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Relaxing Integrity Requirements for
Attack-Resilient Cyber-Physical Systems

Ilija Jovanov and Miroslav Pajic , Member, IEEE

Abstract—The increase in network connectivity has also
resulted in several high-profile attacks on cyber-physical
systems. An attacker that manages to access a local net-
work could remotely affect control performance by tamper-
ing with sensor measurements delivered to the controller.
Recent results have shown that with network-based attacks,
such as man-in-the-middle attacks, the attacker can intro-
duce an unbounded state estimation error if measurements
from a suitable subset of sensors contain false data when
delivered to the controller. While these attacks can be ad-
dressed with the standard cryptographic tools that ensure
data integrity, their continuous use would introduce sig-
nificant communication and computation overhead. Conse-
quently, we study effects of intermittent data integrity guar-
antees on system performance under stealthy attacks. We
consider linear estimators equipped with a general type of
residual-based intrusion detectors (including, e.g., widely
used χ2 detectors) and show that even when integrity of
sensor measurements is enforced only intermittently, the
attack impact is significantly limited; specifically, the state
estimation error is bounded or the attacker cannot remain
stealthy. Furthermore, we present methods to: 1) evalu-
ate the effects of any given integrity enforcement policy in
terms of reachable state estimation errors for any type of
stealthy attacks; and 2) design an enforcement policy that
provides the desired estimation error guarantees under at-
tack. Finally, on three automotive case studies, we show that
even with less than 10% of authenticated messages, we can
ensure satisfiable control performance in the presence of
attacks.

Index Terms—Attack detection, attack-resilient state esti-
mation, cyber-physical systems (CPS) security, Kalman fil-
tering, linear systems.

I. INTRODUCTION

S EVERAL high-profile incidents have recently exposed vul-
nerabilities of cyber-physical systems (CPS) and drawn
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attention to the challenges of providing security guarantees as
part of their design. These incidents cover a wide range of appli-
cation domains and system complexity, from attacks on large-
scale infrastructure such as the 2016 breach of Ukrainian power
grid [2], to the StuxNet virus attack on an industrial SCADA
system [3], as well as attacks on controllers in modern cars
(e.g., [4]) and unmanned aerial vehicles [5].

There are several reasons for such number of security-related
incidents affecting control of CPS. The tight interaction be-
tween information technology and physical world has greatly
increased the attack vector space. For instance, an adversar-
ial signal can be injected into measurements obtained from a
sensor, using noninvasive attacks that modify the sensor’s phys-
ical environment, as shown in attacks on GPS-based navigation
systems [6], [7]. Even more important reason is network con-
nectivity that is prevalent in CPS. An attacker that manages
to access a local control network could remotely affect control
performance by tampering with sensor measurements and ac-
tuator commands in order to force the plant into any desired
state, as illustrated in [8]. From the controls perspective, attacks
over an internal system network, such as the man-in-the-middle
(MitM) attacks, where the attacker inserts messages anywhere
in the sensors→controllers→actuators pathway, can be modeled
as additional malicious signals injected into the control loop via
the system’s sensors and actuators [9].

While the interaction with the physical world introduces new
attack surfaces, it also provides opportunities to improve sys-
tem resilience against attacks. The use of control techniques
that employ a physical model of the system’s dynamics for at-
tack detection and attack-resilient state estimation has drawn
significant attention in recent years (e.g., [9]–[21], and a recent
survey [22]). One line of work is based on the use of unknown
input observers (e.g., [11], [13]) and nonconvex optimization
for resilient estimation (e.g., [12], [17]), while another focuses
on attack-detection and estimation guarantees in systems with
standard Kalman-filter-based state estimators (e.g., [14], [23]–
[28]). In the latter, estimation residue-based failure detectors,
such as χ2 [23], [27], cumulative sum [29], and sequential
probability ratio test detectors [26], are employed for intrusion
detection. Still, irrelevant of the used attack detection mecha-
nism, after compromising a suitable subset of sensors, an in-
telligent attacker can significantly degrade control performance
while remaining undetected (i.e., stealthy). For example, for
resilient state estimation techniques (e.g., [12], [17]), measure-
ments from at least half of the sensors should not be tampered
with [12], [30], while [23] and [25] capture attack requirements
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Fig. 1. Communication schedule for periodic messages (with period
Ts = 2) from two sensors over a shared network. (a) Feasible schedule
for nonauthenticated messages (i.e., when MAC bits are not attached
to transmitted packets). (b) There is no feasible schedule when all mes-
sages are authenticated. (c) If data integrity is only intermittently enforced
(e.g., by adding MAC bits only to every other packet), scheduling of the
messages becomes feasible.

for Kalman-filter-based estimators. Such conservative results
are caused by the common initial assumption that once a sen-
sor or its communication to the estimator is compromised, all
values received from the sensor can be potentially corrupted—
i.e., integrity of the data received from these sensors cannot
be guaranteed.

On the other hand, most of the network-based attacks, in-
cluding MitM attacks, can be avoided with the use of standard
cryptographic tools. For example, to authenticate data and en-
sure integrity of received communication packets, a common
approach is to add a message authentication code (MAC) to the
transmitted sensor measurements. Therefore, data integrity re-
quirements can be imposed by the continuous use of MACs in all
transmissions from a sufficient subset of sensors. However, the
overhead caused by the continuous computation and communi-
cation of authentication codes can limit their use. For instance,
adding MAC bits to networked control systems that employ
controller area networks (CANs) may not be feasible due to
the message length limitation (e.g., only 64 payload bits per
packet in the basic CAN protocol), while splitting them into sev-
eral communication packets significantly increases the message
transmission time [31]. To illustrate this, consider two sensors
periodically transmitting measurements over a shared network.
As presented in Fig. 1(a), without authentication (i.e., if trans-
mitted data contain no MAC bits), the communication packets
will be schedulable, but the system would be vulnerable to
false-data injection attacks. Yet, if all measurements from both
sensors are authenticated, with the increase in the packet size
due to authentication overhead, it is not possible to schedule
transmissions from both sensors in every communication frame
[see Fig. 1(b)]. Finally, a feasible schedule exists if MAC bits
are attached to every other measurement packet transmitted by
each sensor [see Fig. 1(c)].

Consequently, in this paper, we focus on state estimation in
systems with intermittent data integrity guarantees for sensor
measurements delivered to the estimator. Specifically, we study
the performance of linear filters equipped with residual-based
intrusion detectors in the presence of attacks on sensor mea-
surements. We build on the system model from [23], [25], and
[27] by capturing that the use of authentication mechanisms
in intermittent time-points ensures that sensor measurements
received at these points are valid. To keep our discussion and
results general, we consider a wide class of detection functions
that encompasses commonly used detectors, such as χ2 and log-
likelihood ratio detectors. We show that even when integrity of
communicated sensor data is enforced only intermittently and

the attacker is fully aware of the times of the enforcement, the
attack impact gets significantly limited; concretely, either the
state estimation error remains bounded or the attacker cannot
remain stealthy. This holds even when communication from all
sensors to the estimator can be compromised as well as in any
other case where otherwise (i.e., without integrity enforcements)
an unbounded estimation error can be introduced.

Furthermore, to facilitate the use of intermittent data integrity
enforcement for control of CPS in the presence of network-
based attacks, we introduce an analysis and design framework
that addresses two challenges. First, we introduce techniques to
evaluate the effects of any given integrity enforcement policy
in terms of reachable state estimation errors for any type of
stealthy attacks. Note that methods to evaluate potential state
estimation errors due to attacks are considered in [23], [26], and
[27]. However, given that the previous work considers system
architectures without intermittent use of authentication, these
techniques result in overly conservative estimates of reachable
regions or they cannot capture the effects of intermittent in-
tegrity guarantees on the estimation error. Second, we present
a method to design an enforcement policy that provides the de-
sired estimation error guarantees for any attack signal inserted
via compromised sensors. The developed framework also fa-
cilitates tradeoff analysis between the allowed estimation error
and the rate at which data integrity should be enforced—i.e., the
required system resources such as communication bandwidth as
we have presented in [32].

The rest of this paper is organized as follows. In Section II,
we introduce the problem, including the system and attack mod-
els. In Section III, we analyze the impact of stealthy attacks in
systems without integrity enforcements and formally define in-
termittent integrity enforcement policies. Section IV focuses on
state estimation guarantees when data integrity is at least inter-
mittently enforced. We then introduce a methodology to analyze
effects of integrity enforcement policies as well as design suit-
able policies that ensure the desired estimation error even in the
presence of attacks (see Section V). Finally, in Section VI, we
present case studies that illustrate effectiveness of our approach,
before providing final remarks in Section VII.

A. Notation and Terminology

The transpose of matrix A is specified as AT , while the ith
element of a vector xk is denoted by xk,i .1 Moore–Penrose
pseudoinverse of matrix A is denoted as A†. In addition, ‖A‖i
denotes the i-norm of a matrix A, and for a positive-definite ma-
trix Q, ‖Δzk‖Q−1 = ‖Q−1/2Δzk‖2 . null(A) denotes the null
space of the matrix. Also, diag (·) indicates a square matrix with
the quantities inside the brackets on the diagonal, and zeros else-
where, while BlckDiag (·) denotes a block-diagonal operator.
We denote positive-definite and positive-semidefinite matrix A
as A � 0 and A � 0, respectively, while det(A) stands for the
determinant of the matrix. Also, Ip denotes the p-dimensional
identity matrix, and 0p×q denotes the p× qmatrix of zeroes. We
use R,N, and N0 to denote the sets of reals, natural numbers,
and nonnegative integers, respectively. As most of our analysis

1We use bold letters to denote matrices and vectors (i.e., nonscalars).
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Fig. 2. System architecture—by launching MitM attacks, the attacker
can inject adversarial signals into plant measurements obtained from
system sensors.

considers bounded-input systems, we refer to any eigenvalue λ

as unstable eigenvalue if |λ| ≥ 1.
For a set S, we use |S| to denote the cardinality (i.e., size)

of the set. In addition, for a set K ⊂ S, with K�, we denote
the complement set of K with respect to S—i.e., K� = S \ K.
Projection vector iTj denotes the row vector (of the appropriate
size), with a 1 in its jth position being the only nonzero element
of the vector. For a vector y ∈ Rp , we use PKy to denote the
projection from the set S = {1, . . . , p} to set K (K ⊆ S) by
keeping only elements of y with indices from K.2 Finally, the
support of the vector v ∈ Rp is the set supp(v) = {i |vi 	=
0} ⊆ {1, 2, . . . , p}.

