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Abstract

Network-based attacks on control systems may alter sensor data delivered to the controller, effectively causing degradation
in control performance. As a result, having access to accurate state estimates, even in the presence of attacks on sensor
measurements, is of critical importance. In this paper, we analyze performance of resilient state estimators (RSEs) when any
subset of sensors may be compromised by a stealthy attacker. Specifically, we consider systems with the well-known l0-based
RSE and two commonly used sound intrusion detectors (IDs). For linear time-invariant plants with bounded noise, we define
the notion of perfect attackability (PA) when attacks may result in unbounded estimation errors while remaining undetected
by the employed ID (i.e., stealthy). We derive necessary and sufficient PA conditions, showing that a system can be perfectly
attackable even if the plant is stable. While PA can be prevented with the use the standard cryptographic mechanisms (e.g.,
message authentication) that ensure data integrity under network-based attacks, their continuous use imposes significant
communication and computational overhead. Consequently, we also study the impact that even intermittent use of data
authentication has on RSE performance guarantees in the presence of stealthy attacks. We show that if messages from some
of the sensors are even intermittently authenticated, stealthy attacks could not result in unbounded state estimation errors.
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1 Introduction

The challenge of securing control systems has recently
attracted significant attention due to high profile at-
tacks, such as the attack on Ukrainian power grid [25]
and the StuxNet attack [8]. In such incidents, the at-
tacker can affect a physical plant by altering actuation
commands or sensory measurements, or affecting exe-
cution of the controller. One approach to address this
problem has been to exploit a dynamical model of the
plant for attack detection and attack-resilient control
(e.g., [12, 24, 19, 1, 18, 14, 15, 23, 6]).

For instance, consider the problem of attack-resilient
control when measurements from a subset of the plant
sensors may be compromised. One line of work employs
a widely used (non-resilient) Kalman filter, with a stan-
dard residual-based probabilistic detector (e.g., X 2 de-
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tector) triggering alarm in the presence of attack [24, 7,
3]. These Kalman filter-based controllers of linear time-
invariant (LTI) plants may be vulnerable to stealthy
(i.e., undetected) attacks resulting in unbounded state-
estimation errors; thus, such systems are referred to as
perfectly attackable (PA) [24, 7, 3]. Specifically, for LTI
systems with Gaussian noise and Kalman filter-based
controllers, the notion of perfect attackability (PA) 1 is
introduced in [24]. In particular, [24], and [3] for larger
classes of intrusion detectors (IDs), show that the sys-
tem is PA if and only if the plant is unstable and the set
of compromised sensors satisfies that no unstable eigen-
vector lie in the kernel of their observation matrix.

Resilient (i.e., secure) state estimation is another ap-
proach to achieve attack-resilient control; here, the ob-
jective is to estimate the system state when a subset of
the sensors is corrupted [1, 16]. This allows for the use
of standard feedback controllers to provide strong con-
trol guarantees in the presence of attacks. A common
approach is to use a batch-processing resilient state es-
timator (RSE) to estimate the system state and attack

1 For conciseness, we use PA for perfect attackability or per-
fectly attackable, when the meaning is clear from the context.
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vectors (e.g., [1, 15, 14, 18]). For LTI systems without
noise, the state and attack vectors can be obtained by
solving an l0, or under more restrictive condition l1, op-
timization problem [1]. These results are extended to
systems with bounded noise [14], showing that the worst
case state estimation error is a linear with the noise size;
thus, the attacker cannot exploit the noise to introduce
unbounded state-estimation errors, unless a sufficiently
large number of sensors is corrupted. SMT- and graph-
based estimators from [18] and [11] improve computa-
tional efficiency of the estimators. However, all these
methods employ a common restrictive assumption that
the maximal number of corrupted sensors is bounded; at
best, less than half of sensors can be compromised. More-
over, to the best of our knowledge, the impact of stealthy
attacks on the RSEs has not been considered, either in
the general case or under such restrictive assumptions.

