect on the system performance. Furthermore,
neither of insertion attacks would cause CD3. All three removal
attacks will lead to deadlock, as presented in Fig. 9 for b0 removal
attack. System behavior models are similar in the case of a0 or
a1 removal attacks. Thus, removal attacks will lead to none of
CDk. Consequently, the communication of b0 and a1 should be
protected, whereas for a0 encryption is not necessary. �

Fig. 12. Case study. (a) Automaton G3 representing gripper C.
(b) Automaton S2 representing LC2. (c) Automaton S3 representing LC3.

VI. INDUSTRIAL CASE STUDY

We consider a case study that refers to the manipulator ob-
tained by reconfiguring the marking device from our running
example, as presented in Fig. 1(b). We also considered a more
complex system with concurrent processes (specifically, the case
study given in [31]), and similar results were obtained. Due to
the space constraint, the detailed system analysis for the second
case study has been omitted from this work.

The manipulator has two translational degrees of freedom
realized by smart cylinders A and B as in running example (see
Table I). It is also equipped with a smart vacuum gripper C that
is controlled by a monostable dual control valve 3/2, and has
integrated LC3 with mapped signal cp for part gripping and cm
for part releasing. Manipulator moves elastic part from positions
I to II and performs the following work cycle:

B + C + B − A+ B + C − B − A− (9)

where cylinder activities are denoted as in (1), whereas C+
refers to part gripping and C− to part releasing. Work cycle is
started by pressing start switch (st) mapped to LC2.

A. Attack Modeling and Identification of
Undesired System Behaviors

Following the introduced modeling approach, automata G1,
G2, andG3 representing all possible legal behaviors of cylinders
A and B, and gripper C are generated. G1 and G2 are the
same as in the running example [see Fig. 3(a) and (b)], whereas
G3 has the following set of events E3 = E3

o = E3
c = {cp, cm}

and it is shown in Fig. 12(a). Local controllers LC1, LC2,
and LC3 impose supervisors S1, S2, and S3, respectively.
Supervisor S1 is the same as in the running example [see
Fig. 3(d)] and has event set E1

s = {ap, a1, am, a0, b0} with
the event b0 = c1

2,1 that is communicated from LC2. Supervi-
sor S2 [see Fig. 12(b)] is based on the following events set
E2

s = {st, bp, b1, bm, b0, a0, a1, cp, cm} and it has four com-
municated events: 1)a0 = c2

1,1 anda1 = c2
1,2 received from LC1,

and 2) cp = c2
3,1 and cm = c2

3,2 received from LC3. Finally, S3

[see Fig. 12(c)] contains the events E3
s = {cp, cm, b1}, where

b1 = c3
2,1 is received from LC2. Note that gripper C does not

contain sensors and that acknowledgment events cp and cm
are sent from S3 to S2 for safety reasons to ensure two-way
communication in S3 as elaborated in Section V.

The strings wr ∈ Σr, where Σr = {st(bp b1 cp bm
b0 ap a1 bp b1 cm bm b0 am a0)∗, st} define regular cycles
of the system. On the other hand, catastrophic damages could
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TABLE III
CASE STUDY: Ωk

c DEFINITION

Fig. 13. Case study—Obs(GAdet): b0 insertion attack on LC1.

happen in the following scenarios (described by events string
sets wk

c,lk, k ∈ {1, 2, 3, 4} defined in Table III):
1) CD1 manipulator with gripped part in position I tries to

advance cylinder A before retracting cylinder B;
2) CD2 manipulator in position II tries to retract A before

releasing part and before retracting B;
3) CD3 manipulator tries to put down the part while moving

it from position I to position II;
4) CD4 manipulator does not leave the part in position II and

tries to put it down while moving it from position II to
position I.

Observers for insertion attacks: 1) b0 and 2) a1 and a0 are
shown in Fig. 13 and 14, respectively. From these figures, it
can be observed that CD1 can appear during b0 insertion attack
on LC1 (w1

c,1 and w1
c,2 on transitions from 5 to 20 and 6 to

21—Fig. 13) and during a1 insertion attack on LC2 [w1
c,3 and

w1
c,1 on transitions from 16 to 17 and 18 to 19—Fig. 14(a)].

Furthermore, CD2 can occur during b0 insertion attack on LC1

(w2
c,1 and w2

c,2 on transitions from 10 to 23 and 11 to 24—
Fig. 13). Other insertion attacks (observers are omitted due to
space limitation) will not lead to CDs. Furthermore, removal
attacks will lead to immediate deadlock and will not cause any
damage. Thus, transmissions of b0 from LC2 to LC1 and of a1
from LC1 to LC2 should be protected.

B. Experimental Validation

We experimentally evaluated our approach to attack modeling
and detection on a real-world industrial case-study—industrial

Fig. 14. Case study—Obs(GAdet). (a) a1 and (b) a0 insertion attack
on LC2.

Fig. 15. Industrial case study. (a) Experimental installation. (b) Timing
diagram capturing inputs and outputs of the system in a scenario without
attack.

manipulator shown in Fig. 15. Each actuator (two cylinders and
gripper) represents a smart device with its own LC, where the
mapping of sensors and actuators is captured in Table I for
cylinders A and B while cp and cm are mapped to LC3 (i.e.,
the gripper’s LC).