II. PROBLEM DESCRIPTION

Before introducing the problem formulation, we describe the
considered system and its architecture (shown in Fig. 2), as well
as the attacker model.

A. System Model Without Attacks

We consider an observable linear-time invariant (LTI) system,
whose evolution without attacks can be represented as

xk+1 = Axk + Buk + wk

yk = Cxk + vk
(1)

where xk ∈ Rn and uk ∈ Rm denote the plant’s state and in-
put vectors, at time k, while the plant’s output vector yk ∈ Rp

contains measurements provided by p sensors from the set
S = {s1 , s2 , . . . , sp}. Accordingly, the matrices A,B, and C
have suitable dimensions. Also, w ∈ Rn and v ∈ Rp denote the
process and measurement noise; we assume that x0 , wk , and
vk are independent Gaussian random variables.

Furthermore, the system is equipped with an estimator in the
form of a Kalman filter. Given that the Kalman gain usually
converges in only a few steps, to simplify the notation, we
assume that the system is in a steady state before the attack.
Hence, the Kalman filter estimate x̂k is updated as

x̂k+1 = Ax̂k + Buk + K(yk+1 − C(Ax̂k + Buk )) (2)

K = ΣCT (CΣCT + R)−1 (3)

where Σ is the estimation error covariance matrix, and R is the
sensor noise covariance matrix. Also, the residue zk ∈ Rp at

2Formally, PK = [ ik 1 | . . . |ik |K| ]
T , where K = {sk 1 , . . . , sk |K| } ⊆ S and

k1 < k2 < ... < k|K|.

time k and its covariance matrix Q are defined as

zk = yk − C(Ax̂k−1 + Buk−1)

Q = E{zkzTk } = CΣCT + R.
(4)

Finally, the state estimation error ek is defined as the difference
between the plant’s state xk and Kalman filter estimate x̂k as

ek = xk − x̂k . (5)

In addition to the estimator, we assume that the system is
equipped with an intrusion detector. We consider a general
case, where the detection function gk of the intrusion detector is
defined as

gk =
k∑

i=k−T +1

c(i−k+T )ziT Q−1zi . (6)

Here, T is the length of the detector’s time window, and ci
for i = 1, . . . , T are predefined nonnegative coefficients, with
cT being strictly positive. The above formulation captures both
fixed window size detectors, where T is a constant, as well
as detectors, where the time window size T satisfies T = k.
Also, the definition of the detection function gk covers a wide
variety of commonly used intrusion detectors, such as χ2 and
other detectors previously considered in these scenarios [25]–
[29], [33]–[35]. The alarm is triggered when the value of the
detection function gk satisfies

gk > threshold (7)

and the probability of the alarm at time k can be captured as

βk = P (gk > threshold). (8)

B. Attack Model

We assume that the attacker is capable of launching MitM
attacks on communication channels between a subset of the
plant’s sensors K ⊆ S and the estimator, for instance, by
secretly relaying corresponding altered communication pack-
ets. However, we do not assume that the set K is known to
the system or system designers. Thus, to capture the attacker’s
impact on the system, the system model from (1) becomes

xak+1 = Axak + Buak + wk

yak = Cxak + vk + ak .
(9)

Here, xak and yak denote the state and plant outputs in the pres-
ence of attacks, from the perspective of the estimator, since,
in the general case, they differ from the plant’s state and out-
puts of the noncompromised system. In addition, ak denotes the
signals injected by the attacker at time k starting from k = 1
(i.e., a0 = 0);3 to model MitM attacks on communication be-
tween the sensors from set K and the estimator, we assume that
ak is a sparse vector from Rp with support in the set K – i.e.,
ak,i = 0 for all i ∈ KC and k > 0.4

3More details about why the attacker does not insert attack at step k = 0 can
be found in Remark 1.

4Although a sensor itself may not be directly compromised with MitM attacks,
but rather communication between the sensor and estimator, we will also refer to
these sensors as compromised sensors. In addition, in this work, we sometimes
abuse the notation by using K to denote both the set of compromised sensors
and the set of indices of the compromised sensors.
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We consider the following threat model.
1) The attacker has full knowledge of the system—in addi-

tion to knowing the dynamical model of the plant, em-
ployed Kalman filter, and detector, the attacker is aware
of all potential security mechanism used in communica-
tion. Specifically, we consider systems that use standard
methods for message authentication to ensure data in-
tegrity and assume that the attacker is aware at which
time points data integrity will be enforced. Thus, to avoid
being detected, the attacker will not launch attacks in
these steps and will also take into account these integrity
enforcements in planning its attacks (as described in
Section III).5 Since we model our system such that at-
tacks start at k = 1, this further implies that at k = 1,
data integrity is not enforced, as otherwise the attacker
would not be able to insert false data.

2) The attacker has the required computation power to cal-
culate suitable attack signals, while planning ahead as
needed. (S)he also has the ability to inject any signal us-
ing communication packets mimicking sensors from the
set K, except at times when data integrity is enforced. For
instance, when MACs are used to ensure data integrity
and authenticity of communication packets, our assump-
tion is that the attacker does not know the shared secret
key used to generate the MACs.

The goal of the attacker is to design attack signal ak such that
it maximizes the error of state estimation while ensuring that
the attack remains stealthy. To formally capture this objective
and the stealthiness constraint, we denote the state estimation,
residue, and estimation error of the compromised system by x̂ak ,
zak , and eak , respectively. Thus, the attacker’s aim is to maximize
eak , while ensuring that the increase in the probability of alarm
is not significant. We also define as

Δek = eak − ek , Δzk = zak − zk
the change in the estimation error and residue, respectively,
caused by the attacks. From (1) and (9), the evolution of these
signals can be captured as a dynamical system Ξ of the form

Δek+1 = (A − KCA)Δek − Kak+1 (10)

Δzk = CAΔek−1 + ak (11)

with Δe0 = 0.
Remark 1: From the above equations, the first attack vector

to affect the change in estimation error is a1 . Thus, without
loss of generality, we assume that the attack starts at k = 1
(i.e., ai = 0, for all i ≤ 0). This also implies that Δz0 = 0.

Note that the above dynamical system is noiseless (and de-
terministic), with input ak controlled by the attacker. Therefore,
since E[ek ] = 0 for the noncompromised system in the steady
state, it follows that

Δek = E[Δek ] = E[eak ]. (12)

Given that Δek provides expectation of the state estimation
error under the attack, this signal can be used to evaluate the

5In Section IV, we will also consider the case, where the attacker has limited
knowledge of the system’s use of security mechanisms.

impact that the attacker has on the system.6 Thus, we specify the
objective of the attacker as to maximize the expected state esti-
mation error (e.g., ‖Δek‖2). This is additionally justified by the
fact that since ak is controlled by the attacker (i.e., deterministic
to simplify of our presentation), it follows that

Cov(eak ) = Cov(ek ) = Σ. (13)

To capture the attacker’s stealthiness requirements, we use
the probability of alarm in the presence of an attack

βak = P (gak > threshold), where (14)

gak =
k∑

i=k−T +1

c(i−k+T )zai
T Q−1zai . (15)

Therefore, to ensure that attacks remain stealthy, the attacker’s
stealthiness constraint in each step k is to maintain

βak ≤ βk + ε (16)

for a small predefined value of ε > 0.

C. Problem Formulation

As we will present in the next section, for a large class of
systems, a stealthy attacker can easily introduce an unbounded
state estimation error by compromising communication between
some of the sensors and the estimator. On the other hand, ex-
isting communication protocols commonly incorporate security
mechanisms (e.g., MAC) that can ensure integrity of delivered
sensor measurements. Specifically, this means that the system
could enforce ak,i = 0 for some sensor si , or ak = 0 if in-
tegrity for all transmitted sensor measurements is enforced at
some time step k. However, as we previously described, the
integrity enforcement comes at additional communication and
computation cost, effectively preventing their continuous use in
resource-constrained CPS.

Consequently, we focus on the problem of evaluating the im-
pact of stealthy attacks in systems with intermittent (i.e., occa-
sional) use of data integrity enforcement mechanisms.7 Specif-
ically, we will address the following problems.

1) Can the attacker introduce unbounded state estimation
errors in systems with intermittent integrity guarantees?

2) How to efficiently evaluate the impact of intermittent
integrity enforcement policies on the induced state esti-
mation errors in the presence of a stealthy attacker?

3) How to design a nonoverly conservative development
framework that incorporates guarantees for estimation
degradation under attacks into design of suitable integrity
enforcement policies?

III. IMPACT OF STEALTHY ATTACKS ON THE STATE

ESTIMATION ERROR

To capture the impact of stealthy attacks on the system, we
start with the following definition.

6For this reason, and to simplify our presentation, in the rest of this paper, we
will sometimes refer to Δek as the (expected) state estimation error instead of
the change of the state estimation error caused by attacks.

7Formal definition of such policies are presented in the next section.
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Definition 1: The set of all stealthy attacks up to time k is

Ak = {a1..k |βak ′ ≤ βk ′ + ε, ∀k′, 1 ≤ k′ ≤ k} (17)

where a1..k = [aT1 . . . a
T
k ]T .

When reasoning about a set of reachable state estimation
errors eak due to stealthy attacks from Ak , we have to also take
into account the variability of the estimation error. From (13), we
can define a specific region that will contain the error eak with
a desired probability. Therefore, we introduce the following
definition.

Definition 2: The k-reachable region Rk of the state estima-
tion error under the attack (i.e., eak ) is the set

Rk =

{
e ∈ Rn

eeT � E[eak ]E[eak ]
T + γCov(eak ),

eak = eak (a1..k ), a1..k ∈ Ak

}
.

(18)
Also, the global reachable region R of the state estimation error
eak is the set

R =
∞⋃

k=1

Rk . (19)

Here, γ is a design parameter directly related to the desired
confidence that eak belongs to the reachable region. Effectively,
the set Rk captures the set of state estimation errors that can
be reached in the kth step due to the injected malicious signal,
while R captures the set of all reachable state estimation errors.
To assess vulnerability of the system, a critical characteristic of
R is boundedness—whether a stealthy attacker can introduce
unbounded estimation errors. To simplify the boundedness anal-
ysis of R, we start with the following theorem.

Theorem 1: Let gk = zTk Q−1zk be the detector function.
Then, for any ε > 0, such that ε ≤ 1 − βk , there exists a unique
α > 0 such that βak ≤ βk + ε if and only if ‖Δzk‖Q−1 ≤ α.

Proof: In the case without attacks, in the steady state,
gk has χ2 distribution with p degrees of freedom, since the
residue zk is zero mean (E[zk ] = 0) with covariance ma-
trix Q = CΣCT + R [36], [37]. Also, from (10) and (11),
Δzk = zak − zk is output of a deterministic system only con-
trolled by input a1..k , which is assumed to be independent
of the value of zk (i.e., process and measurement noise) at
any particular time k. Thus, zak is a nonzero mean with co-
variance matrix Q—i.e., the attacker is only influencing the
Δzk = E[zak − zk ] = E[zak ]. Therefore, gak = zak

T Q−1zak will
have a noncentral χ2 distribution with p degrees of free-
dom; the noncentrality parameter of this distribution will be
λ = ‖Δzk‖2

Q−1 [37].
Let h be the threshold for the detector in (7). The alarm prob-

abilities βk = 1 − P (gk ≤ h) and βak = 1 − P (gak ≤ h) can be
computed from the distributions for gk and gak as

βk = 1 − Fχ2 (h, p), βak = 1 − Fncχ2 (h; p, λ)

where Fχ2 (h, p) and Fncχ2 (h; p, λ) are cumulative distribution
functions of χ2 and noncentralized χ2 , respectfully, at h, with p
degrees of freedom and noncentrality parameter λ. Since p and
h are fixed by the system design, it follows that βk will be a
constant, and βak will be a function of λ.

Consider ε = βak − βk . This means that

ε = 1 − Fncχ2 (h; p, λ) − βk . (20)

The probability distribution function of noncentral χ2 distri-
bution is smooth (thus making Fncχ2 (h; p, λ) smooth), and
Fncχ2 (h; p, λ) is a decreasing function of λ [37]. Hence, it
follows that for any ε, there will exist exactly one

√
λ =

‖Δzk‖Q−1 = α such that (20) is satisfied. Furthermore, for any
ε′ that is lower than ε, the corresponding

√
λ′ = ‖Δzk‖Q−1

from (20) has to be lower than α, and vice versa, which con-
cludes the proof. �

Since the bound α for ‖Δzk‖Q−1 in Theorem 1 depends on
ε, h, and the fact that the χ2 detector with p degrees of freedom
is used, we will denote such value as α = αχ2 (ε, p, h).

Remark 2: Related results from [27] and [33] focus only on
the detection function gk = zTk Q−1zk and show only sufficient
conditions for stealthy attacks—i.e., that in this case from a
robustness condition ‖Δzk‖Q−1 ≤ α, it follows that the stealth-
iness condition βak ≤ β + ε is satisfied. However, the equiva-
lence between conditions ‖Δzk‖Q−1 ≤ α and βak ≤ β + ε will
enable us to reduce conservativeness of our analysis as well
as analyze boundness of the reachability region for the general
type of detection functions from (15), by allowing us to employ
both conditions interchangeably.

From Definition 1 and Theorem 1, the following result holds.
Corollary 1: For the detection function gk = zTk Q−1zk ,

there existsα > 0 such that the set of all stealthy attacks satisfies

Ak = {a1..k |‖Δzk ′ ‖Q−1 ≤ α, ∀k′, 1 ≤ k′ ≤ k}. (21)

The previous results introduce an equivalent “robustness-
based” representation for the set of stealthy attacks in systems,
where χ2 detectors are used. They also provide a foundation
to consider the more general formulation (15) for the detector
function. We start with the following results characterizing over-
and underapproximations of the setAk in such a case, also using
suitable “robustness-based” representations of the stealthiness
condition. By showing that reachable estimation error regions
are bounded for these sets of attacks, we will be able to rea-
son whether the reachable region of state estimation errors is
bounded for attacks from the set Ak .

Lemma 1: For a system with the detector function gak of
the form from (15), the set of all stealthy attacks Ak can be
underapproximated by the set

Ak = {a1..k |‖Δzk ′ ‖Q−1 ≤ α, ∀k′, 1 ≤ k′ ≤ k} (22)

(i.e., Ak ⊆ Ak ), where α = αχ2 (ε, T p, h/cmax)/
√
T .

In essence, the lemma states that if ‖Δzk‖Q−1 ≤ α holds,
then gak ≤ h for the general detection function from (15) is
satisfied with probability that is lower than or equal to βk + ε.

Proof: Consider an attack sequence a1..k ∈ Ak and the
resulting evolution of the system from (10) and (11), with
‖Δzk ′ ‖Q−1 ≤ α, for all k′, 1 ≤ k′ ≤ k. Then, we have

k∑

i=k−T +1

‖Δzi‖2
Q−1 ≤

k∑

i=k−T +1

α2 = α2
χ2 (ε, T p, h). (23)

In addition, we define cmax = max(c1 , . . . , cT ) and

gak =
k∑

i=k−T +1

cmaxzai
T Q−1zai (24)

as well as βak = P (gak > h). From (24), gak is a scaled sum

of noncentral χ2 distributions with p degrees of freedom, so
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gak /cmax will have the noncentralχ2 distribution with pT degrees
of freedom and the central moment equal to

λ =
k∑

i=k−T +1

‖Δzi‖2
Q−1 . (25)

Since βak = P (gak > h) = P (gak /cmax > h/cmax), following
the proof of Theorem 1 for the gak /cmax detection function,

we have that βak ≤ βk + ε is satisfied if and only if
√

λ ≤
αχ2 (ε, pT , h/cmax). That is, using (25), we have

(
βak ≤ βk + ε

)
⇔

k∑

i=k−T +1

‖Δzi‖2
Q−1 ≤ α2

χ2 (ε, pT , h/cmax).

(26)
Since (23) follows from the condition of the theorem, from (26),
we have that βak ≤ βk + ε is satisfied. From (24), we have that
gak ≤ gak , meaning that βak ≤ βak . Thus, (βak ≤ βk + ε) holds,
and a1..k ∈ Ak (i.e., Ak ⊆ Ak ). �

Lemma 2: For a system with the detector function gak of the
form from (15), the set of all stealthy attacks at time k, Ak , can
be overapproximated by the set

Ak = {a1..k |‖Δzk ′ ‖Q−1 ≤ α, ∀k′, 1 ≤ k′ ≤ k} (27)

(i.e., Ak ⊇ Ak ), where α = αχ2 (ε, p, h/cT ).
Proof: Consider an attack sequence a1..k ∈ Ak with the de-

tector function gak from (15). Let gak = cT zak
T Q−1zak . Since

gak ≤ gak , it follows that βak = P (gak > h) ≤ βak , where βak is
defined as in (14). Since a1..k are stealthy, it follows that
βak ≤ βk + ε, and thus, βak ≤ βk + ε holds.

On the other hand, the function gak /cT has the χ2 distri-
bution; by following the proof of Theorem 1 for gak /cT , we
have that βak ≤ βk + ε is satisfied if and only if ‖Δzk‖Q−1 ≤
α = αχ2 (ε, p, h/cT ). Therefore, we have that βak ′ ≤ βk ′ + ε im-
plies ‖Δzk ′ ‖Q−1 ≤ α, k′ = 1, . . . , k, meaning that a1..k ∈ Ak

(i.e., Ak ⊆ Ak ). �
Remark 3: The previous lemmas also hold for the detection

function gk =
∑k

i=1 ckz
T
i Q−1zi ; this can be shown by replac-

ing T with k in the previous analysis, since it would not affect
their proofs. This means that these results hold for both win-
dowed detectors as well as the detectors previously used in
security-related scenarios in [25], [26], and [29]—the use of
such detectors is explored in detail in Section V.

Lemmas 1 and 2 introduce attack sets Ak and Ak , for which
the attack constraints are captured as robustness bounds on
‖Δzk‖Q−1 instead of probabilities of attack detection, and for
which Ak ⊆ Ak ⊆ Ak . Hence, to analyze impact of stealthy at-
tacks, we can consider the effects of attacks that have to maintain
‖Δzk‖ below a certain threshold.

Theorem 2: Rk from (18) is bounded if and only if the set

R̂α
k =
{

Δek ∈ Rn Δek ,Δzk satisfy (10) and (11),
Δek−1 ∈ R̂α

k−1 , ‖Δzk‖2 ≤ α

}
(28)

is bounded, where R̂α
0 = 0 ∈ Rn and α > 0.

Proof: From (13), γCov(eak ) is bounded, and we can sim-
plify our presentation by focusing on the case where γ = 0.
Furthermore, for any vector v, the set {e ∈ Rn eeT � vvT } is
bounded if and only if the vector v is bounded. Therefore, the set{
e ∈ Rn eeT � E[eak ]E[eak ]

T + γCov(eak )
}

will be bounded
if and only if E[eak ] = Δek [from (12)] is bounded.

Consider attack vectors a1..k ∈ Ak . From Lemmas 1 and 2,
we have that

{Δek |a1..k ∈ Ak} ⊆ {Δek |a1..k ∈ Ak} ⊆ {Δek |a1..k ∈ Ak}
(29)

where we somewhat abuse the notation, by having {Δek |a1..k ∈
A} capture all reachable vectors Δek when the system (10) is
“driven” by attack vectors from the set A. On the other hand,
from linearity of the system described by (10) and (11), the sets
{Δek |‖Δzk ′ ‖Q−1 ≤ α, k′ = 1, . . . , k} and {Δek |‖Δzk ′ ‖Q−1

≤ α, k′ = 1, . . . , k} are either both bounded or both unbounded.
Thus, from (29), these sets are bounded if and only if {Δek |
a1..k ∈ Ak} is bounded.