Hence, the control system of the manipulator from Fig. 15
is implemented using three wireless nodes (LCs); we employed
ARM Cortex-M3 microcontroller boards that communicate over
IEEE 802.15.4-compliant wireless transceivers. LC1–LC3 im-
plement S1

adet, S
2
adet, and S3

adet obtained from S1 [shown in
Fig. 3(d)], S2 [see Fig. 12(b)], and S3 [see Fig. 12(c)] by adding
the attack detection state. On the entrance to the state d at
any of the LCs, the system stops immediately. Timing diagram
capturing the sequence of controllable and uncontrollable events
acquired from the real-world manipulator during a regular work-
cycle (i.e., without attack) is presented in Fig. 15; due to space
constrains, we do not show am, bm, and cm signals, as they are
only inverted signals of the ap, bp, and cp, respectively.

In addition to wireless nodes implementing the distributed
controllers, the experimental installation also contains the fourth
LC, based on the same ARM board, which is used as an at-
tacker. The attacker is completely aware of the system design
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Fig. 16. Case study. Experimentally captured timing diagrams of the
inputs and outputs of the manipulator in the presence of (a) and (b) bo
insertion attacks and (c) and (d) a1 insertion attacks at different time
instants.

and performance, as it can eavesdrop all communication be-
tween control LCs and has the knowledge of the LCs design.
Thus, the attacker is capable of crafting attacks that will not
be immediately revealed. To validate the proposed method for
attacks modeling and detection, using the attack LC, we have
implemented all attacks on the manipulator from the case-study
(i.e., Section VI-A). The observed executions of the system were
completely compliant with the previously described observers
(in Fig. 13 and 14).

For example, in Fig. 16, we present the timing diagrams
experimentally acquired from the system in the presence of
attacks; specifically, we illustrate system performance under b0
and a1 insertion attacks launched at different time instants; note
that the attacks may have different impact based on the timing
instance in which they are launched. We first illustrate system
execution under the b0 insertion attack that was activated at time
t = 4.55 s, resulting in the sequence wr bp b1 cp ap bm b0,5 as
shown in Fig. 16(a), which corresponds to transitions through
states 5, 20, 21, and d7 from Fig. 13 before attack detection at
d7; this attack leads to CD1.

On the other hand, b0 insertion attack at time t =
7.31s results in the event sequence, shown in Fig. 16(b):
wr bp b1 cp bm b0 ap a1 bp b1 cm am bm b0; this reflects
transitions through states 12, 25, and 26 before detection at d13
(see Fig. 13) and does not lead to any catastrophic damage.

Similarly, a1 insertion attacks at times t = 5.40 s and t =
5.86 s lead to the event sequences from Fig. 16(c) and (d): 1)
wr bp b1 cp bm b0 ap bp b1 a1 corresponding to transitions
8, 17, 19, and d2 in the observer from Fig. 14(a), and 2)
wr bp b1 cp bm b0 ap bp b1 cm bm b0 a1 corresponding to
the transitions 8, 17, 19, 21, 23, and d5 in the observer from

5Under b0 insertion attacks, the occurrence of uncontrollable events a1 or a0
after attack detection is caused by the controllable events ap/am and system
inertia.

Fig. 14(a) before attack detection. Neither of the illustrated a1
insertion attacks leads to catastrophic damage of the system.

VII. CONCLUSION

In this article, we focused on security challenges in the design
of sequential control systems for industrial automation, where
the control was distributed over IIoT-enabled smart devices. We
presented a method for modeling relevant attacks on communi-
cation between such LCs, which share information about local
events to ensure their coordination and the desired overall system
operation. We focused on event-insertion and event-removal
attacks that allow us to capture a wide-range of standard attacks
on industrial systems, such as denial-of-service attacks, false-
data injection attacks, as well as man-in-the-middle attacks. We
considered attacks that cannot be immediately detected, in order
to have significant impact on system operation, and for such
attacks, we presented methods to model their impact on the
system. To achieve this, we employed a standard SCT framework
that is widely adopted for modeling of sequential control systems
used for industrial automation; this allows for modeling of both
physical behavior of smart IIoT-enabled devices as well as cyber
behavior of their LCs in the presence of the attacks.

In the considered case studies, we showed that stealthy event-
removal attacks lead to system deadlock; the reason is that the
considered systems for safety reasons already employ two-way
communication where every command is followed by either
a corresponding sensing event or a communication acknowl-
edgment event. The deadlock is immediate for such systems
that do not have parallel (concurrent) processes, since in these
processes, there is no branching in an input and output sequence,
and removing any actuation command or sensing event would
prevent continuation of the system execution.

On the other hand, in such systems (i.e., with such two-
way communication) that do contain parallel processes, the
deadlock is immediate on the attacked branch, whereas the
parallel branches continue work-cycle until they converge with
the attacked branch; the deadlock on the whole system occurs
at the convergence point.6 It should be noted that concurrent
processes in sequential control are parallel in their nature and
do not impose any time-related, mechanical, or other constraints
on branch parallelism that could lead to security related issues.

Furthermore, we showed that due to two-way communication
between LCs, event-insertion attack can be eventually revealed
using the developed detection mechanism. Nevertheless, be-
tween attack occurrence and detection, the system can exhibit
undesired behaviors that could result in significant damage.
Hence, we provided a method to identify events whose com-
munication should be protected, to ensure satisfiable system
operation in resource-constrained systems, in the presence of
attacks.

The proposed method was experimentally verified using a
real-world case study with three LCs. For the systems with
higher number of LCs and with higher complexity of control

6As captured in Section VI, we have also performed security analysis for a
system with parallel processes. However, due to the space constraints, a detailed
description of the example of such system is omitted from this article.
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tasks where a large number of commands were executed between
subsequent communications, the sequence of events can be mod-
eled by higher level of abstraction, such as macrosteps in Grafcet
[38]. In this way, a hierarchical structure can be introduced into
events. Our future efforts will include timing-based analysis
of the system under attacks, and the use of (time) intermittent
authentication to protect communication.
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