Finally, as 1
|λmax| ‖Δzk‖2 ≤‖Δzk‖Q−1 ≤ 1

|λmin| ‖Δzk‖2 ,where
λmax and λmin are the largest and smallest eigenvalue of Q,
respectively, the region R̂α

k will be bounded for the constraint
‖Δzk‖Q−1 ≤ α if and only if its bounded with a 2-norm stealth-
iness constraint ‖Δzk‖2 ≤ α from (28). �

A. Perfectly Attackable (PA) Systems

Theorem 2 can be used to formally capture dynamical sys-
tems, for which there exists a stealthy attack sequence that
results in an unbounded state estimation error—i.e., for such
systems, given enough time, the attacker can make arbitrary
changes in the system states without risking detection.

Definition 3: A system is PA if the system’s reachable set R
from (19) is an unbounded set.

As shown in [23] and [25], for LTI systems without any
additional data integrity guarantees, the set R̂α =

⋃∞
k=0 R̂α

k can
be bounded or unbounded depending on the system dynamics
and the set of compromised sensors K. From Theorem 2, this
property is preserved for the set R as well. For this reason, we
will be using the definition of R̂α to analyze boundedness of R,
and to simplify the notation due to linearity of the constraint,
we will assume that α = 1—i.e., for this analysis, we consider
the stealthiness attack constraint as

‖Δzk‖2 ≤ 1, k ∈ N0 (30)

imposed on the system Ξ from (10) and (11).
Now, the following theorem follows from [23] and [25].
Theorem 3: A system from (9) is PA if and only if the matrix

A is unstable, and at least one eigenvector v corresponding
to an unstable eigenvalue satisfies supp(Cv) ⊆ K and v is a
reachable state of the system Ξ from (10) and (11).

Note that [23] also uses the term unstable eigenvalue λ to
denote |λ| ≥ 1. In the next section, we show that intermittent
integrity guarantees significantly limit stealthy attacks even for
PA systems.

IV. STEALTHY ATTACKS IN SYSTEMS WITH INTERMITTENT

INTEGRITY ENFORCEMENT

In this section, we analyze the effects that intermittent data
integrity guarantees have on the estimation error under attack.
To formalize this notion, we start with the following definition.

Definition 4: A global intermittent data integrity enforce-
ment policy (μ, f, L), where μ = {tk}∞k=0 such that t0 > 1, for
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all k > 0, tk−1 < tk and L = supk>0 (tk − tk−1), ensures that

atk = atk +1 = · · · = atk +f−1 = 0 ∀k ≥ 0.

Furthermore, for a sensor si ∈ S, the sensor’s intermittent data
integrity enforcement policy (μi, fi , Li), where μi = {tik}∞k=0
with ti0 > 1, tik−1 < tik for all k > 0, and Li = supk>0(tik
− tik−1), ensures that

atik ,i = atik +1,i = · · · = atik +fi−1,i = 0 ∀k ≥ 0.

Intuitively, an intermittent data integrity enforcement policy
for sensor si ensures that the injected attack ak,i via the sensor
will be equal to zero in at least fi consecutive points, where the
starts of these “blocks” are at mostLi time steps apart. Similarly,
for a global intermittent data integrity enforcement policy, the
whole attack vector ak has to be 0 for at least f consecutive
steps, and the duration between these blocks is bounded from
above to at most L time steps.

Global intermittent integrity enforcement is easier to model
(and analyze, as we will show in the next section). However,
compared to the use of p separate sensor’s intermittent integrity
enforcements, global enforcement policies impose significantly
larger communication and computation overhead in every time
step when data integrity is enforced. For example, with global
enforcement, every sensor has to be able to compute and add
an MAC to its message transmitted over a shared bus during
one sampling period (which usually corresponds to a single
communication frame). In addition, since in these systems esti-
mation/control updates are commonly computed once all mes-
sages are received, when the integrity is enforced, the estimator
has to be able to evaluate/recompute all received MACs before
its execution for that time period. On the other hand, with in-
tegrity enforcement for each sensor, their MACs can be sent
and reevaluated in separate (e.g., consecutive) sampling periods
(i.e., communication frames).

Remark 4: It is worth noting that our definition of intermit-
tent integrity enforcement policies imposes a maximum time be-
tween integrity enforcements, which, as we will show, is related
to the worst-case estimation error caused by the attacks. The
definition also captures periodic integrity enforcements when
L = tk − tk−1 for all k > 0. Finally, the definition also allows
for capturing policies with continuous integrity enforcements,
by specifying L ≤ f .

The following theorem specifies that when a global inter-
mittent integrity enforcement policy is used, a stealthy attacker
cannot insert an unbounded expected state estimation error.

Theorem 4: Consider an LTI system from (1) with a global
data integrity policy (μ, f, L), where

f = min(ψ, qun ) (31)

L is finite, ψ is the observability index of the (A,C) pair, and
qun denotes the number of unstable eigenvalues of A. Then, the
system is not PA.

From the above theorem, it follows that even intermittent
integrity guarantees significantly limit the damage that the at-
tacker could make to the system. Furthermore, the theorem
makes no assumptions about the set K of compromised sensors;
in the general case, system designers may not be able to pro-
vide this type of guarantees during system design, and thus, no

restrictions are imposed on the set, neither regarding the number
of elements or whether some sensors belong to it.

Remark 5: In our preliminary results reported in [1], a simi-
lar formulation of Theorem 4 is used with f = min(nullity(C)
+ 1, qun ). Since ψ ≤ n− rank(C) + 1 from [38], using the
rank–nullity theorem, it follows thatψ ≤ nullity(C) + 1, mean-
ing that the condition from Theorem 4 is stronger than our
earlier result and may further reduce the number of integrity-
enforcement points.

In the rest of this paper, we use the notation from Theo-
rem 4 for f and qun . To show the theorem, we exploit the
following Lemma 3 and Theorem 5; the lemma states that if
stealthy attacks introduce unbounded estimation error Δek , the
unbounded components must belong to vector subspaces corre-
sponding to unstable modes of the system (i.e., matrix A).

Lemma 3: Consider system Ξ from (10) and (11) under the
stealthiness constraint (30), and let us denote by v1 , . . . ,vqu n
eigenvectors and generalized eigenvectors that correspond to
unstable eigenvalues of matrix A. Then, unbounded estimation
errors Δek can be represented as

Δek = α1v1 + · · · + αqu n vqu n + �k (32)

where �k =
∑n

j=qu n +1 αjvj is a bounded vector, and for some
1 ≤ i ≤ qun , it holds that αi → ∞ as k → ∞.

Proof: The proof is provided in the Appendix. �
Theorem 5: Consider any k ∈ N, such that k + 1 ∈ μ (i.e.,

at time k + 1 an integrity enforcement block in the policy μ
starts). If Δek is reachable state of Ξ, and if vectors CAΔek ,
CAΔek+1 , . . . ,CAΔek+f−1 are bounded, then the vector
Δek+f has to be bounded for any stealthy attack.8

Proof: From (10) and (11), it follows that

Δek+f = AΔek+f−1 − KΔzk+f (33)

Δzk+f = CAΔek+f−1 + ak+f . (34)

Since ‖K‖2 is bounded, and ‖Δzk+f ‖2 ≤ 1 due to the stealthy
attack constraint (30), then ‖KΔzk+f ‖2 ≤ ‖K‖2‖Δzk+f ‖2 is
bounded. Thus, to show that ‖Δek+f ‖2 is bounded, it is suffi-
cient to prove that ‖AΔek+f−1‖2 is bounded.

Let us assume the opposite—i.e., that ‖AΔek+f−1‖2 is
unbounded, while ‖CAΔek‖2 , . . . , ‖CAΔek+f−1‖2 are all
bounded. From (33), it follows that

AΔek+f−1 = AfΔek −
f−1∑

j=1

Af−jKΔzk+j .

Given that ‖Δzk+1‖2 , . . . , ‖Δzk+f−1‖2 are bounded due to
the stealthy attack requirements, in order for AΔek+f−1 to be
unbounded, AfΔek has to be unbounded as well.

As CAΔek+1 is bounded, this implies that CA(AΔek −
KΔzk+1) has to be bounded too. However, as Δzk+1 has to
be bounded due to the stealthiness condition, it follows that
CA2Δek has to remain bounded. Similarly, we can show that

8Formally, the theorem states that the subsequence {Δek+ f }(k+1)∈μ
of the sequence {Δek }k∈N is bounded, if the subsequence {CAΔek ,
CAΔek+1 , . . . ,CAΔek+ f−1}(k+1)∈μ of the sequence {CAΔek }k∈N
is bounded. However, to simplify our presentation and notation, we simply refer
to the vectors, instead of subsequences, as bounded.
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this holds up to CAfΔek ; thus, the vector bk (f) defined as

bk (f) =

⎡

⎢⎢⎣

C
CA
. . .

CAf−1

⎤

⎥⎥⎦

︸ ︷︷ ︸
Of

AΔek (35)

is bounded. Now, we consider two cases.
Case I: If f is observability index of (A,C) pair (i.e., f = ψ),

then Of has full rank, from which it follows that AΔek (and
thus AfΔek ) has to be also bounded, which is a contradiction.

Case II: Consider f = qun , and let us use similarity trans-
form V on the initial system, where V is defined as in the
Lemma 3 proof—i.e., V = [v1 ...vn ], and we index (gener-
alized) eigenvectors such that for each eigenvector vi with
Li generalized eigenvectors, vi+1 , . . . ,vi+Li

is its generalized
eigenvector chain; in addition, v1 , . . . ,vqu n are the eigenvec-
tors (including generalized eigenvectors) for all unstable modes
of A.

Thus, the transformed system can be captured as

Ã = V−1AV = J =
[

J1( q u n ×q u n ) 0(qu n ×n−qu n)

0(n−qu n ×qu n) J2 (n−qu n ×n−qu n)

]

C̃ = CV =
[
C̃1 (p×qu n ) C̃2 (p×n−qu n )

]
(36)

where J is the Jordan form of A, J1 captures unstable modes
of A, and the pair (Ã, C̃) is also observable.

Since AfΔek is unbounded, we have that Δek is unbounded
(from ‖AfΔek‖2 ≤ ‖A‖f2 ‖Δek‖2). Thus, from Lemma 3, we
have

Δek = V [α1 . . . αn ]T = Vα1..n (37)

where α1..qu n =[α1 . . . αqu n ]T is unbounded, while α(qu n +1)..n

= [α(qu n +1) . . . αqn ]T is a bounded vector. Since C̃Ãj

= C̃Jj = [ C̃1J
j
1 C̃2J

j
2 ], from (35), it follows that

bk (f) =

⎡

⎢⎢⎣

C̃1 C̃2

C̃1J1 C̃2J2
. . .

C̃1J
f−1
1 C̃2J

f−1
2

⎤

⎥⎥⎦Jα1..n =

=

⎡

⎢⎢⎣

C̃1

C̃1J1
. . .

C̃1J
f−1
1

⎤

⎥⎥⎦

︸ ︷︷ ︸
Õuns, f

J1α1..qu n +

⎡

⎢⎢⎣

C̃2

C̃2J2
. . .

C̃2J
f−1
2

⎤

⎥⎥⎦

︸ ︷︷ ︸
Õsta, f

J2α(qu n +1)..n .

(38)
Also, as bk (f) and α(qu n +1)..n are bounded, from (38), vector

b̃k (f) = Õuns,fJ1α1..qu n (39)

is also bounded. Note that Õuns,f is effectively the observability
matrix of the (J1 , C̃1) pair corresponding to the subsystem with
the qun unstable eigenvalues of A.

To show that (J1 , C̃1) is observable, let us assume the op-
posite; thus, there exist an eigenvector ṽj of J1 such that ṽj ∈
null(C̃1) ⊆ Rqu n . Take note that J1 is a Jordan matrix, so each
of its eigenvectors has to be a projection vector ij (as defined
in Section I-A), where j, 1 ≤ j ≤ qun , corresponds to the start
of a Jordan block of J1 . Yet, this implies that C̃1 ij = 0p×1—
i.e., the jth column of C̃1 and thus the jth column of C̃ are zero

Fig. 3. Estimation error evolution between consecutive integrity
enforcement blocks.

vectors. However, since C̃ = CV = [Cv1 . . . Cvn ], it follows
thatCvj = 0 for some j. Due to the wayV is formed and since j
has to be the start index of a Jordan block in J1 , it follows that vj
is an eigenvector of A. However, this implies that vj ∈ null(C),
making (A,C) pair unobservable and contradicting our initial
assumption about the system.

Therefore, (J1 , C̃1) is observable, meaning that Õuns,f is full
rank. Furthermore, J1 is invertible as it contains only unsta-
ble (i.e., nonzero) eigenvalues of the system on the diagonal.
Hence, from (39) and the fact that bk (f) is bounded, it follows
that vector α1..qu n has to be bounded, which from (37) contra-
dicts that Δek and AfΔek are unbounded and thus concludes
the proof. �

Using the previous theorem, we now prove Theorem 4.
Proof of Theorem 4: Consider any time point tk + f such

that tk ∈ μ—i.e., tk is the start of an integrity enforcement
block. Thus, atk = · · · = atk +f−1 = 0. From (11), it fol-
lows that Δztk +j = CAΔetk +j−1 , j = 0, . . . , f − 1, and thus,
from (30), we have

‖CAΔetk +j−1‖2 ≤ 1, j = 0, . . . , f − 1.

Now, from Theorem 5, it follows that the state estimation
error Δetk +f−1 has to be bounded for any stealthy attack; this
holds for all time points at the end of integrity enforcement
intervals. Since in the proof of Theorem 5, we have not used
any specifics of the time points, there exists a global bound on
the state estimation error at the end of all integrity enforcement
periods (as illustrated in Fig. 3).

Finally, consider the expected state estimation error vector at
any time j. From Definition 4, there exists ti ∈ μ such that j ∈[
t̂i , t̂i + L

)
, and t̂i = ti + f (see Fig. 3). From (10) and (11), it

follows that

Δej = Aj−t̂ i Δet̂ i −
j−t̂ i∑

l=1

Aj−t̂ i−lKΔzt̂ i + l . (40)

Thus, the evolution of the expected state estimation error vector
between two time points with bounded values can be described
as evolution over a finite number of steps of a dynamical system
with bounded inputs (since ‖Δzt̂ i + l‖2 ≤ 1); from the triangle
and Cauchy–Schwarz inequalities, it follows that

‖Δej‖2 ≤ ‖A‖j−t̂ i2 ‖Δet̂ i ‖2 +
j−t̂ i∑

l=1

‖A‖j−t̂ i−l2 ‖K‖2 . (41)

Hence, the expected estimation error vector Δej is bounded for
any j, and the system is not PA. �
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From the proof of Theorem 5, a stronger condition for f
holds.

Corollary 2: Consider an LTI system from (1) with a global
data integrity policy (μ, f, L), where L is finite and f is the
observability index of (J1 , C̃1) pair, with J1 and C̃1 defined as
in (36). Then, the system is not PA.

Proof: Follows directly from proofs of Theorems 4 and 5.�
Theorem 4 assumes that the attacker has the full knowledge of

the system’s integrity enforcement policy—i.e., at which time
points, integrity enforcements will occur. As we illustrate in
Section VI, this allows the attacker to plan attacks that max-
imize the error, while ensuring stealthiness of the attack by
reducing the state estimation errors to the levels that will not
trigger detection during integrity enforcement intervals. On the
other hand, if the attacker does not have the knowledge of μ
(i.e., if (s)he is not aware of the time points in which integrity
enforcements would occur), the integrity enforcement require-
ments can be additionally relaxed; as the attacker does not know
when enforcements occur, (s)he has to ensure that if at any future
point (including the next time step) malicious data cannot be in-
jected, the residue would still remain below the threshold (30).
Thus, we obtain the following result.

Theorem 6: Any LTI system from (1) with a global data
integrity policy (μ, 1, L) (i.e., with f = 1) is not PA for any
stealthy attacker that does not know the time points μwhen data
integrity is enforced.

Proof: First, note that the sequence CAΔek cannot be
bounded if the attacker wants to introduce an unbounded state
estimation error. If it was bounded, from (11) and (30), it would
follow that ak is always bounded; this, in turn, would imply that
the system from (10) has bounded inputs, which, since matrix
(A − KCA) is stable (K is Kalman gain), would imply that
Δek cannot diverge—the reachable setR cannot be unbounded.

On the other hand, let us assume that the system is PA — i.e.,
the expected state estimation error can be unbounded. Then,
from our previous argument, it follows that CAΔek is un-
bounded, and thus, we can find k and Δek such that ‖CAΔek‖2
> 1. Then, if global data integrity is enforced only once at the
time step k + 1, from (11), it would follow that ‖Δzk+1‖ =
‖CAΔek‖2 > 1, which violates the stealthiness requirement
from (30). �

Theorems 4 and 5 consider a worst-case scenario without
any constraints or assumptions about the set of compromised
sensors K (e.g., that less than q sensors are compromised). Yet,
some knowledge about the set K may be available at design
time. For instance, for MitM attacks, some sensors cannot be in
set K, such as on-board sensors that do not communicate over
a network to deliver information to the estimator, or sensors
with built-in continuous data authentication. In these cases, the
number of integrity enforcements can be reduced.

Corollary 3: Consider a system from (1) with a global data
integrity policy (μ, f, L), where f = min(ψ, q∗un ), ψ is the ob-
servability index of (A,C), and q∗un denotes the number of
unstable eigenvalues λi of A, for which the corresponding
eigenvector vi satisfies supp (Cvi) ∈ K. Then, the system is
not PA.

Proof: The proof directly follows the proof of Theorem 4,
with the only difference that all αi → ∞ from Lemma 3 also

have to correspond to the unstable eigenvectors vi satisfying that
supp(Cvi) ∈ K; otherwise, consider αi → ∞, from a
decomposition of a “large” Δek such that ‖Cαivi‖2 → ∞
and supp (Cvi) /∈ K. Then, the components of the residue
Δzk+1 whose indices are in supp (Cvi) but not in K
(i.e., Psupp(Cv i )\KΔzk+1) cannot be influenced by the attack
signal ak+1 , meaning that their large values due to αi → ∞
cannot be compensated for by the attack signal and thus will
violate the stealthiness condition (30). �

Let us recall Definition 1 that introduced Ak , the set of all
stealthy attacks up to time k—it only requires that attack vector
a1..k ∈ Ak satisfies the stealthiness conditions up to time k.
Thus, as shown in the proof of Theorem 4, the attacker applying
attack a1..k ∈ Ak may have to violate the stealthiness constraint
during the next integrity enforcement block, since for those time
points t when integrity is enforced, at = 0. As the attacker’s
goal is to remain stealthy even during integrity enforcements,
we consider policy-aware stealthy attack sets.

Definition 5: For an integrity enforcement policy (μ, f, L),
the set of all policy-aware stealthy attacks up to time k is

Aμ
k =
{
a1...k

a1..k ′ ∈ Ak ′

k′ = min {t | (t− f + 1 ∈ μ) ∧ (t ≥ k)}

}
.

Intuitively, the attacker will always plan attacks at least until
the end of next integrity enforcement block (captured by k′),
while keeping the probability of detection as low. Thus, we also
need to modify the definition of the k-reachable region Rk (see
Definition 2), as it depends on the employed set of stealthy
attacks.

Definition 6: The policy aware k-reachable region Rμ
k of the

state estimation error under the attack (i.e., eak ) is the set

Rμ
k =
{

e ∈ Rn eeT � E[eak ]E[eak ]
T + γCov(eak ),

eak = eak (a1..k ), a1..k ∈ Aμ
k

}
.

(42)
Furthermore, the global policy-aware reachable region Rμ of
the state estimation error eak is the set

Rμ = ∪∞
k=0Rμ

k . (43)

The above definition introduces a region that can be reached
by an attacker that considers both past behavior and plans
accordingly into the future to avoid being detected. Since
Aμ
k ⊆ Ak , it directly follows thatRμ ⊆ R, and the boundedness

property holds. Finally, note that when no integrity enforcements
are used, it follows that Rμ ≡ R.

A. Guarantees With Sensorwise Integrity Enforcement

Due to space constraint, we now consider the case where the
system has one unstable eigenvalue λ1 with the corresponding
eigenvector v1 , but the result can be generalized. Also, let us
assume that all sensor integrity enforcement policies use fi = 1
and have tik = ti+1

k − 1 for all k and all i = 1, . . . , p− 1
(i.e., sensors enforce integrity in consecutive points, first s1 ,
then s2 , etc.); this also implies all Li are equal.

It can be shown that the system is not PA in this case. The
proof follows the ideas from the proofs of Theorems 4 and 5.
If s1 integrity is enforced at t1k = j, that would mean that
Δzj,1 = P{s1 }CAΔej−1 = P{s1 }C̃Jα1..n as in Theorem 5,
and thus, ‖P{s1 }C̃Jα1..n‖2 ≤ 1. From Lemma 3, if Δej−1 is
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unbounded, only α1 → ∞, and thus, J1 as in (38) is scalar. To
account for this, P{s1 }Cv1λ1α1 has to be zero, which implies
that v1 ∈ null(P{s1 }C). Similarly, it can be shown that from
Δzj,i , it follows that v1 ∈ null(P{si }C) for 1 ≤ i ≤ n. This
can be represented as Cv1 = 0, which since λ1 	= 0 implies
that v1 ∈ null(C). This is a contradiction because (A,C) is
observable from our initial assumptions.

V. ANALYSIS AND DESIGN OF SAFE INTEGRITY

ENFORCEMENT POLICIES

The previous section shows that with even intermittent in-
tegrity enforcements, a stealthy attacker cannot introduce an
unbounded state estimation error, irrelevant of the set of com-
promised sensors K. However, we still need to provide a method
to evaluate whether a specific integrity enforcement policy en-
sures the desired estimation performance (i.e., state estimation
error) even in the presence of attacks. Our goal is to also provide
a framework to derive integrity enforcement policies ensuring
that the estimation errors remain within a desired region even
under attack. Thus, in this section, we introduce a computa-
tionally efficient method to achieve this based on an efficient
estimation of the reachable region Rμ

k from (42) for systems
with intermittent data integrity enforcements.

A. Estimation Errors With Intermittent Integrity
Enforcements

Consider an LTI system from (1) and (9) with a global data
integrity policy (μ, f, L). As in Definition 5, we use a1...k =
[(a1)T ... (ak )T ]T ∈ Rpk to capture attack vectors up to step k,
where supp(aj ) = K̃j , j = 1, . . . , k, and

K̃j =
{
∅, j − i ∈ μ, for some i, 0 ≤ i < f
K, otherwise.

Here, K̃j captures the set of compromised sensor measurements
received in step j—i.e., if data integrity is enforced at step j, then
no measurements are compromised. Let us define supp(a1..k ) =
Qk ⊆ {1, . . . , pk}; note that Qk captures information about the
applied integrity enforcement policy, and

|Qk | = |Qk−1 | + |K̃k | =
k∑

i=1

|K̃i |. (44)

From (10) and (11), Δek and Δzk can be captured as

Δek = −
[
(A − KCA)k−1K ... K

]
︸ ︷︷ ︸

M k

a1..k

Δzk =
[
−CAMk−1 I

]
︸ ︷︷ ︸

Nk

a1..k .
(45)

To incorporate the information about the sparsity of the attack
vector, we use suitable projections onto Qk and K̃1 , . . . , K̃k ,
which satisfy PQk

= BlckDiag(PK̃1
, . . . ,PK̃k

). In addition, it

holds that P†
K̃j

= PT
K̃j

, since PK̃j
PT

K̃j
= I|K̃j |, for j = 1, . . . , k,

and thus, P†
Qk

= PT
Qk

. Then, (45) can be restated as

Δek = −
[
(A − KCA)k−1KP†

K̃1
... KP†

K̃k

]

︸ ︷︷ ︸
M k P

Q†
k

PQk
a1..k

Δzk =
[
−CAMk−1PQ†

k −1
P†

K̃k

]

︸ ︷︷ ︸
Nk P

Q†
k

PQk
a1..k (46)

with matrices MkPQ†
k

and NkPQ†
k

capturing information about
the time steps in which data integrity is enforced.

For the general form of the detection function gk , it may
not be possible to obtain a simple analytical solution for the
regions Rμ

k and Rμ . Therefore, in this section, we will focus
on a specific log-likelihood ratio test as used in [26] and [28];
however, the presented method can also be extended in a similar
fashion to cover other detectors such as generalized likelihood
tests. Specifically, we consider the detection function captured as

gk = gk−1 + Λk =
k∑

τ=1

(
1
2
zTτ Q−1zτ + log c

√
(2π)pdet(Q)

)

=
1
2

k∑

τ=1

(zTτ Q−1zτ ) + k log c
√

(2π)pdet(Q). (47)

Here, Λk = log fa (zk )
f (zk ) , with fa and f being probability density

functions of the residuals under the attack and in regular op-
eration respectively, and c = e−

p
2 /
√

(2π)pdet(Q) is a design
constant initialized such that log-likelihood ratio Λk ≡ 0 when
the system is not under attack [26]. Therefore, in this case, the
attacker’s stealthiness constraint from (16) (i.e., P (gak > h) ≤
P (gk > h) + ε) can be captured as

P

(
k∑

τ=1

(zaτ
T Q−1zaτ ) > 2h+ kp

)

≤ ε+ P

(
k∑

τ=1

(zTτ Q−1zτ ) > 2h+ kp

)
.

Given that these two sums have the noncentral χ2 (left) and
(central) χ2 distributions, from Theorem 1 and the proof of
Lemma 1, it follows that the above constraint is equivalent to

√∑k

τ=1
‖Δzτ ‖2

Q−1 ≤ αχ2 (ε, kp, 2h+ kp). (48)

On the other hand, from (46), it follows that
k∑

τ=1

‖Δzτ ‖2
Q−1 =

k∑

τ=1

ΔzTτ Q−1Δzτ =

=
k∑

τ=1

(PQk
a1..k )

T [NτPQ†
τ

0p×(|Qk |−|Qτ |) ]
T Q−1

[NτPQ†
τ

0p×(|Qk |−|Qτ |) ]PQk
a1..k .

Hence, from (48), the attacker’s stealthiness constraint under
considered integrity enforcement policy μ can be captured as

‖PQk
a1..k‖Θk

≤ αχ2 (ε, kp, 2h+ kp) (49)



JOVANOV AND PAJIC: RELAXING INTEGRITY REQUIREMENTS FOR ATTACK-RESILIENT CPS 4853

where

Θk =
k∑

τ=1

[NτP
†
Qτ

0p×(|Qk |−|Qτ |) ]
T Q−1

[NτP
†
Qτ

0p×(|Qk |−|Qτ |) ]. (50)

For the above matrix Θk , the following property holds.
Lemma 4: For any k ≥ 1, the matrix Θk is positive definite.
Proof: We start with the case when k = 1. From Definition 4,

data integrity is not enforced at k = 1, and thus, Q1 = K̃1 = K.
Due to the way projection matrices are formed, we have that

P†T
Q1

P†
Q1

= I|Q1 | � 0 and Θ1 = [P†
Q1

]T Q−1 [P†
Q1

].

Since Q � 0, it follows that Θ1 � 0 as well.
Now, consider the case k ≥ 2 and let us assume that Θk−1 is

positive definite. From (50), it follows that

Θk =

[
Θk−1 0|Qk −1 |×|K̃k |

0|K̃k |×|Qk −1 | 0|K̃k |×|K̃k |

]

︸ ︷︷ ︸
Θ̃k −1

+ [NkP
†
Qk

]T Q−1 [NkP
†
Qk

]
︸ ︷︷ ︸

Θ̃k

(51)
and we consider the following two cases.

Case I: There does not exist i, such that 0 ≤ i < f and
k − i ∈ μ; this implies that integrity is not enforced at the
step k and K̃k = K. Because both Θk−1 � 0 and Q � 0,
both addends in (51) are positive-semidefinite matrices, and
Θk � 0. In addition, since Θk−1 is positive definite by
assumption, null(Θ̃k−1) = R([0|K̃k |×|Qk −1 | I|K̃k |]

T ). Further-
more, from (46), we have (52) shown at the bottom of this page.

Given that (P†
K̃k

)
T
Q−1P†

K̃k
� 0, it follows that null(Θ̃k ) can-

not have nonzero vectors from R([0|K̃k |×|Qk −1 | I|K̃k |]
T ). There-

fore, we have

null(Θ̃k ) ∩ null(Θ̃k−1) = {0}. (53)

Now, assume that there exists a nonzero vector v such that
v ∈ null(Θk )—i.e., (Θ̃k + Θ̃k−1)v = 0, and thus

vT Θ̃kv = −vT Θ̃k−1v.

However, since v cannot be in the null spaces of both matri-
ces due to (53), and Θ̃k−1 and Θ̃k are both positive semidef-
inite, this is a clear contradiction. Consequently, Θk = Θ̃k +
Θ̃k−1null(Θk ) = {0}, and since Θk is a positive-semidefinite
matrix, it holds that Θk � 0.

Case II: There exists i, such that 0 ≤ i < f and k − i ∈ μ;
i.e., integrity is enforced at the step k. Thus, |K̃k | = 0, so

Θ̃k−1 = Θk−1 is positive definite. Hence, since Θ̃k � 0, it fol-
lows that Θk = Θ̃k + Θ̃k−1 is positive definite. �

Now, the specification of the stealthiness condition from (49)
allows us to obtain the following result.

Theorem 7: The k-reachable region Rμ
k under a global data

integrity enforcement policy (μ, f, L) can be represented as

Rμ
k =
{
eak |eakeak T � α2

χ2 [MkP
†
Qk

0]Θ−1
t [MkP

†
Qk

0]
T

+ γΣ
}

(54)

whereα2
χ2 = α2

χ2 (ε, tp, 2h+ tp), t is the first end of an integrity
enforcement block following k—i.e., the earliest time point such
that t− f + 1 ∈ μ and k ≤ t, and 0 = 0|Qk |×(|Qt |−|Qk |) .

Proof: Consider the stealthiness constraints (49) at time t,
which can be written as

α2
χ2 (ε, tp, 2h+ tp) − (PQt

a1..t)T ΘtPQt
a1..t ≥ 0. (55)

Now, using the Schur complement and Lemma 4, we obtain
[

Θ−1
t PQt

a1..t

(PQt
a1..t)

T α2
χ2 (ε, tp, 2h+ tp)

]
� 0. (56)

As the left-hand side of (56) is positive semidefinite, when
multiplied by a matrix from the left, and its transpose from the
right, this product will also be positive semidefinite. If we use
the projection matrix P{1,...,k ,t+1} for this, we effectively reduce
the matrix from (56) by removing pairs of rows and columns
corresponding to ak+1..t . Thus, we obtain that
[

[I|Qk | 0]Θt
−1 [I|Qk | 0]T PQk

a1..k

(PQk
a1..k )

T α2
χ2 (ε, tp, 2h+ tp)

]
� 0 (57)

where 0 = 0|Qk |×(|Qt |−|Qk |) . Furthermore, with condition (57),
we need to compute only single Θt

−1 for all points between
integrity enforcement blocks, as constraints for prior attacks
(i.e., time points before t) directly follow from (57).

The linear matrix inequality in (58) shown at the bottom of this
page follows from (57), as it forms a quadratic representation.
We use this specific matrix as it allows us to argue about the
stealthiness condition using Δek rather than a1..k . Using (46)
and the Schur complement once again, we have

[MkP
†
Qk

0]Θ−1
t [(MkP

†
Qk

0)]T − 1
α2
χ2

ΔekΔek T � 0 (59)

where α2
χ2 = α2

χ2 (ε, tp, 2h+ tp). Hence, from (59) and the
definition of Rμ

k from (42), as well as (12) and the fact that
Cov[eak ] = Σ, we finally obtain that (54) holds. �

Θ̃k =

[
(CAMk−1P

†
Qk −1

)T Q−1CAMk−1P
†
Qk −1

(CAMk−1P
†
Qk −1

)T Q−1P†
K̃k

(P†
K̃k

)
T
Q−1CAMk−1P

†
Qk −1

(P†
K̃k

)
T
Q−1P†

K̃k

]
(52)

[
−MkP

†
Qk

0n×1

01×|Qk | 1

][
[I 0]Θt

−1 [I 0]T PQk
a1..k

(PQk
a1..k )

T α2
χ2 (ε, tp, 2h+ tp)

][
−MkP

†
Qk

0n×1

01×|Qk | 1

]T
� 0 ⇐⇒

⇐⇒
[
MkP

†
Qk

[I 0]Θt
−1 [I 0]T (MkP

†
Qk

)
T −MkP

†
Qk

PQk
a1..k

−(PQk
a1..k )

T (MkP
†
Qk

)
T

α2
χ2 (ε, tp, 2h+ tp)

]
� 0.

(58)
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The representation of the reachable set from (54) can be
simplified further. Let us define Yk as

Yk = α2
χ2 (ε, tp, 2h+ tp)[MkP

†
Qk

0]Θ−1
t [MkP

†
Qk

0]
T

+ γΣ.
(60)

Then, (54) is equivalent to Yk − eake
a
k
T � 0, and thus, by using

the Schur complement, we obtain an alternative representation
of the k-reachable regions as

Rμ
k = {eak |eak T Y−1

k eak � 1} (61)

for the positive-definite matrix Yk defined in (60). The above
representation can be exploited for efficient computation of the
reachable regions.

Furthermore, as we described in Section II-B, the attacker’s
goal is to maximize the expected state estimation errorE[eak ] =
Δek . From the above discussion, the following corollary di-
rectly holds by considering the case when γ = 0.

Corollary 4: At any time k, the maximal norm of the ex-
pected state estimation error eak caused by the attack satisfies

max ‖E[eak ]‖2 =
1√

λmax(Ỹk )
(62)

where λmax(Ỹk ) denotes the largest eigenvalue of the matrix

Ỹk = α2
χ2 (ε, tp, 2h+ tp)[MkP

†
Qk

0]Θ−1
t [MkP

†
Qk

0]
T

, and t
is the next end of integrity enforcement block—i.e., the earliest
time point such that t− f + 1 ∈ μ and k ≤ t.

The above corollary provides a very efficient way to evaluate
worst-case effects of attacks when an intermittent data integrity
enforcement policy is used. By quantifying degradation of the
expected state estimation error in the presence of attacks, we
can analyze the impact of the integrity enforcement policy on
limiting the attacker, which can then be used for design of
suitable integrity enforcement policies.

B. Design of Periodic Integrity Enforcement Policies

For policy design, it is necessary to be able to evaluate impact
of an integrity enforcement policy μ, not only on reachable re-
gionsRμ

k , for any k, but even more importantly onRμ from (43).
To achieve this, we have to obtain the terminating value t from
Theorem 7, or equivalently from (61), such that the reachability
analysis can be completed after Rμ

t is obtained—i.e., for which
Rμ = Rμ

1..t , where Rμ
1..t =

⋃t
k=1 R

μ
k . In the general case, the

analysis may never terminate, depending on the particular pol-
icy (μ, f, L). Therefore, to simplify the analysis, in this section,
we focus on periodic integrity enforcement policies introduced
in Remark 4.

For a periodic integrity enforcement policy (μ, f, L),
consider t1 and t2 = t1 + L time points at which consecutive
integrity enforcement blocks end—i.e., t1 − f + 1 ∈ μ and
t2 − f + 1 ∈ μ. From the proof of Theorem 7, if the stealthiness
requirements from the condition in (56) are satisfied at any time
t ∈ μ, then they are satisfied for all k < t, since (57) follows
from (56). Given that at1 −f+1 = · · · = at1 = 0 and at2 −f+1 =
· · · = at2 = 0, and that the stealthiness requirements remain
consistent throughout the analysis, it follows that the evolution
of the estimation error between two consecutive integrity

Algorithm 1: Procedure for Design of Periodic Integrity
Enforcement Policies.

Inputs: System model, safe reachable region Rea for the
state estimation error ea

1: Enforcement distance L = 0
2: repeat
3: L = L+ 1
4: Form policy (μ, f, L) such that distance between

consecutive elements in μ is L and t0 = L
5: Assign t = 0 and the reachable region R1..t = ∅

6: repeat
7: told = t
8: R1..told = R1..t
9: t = min{t′|t′ ∈ μ ∧ t′ > told}

10: Compute Ntold+1 , . . . ,Nt , Mtold+1 , . . . ,Mt

from (45)
11: Compute Θt from (50)
12: Compute α(ε, tp, 2h+ tp)
13: for k = told + 1, . . . , t do
14: Compute Rμ

k using (61)
15: R1..t = R1..t ∪Rμ

k

16: end for
17: until R1..t ⊆ R1..told and Rt ⊆ Rtold

18: until R1..told \ Rea 	= ∅

19: Accept policy (μ, f, L− 1)

enforcement blocks will depend only on E[eat1 ] = Δet1 and
E[eat2 ] = Δet2 , or more specifically Rμ

t1
and Rμ

t2
. Thus, if

Rμ
t2

⊆ Rμ
t1

and Rμ
1..t2 ⊆ Rμ

1..t1 , then no new estimation error
values can be reached after time t2 , and the terminating time for
the reachability analysis can be t1 , since after time t2 as well as
after all following ends of integrity enforcement blocks, the state
estimation errors would start from a subset of the error values
from Rμ

t1
. In addition, when the above terminating condition is

satisfied, the global reachable region of the state estimation error
can be obtained as Rμ =

⋃∞
k=1 R

μ
k =
⋃t1
k=1 R

μ
k = Rμ

1..t1 .
Consequently, using Algorithm 1, we can compute a peri-

odic integrity enforcement policy that maximizes L (i.e., re-
duces the integrity enforcement rate) while limiting the at-
tacker’s influence. Specifically, the algorithm will result in the
enforcement policy that ensures that the state of reachable es-
timation errors does not contain points outside the set of safe
(i.e., acceptable) errors Rea . In our evaluations, in the next
section, we define Rea using a threshold ‖Δemax‖2 for the
maximal 2-norm of the expected state estimation error due to
attacks. Thus, the safety condition in Line 18 of the algorithm is
mapped into max(‖ea1‖max, . . . , ‖eat ‖max) ≥ ‖Δemax‖2 , where
‖eak‖max = max ‖E[eak ]‖2 , as computed in (62).

Finally, while we do not provide any guarantees that
Algorithm 1 will always terminate, for all analyzed systems,
including the case studies from the next section, the condition
in Line 17 was always eventually satisfied. Therefore, for all
considered systems, we have been able to use the algorithm to
obtain periodic integrity enforcement policies that ensure de-
sired estimation performance even in the presence of attacks.
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Fig. 4. Evolution of the maximal estimation error for vehicle tracking;
without integrity enforcements, the attacker forces the system outside of
the safe range in four steps.

VI. CASE STUDIES

In this section, on automotive case studies, we illustrate how
intermittent data integrity enforcements can ensure satisfiable
control performance even in the presence of attacks. For both
studies, sensor values are transmitted over an internal vehicle’s
network, such as commonly used CAN bus. Note that in [32],
we provide additional automotive case studies (and the overall
scheduling framework) for intermittent authentication of CAN-
bus messages from system sensors, and in [39], we show benefits
of intermittent authentication on vehicle’s ECU scheduling.

A. Case Study: Vehicle Trajectory Following

We start with the model used in [7] to describe vulnerabilities
and potential attacks on autonomous systems adapted for two-
axis tracking; we obtain the following discretized models (with
sampling period of 0.01 s) for each axis:

Ad =
[

1 0.01
0 1

]
, Bd =

[
0.0001
0.01

]
, Cd =

[
1 0
0 1

]
. (63)

Assume that the attacker can modify the values from all sensors.
The system is PA as the matrix Ad is unstable and supp(Cv) ∈
K, since K = S.

We consider the largest additive estimation error on position
to be 0.5 m and on speed to be 0.5 m/s, resulting in ‖Δemax‖2 =
0.7. We also set h such that the probability of false positive
from (8) is β = 1.5%, and additional probability of detection
introduced by the attacker from (16) to ε = 0.1%.

Without integrity enforcements, the attacker could force the
state estimation error above ‖Δemax‖2 threshold after four steps,
as shown in Fig. 4. We considered three periodic integrity en-
forcement policies with f = 1 as specified in conditions of
Theorem 4, and periods L = 20, 30, and 35, denoted by μ20 ,
μ30 , and μ35 , respectively. Using results from Section V, we
show that the first two policies are safe, while the third pol-
icy can violate the ‖Δemax‖2 threshold—Fig. 5 illustrates the
evolution of the maximal estimation errors for each policy.

Finally, we evaluate the effects of intermittent integrity guar-
antees for trajectory following on a circular path with a radius
of 100 m, at a speed of 3.14 m/s. Fig. 6 shows results of 200-s-
long simulations, with attacks starting at 100 s. As illustrated,
when integrity is enforced on less than 3.4% of messages, i.e.,
when μ30 is employed, we have strong control performance
guarantees in the presence of attacks on all vehicle sensors.

Fig. 5. Maximal estimation error in the presence of attacks on all sen-
sors for vehicle-tracking case study with three different integrity enforce-
ment policies with f = 1 and periods L = 20, 30, 35.

B. Degraded Cooperative Adaptive Cruise Control
(dCACC)

Cooperative adaptive cruise control (CACC) employs com-
munication to obtain smaller following distance and better
platooning stability than standard adaptive cruise control. To
achieve this, each vehicle is equipped with a lidar and acceler-
ation measurement sent from the preceding vehicle. However,
when acceleration data are not available, CACC needs to switch
to dCACC, that is based only on local vehicle measurements.
In this mode, Singer acceleration model is used to estimate
acceleration of the preceding vehicle [40], i.e.,

⎡

⎣
ḋ
v̇
ȧ

⎤

⎦ =

⎡

⎢⎣
0 −1 0

0 0 1

0 0 − 1
τ

⎤

⎥⎦

⎡

⎣
d
v
a

⎤

⎦+

⎡

⎣
0
0
1

⎤

⎦[u
]

(64)

y =
[

1 0 0
0 1 0

]⎡

⎣
d
v
a

⎤

⎦. (65)

Here, d denotes the distance of the vehicle from the preceding
vehicle, v is its speed—both computed from lidar measurements
and transmitted over the bus—a is the acceleration, u is the
control input, while τ = 0.8 represents maneuver time constant
of the preceding vehicle [40]. We focus on the cases when the
attacker compromises all car sensors, making the system PA.
We set the maximal estimation error to be 0.5 m on position,
3.3 m/s on speed, and 0.3 m/s2 on acceleration, resulting in
‖Δemax‖2 = 3.351.

As in trajectory tracking, we assume ε = 0.1% and β =
0.35%. Since observability index ψ = 2 and the number of un-
stable eigenvalues of A is 2, then f = 2. For periodic policy
with L = 20, we obtain the maximal reachable estimation er-
rors in the presence of stealthy attacks, as presented in Fig. 7. In
addition, a visual representation of reachable regions with this
policy in comparison to a system without integrity enforcement
is shown in Fig. 8. These results illustrate that even with 10%
authenticated messages, the system ensures satisfiable control
performance under false-date injection attacks.
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Fig. 6. State estimation of the tracked vehicle trajectory—without integrity enforcements, a stealthy attacker can introduce a significant estimation
error in a short period of time. However, even with intermittent integrity enforcement, the attack effects are negligible. Duration of the simulation
is 200 s, and the attack starts at 100 s. (a) State estimates for the system under stealthy attack, without integrity enforcement policies. (b) State
estimates under stealthy attack with integrity enforcement policies. (c) Zoomed section of (b).

Fig. 7. Evolution of the maximal estimation error for dCACC. If we can
enforce integrity on two sensor values after every 20 unsecured sensor
values, the system remains under the specified safety threshold.

Fig. 8. Reachable state estimation errors in the presence of stealthy
attacks for dCACC in steps k = 11 and k = 22 with and without data in-
tegrity enforcement. Without integrity enforcement, the size of reachable
regions keeps increasing, while when integrity is being enforced with
policy L = 20 and f = 2, the estimation error evolves as in Fig. 7, and
the attacker is contained between red and blue ellipsoids.

VII. CONCLUSION

In this paper, we have focused on the problem of network-
based attacks on standard linear state estimators. We have con-
sidered systems with Kalman-filter-based estimators and a gen-
eral type of residual-based intrusion detectors, covering widely
used detectors such as χ2 detectors. For these systems, we have
studied effects of intermittent data integrity enforcements, such
as the use of MACs, on control performance in the presence of

attacks. We have shown that when integrity of sensor measure-
ments is enforced only intermittently, a stealthy attacker cannot
insert an unbounded state estimation error. In addition, we have
introduced a framework that facilitates both evaluation and de-
sign of these intermittent policies by providing analysis of the
reachable state estimation errors in the presence of stealthy at-
tacks. Although the framework has been developed for systems
that employ windowed and log-likelihood ratio detectors, the
presented techniques can be extended for detectors from the
general class described in Section II. Finally, on three automo-
tive case studies, we have highlighted how devastating stealthy
false-data injection attacks can be, and how with the use of in-
termittent integrity enforcement we can ensure desired control
performance with a significant reduction in the communication
and computation overhead.

The presented method to analyze the effects of intermittent
use of authentication can also provide the foundation for opti-
mal resource allocation in systems, where several control loops
share communication and computation resources. Although we
present some initial results in [32] for bandwidth allocation
over a shared network, a more systematic approach to optimal
resource allocation with strong quality-of-control guarantees in
the presence of attacks is an avenue for future work.

APPENDIX

PROOF OF LEMMA 3

Proof: From (10) and (11), the system Ξ can be described as

Δek = AΔek−1 − KΔzk . (66)

Thus, due to the stealthiness constraint (30), from the perspec-
tive of estimation error Δek , the system Ξ is effectively an
unstable system with bounded input Δzk . To show that when
the estimation error becomes unbounded, the unbounded parts
of the vector would belong to vector subspaces corresponding
to unstable modes of A we start by capturing Δek in a nonre-
cursive form as

Δek = −
k−1∑

i=0

AiKΔzk−i (67)
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since Δe0 = 0. Also, since eigenvectors and generalized eigen-
vectors v1 , . . . ,vn of A span Rn , we can decompose the esti-
mation error as

Δek =
n∑

i=1

αivi , αi ∈ R, i = 1, ..., n. (68)

Decomposing KΔzk−i with the same base vectors v1 , ...vn ∈
Rn , we obtain that

−KΔzk−i = φk−i,1v1 + · · · + φk−i,nvn , φk−i,j ∈ R
(69)

where for i = 0, . . . , k − 1 and j = 1, . . . , n, due to (30),
it holds that φk−i,j ∈ R are bounded—specifically, for V =
[v1 . . .vn ] ∈ Rn×n , we have

|φk−i,j | ≤ φmax,i = max
‖z‖2 =1

iTi V−1(Kz)

where V is invertible as v1 , . . . ,vn are linearly independent,
and ii ∈ Rn is the projection vector with 1 in the ith position,
and zero otherwise.

Thus, from (67)–(69), we have
n∑

i=1

αivi =
k−1∑

j=0

n∑

i=1

φk−j,iAj−1vi . (70)

We now consider two cases, although Case II is more general
(and captures Case I as well), its notation is quite cumbersome.

Case I: When A is diagonizable, Avi = λivi holds, and thus
n∑

i=1

αivi =
k−1∑

j=0

n∑

i=1

φk−j,iλ
j−1
i vi . (71)

Since vi are linearly independent, we obtain that

|αi | =

∣∣∣∣∣∣

k−1∑

j=0

φk−j,iλ
j−1

∣∣∣∣∣∣
≤ φmax,i

k−1∑

j=0

|λi |j−1 (72)

The right-hand side of (72) will converge when k → ∞ if and
only if |λi | < 1, which implies that αi can have arbitrarily large
values only if associated with an eigenvector corresponding to
an unstable eigenvalues, while αi associated with stable eigen-
values is bounded.

Case II: In general, A may not be diagonizable, and
we consider generalized eigenvectors. Specifically, we in-
dex (generalized) eigenvectors such that each eigenvector
vi with generalized eigenvectors, vi+1 , . . . ,vi+Li

forms
its generalized eigenvector chain of length Li—i.e., for
0 ≤ l ≤ Li , vi+ l represents the lth element of the chain. By
representing A = VJV−1 and Δek = V[α1 . . . αn ]T , where
V = [v1 . . . vn ] and J is Jordan form of A, we can exploit the
property of Jordan block matrices [41], to obtain the following:

Ajvi+Li
=

min(j,Li )∑

l=0

(
j

l

)
λ
j−l
i vi+Li−l .

This allows us to represent (70) as

n∑

i=1

αivi =
k−1∑

j=0

n∑

i=1

min(j,Li )∑

l=0

φk−j,i

(
j

l

)
λ
j−l
i vi+Li−l (73)

where Li depends on the particular i that is being summed
over. Let Lfol(i) denote the number of followers of vi inside

its eigenvector chain (e.g., if vi is an eigenvector Lfol(i) = Li).
Again, since vi are linearly independent, we obtain

|αi | = |
k−1∑

j=0

min(j,L fol( i ) )∑

l=0

φk−j,i+ l

(
j

l

)
λ
j−l
i | ≤

≤
k−1∑

j=0

min(j,L fol( i ) )∑

l=0

|φk−j,i+ l |
(
j

l

)
|λi |j−l

≤
k−1∑

j=0

min(j,L fol( i ) )∑

l=0

φmaxj
L fol( i ) |λi |j−l

≤
{
(Lfol(i) + 1)φmax

∑k−1
j=0 j

L fol( i ) |λi |j , |λi | ≥ 1

(Lfol(i) + 1)φmax
∑k−1

j=0 j
L fol( i ) |λi |j−L fol( i ) , |λi | < 1

(74)

where φmax = max{φmax,1 , . . . , φmax,n}. If we use the ratio test
for convergence of series [42] when |λi | < 1, we obtain

lim
j→∞

(j + 1)L fol( i ) |λi |j+1−L fol( i )

jL fol( i ) |λi |j−L fol( i )
=

= lim
j→∞

|λi |
(
j + 1
j

)L fol( i )

= |λi |.

Thus, since |λi | < 1 by assumption, the series converges, and
all αi that correspond to stable eigenvalues have to be bounded.
Similarly, the ratio test can be used to show that the series is
divergent when |λi | > 1. Divergence of series for |λi | = 1 can
be shown by substitution. Namely, from (74), when |λi | = 1, it
follows that

(Lfol(i) + 1)φmax

k−1∑

j=0

jL fol( i ) |λi |j = (Lfol(i) + 1)φmax

k−1∑

j=0

jL fol( i )

which, given that Lfol(i) ∈ N0 , implies that the series also
diverges for |λi | = 1 and, thus, concludes the proof. �
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