However, the assumption that measurements from only
a subset of sensors are compromised cannot be justi-
fied in the common scenarios where the attacker has
access to the network used to transmit data from sen-
sors to the controller. Thus, it is important to analyze
impact of such Man-in-the-Middle attacks on perfor-
mance of the RSEs. A common defense against network-
based attacks is the use of cryptographic tools, such as
adding Message Authentication Codes (MACs) to mea-
surement messages to guarantee their integrity. Yet, con-
tinuous use of security primitives such as MACs, can
cause computation and communication overhead, which
limits its applicability in resource-constrained control
systems [9, 10]. To overcome this, intermittent data au-
thentication can be used for control systems [3]; specif-
ically, LTI systems with Gaussian noise and a Kalman
filter-based controller, cannot be PA if message authen-
tication is at least intermittently employed. On the other
hand, no such guarantees have been shown in systems
with bounded-size noise and RSE-based controllers.

Consequently, in this work, we focus on performance
of LTI systems with bounded-size noise, employing an
RSE-based controller, under stealthy attacks on an arbi-
trary number of sensors. Specifically, we consider a sys-
tem with an l0-based RSE, due to the strongest resiliency
guarantees, and one of two previously reported intru-
sion detectors (IDs) for systems with set-based noise.
Due to the batch-processing nature of RSEs, we intro-
duce two notions of PA for such systems – at a single
time point and over time, where a stealthy attacker may
introduce arbitrarily large estimation errors. Then, we
provide necessary and sufficient conditions for both no-
tions of PA. We show that unlike PA in the Kalman filter-
based estimators, a system may be PA over time even
if the physical plant is not unstable. Furthermore, we
show that even intermittent data authentication guar-
antee can help against such perfect attacks for some
types of IDs. Unlike [3], we show that using authentica-
tion only once in every bounded time interval ensures
bounded estimation errors under any stealthy attack.

Fig. 1. Control architecture under network-based attacks.

This paper is organized as follows. Section 2 formalizes
the problem including the system and attack models. In
Section 3, we define the concept of perfectly attackable
systems and find the necessary and sufficient conditions
for PA. In Section 4, we study effects of intermittent mes-
sage authentication on performance guarantees under
attack. Finally, our results are illustrated in case studies
in Section 5, before concluding remarks in Section 6.

Notation. B and R denote the set of Boolean and real
numbers, respectively, and I(.) is the indicator function.
For a matrixA,N (A) denotes its null space,AT its trans-
pose, A† its Moore-Penrose pseudoinverse, and ||A|| the
l2 norm of the matrix. For a vector x ∈ Rn, we denote by
||x||p the p-norm of x; when p is not specified, the 2-norm
is implied. In addition, we use xi to denote the ith ele-
ment of x, while supp(x) denotes the indices of nonzero
elements of x – i.e., supp(x) = {i | i ∈ {1, ..., n}, xi 6= 0}.

Projection vector ei is the unit vector where a 1 in its
ith position is the only nonzero element of the vector.
For set S, |S| denotes the cardinality of the set and S{
its complement. PKx is the projection from the set S
to set K (K ⊆ S) by keeping only elements of x with

indices fromK; formally,PK = [ ej1 |...|ej|K| ]
T

, whereK =
{sj1 , ..., sj|K|} ⊆ S and j1 < j2 < ... < j|K|. If e.g.,

S = {1, 2, 3, 4} and K = {2, 4}, then PKx = [ x2 x4 ]
T

.

2 Problem Description

We start by introducing the system (Fig. 1) and attack
model, before formalizing the considered problem.

2.1 System and Attack Model

We now describe each system component from Fig. 1.

Plant Model. We assume that the plant is an observ-
able linear time-invariant (LTI) dynamical system that
can be modeled in the standard state-space form as

x(t+ 1) = Ax(t) +Bu(t) + vP (t),

y(t) = Cx(t) + vM (t).
(1)

Here, x ∈ Rn, u ∈ Rm, y ∈ Rp denote the state, input
and output vectors, respectively. The plant output vec-
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tor captures measurements from the set of plant sensors
S = {s1, s2, ..., sp}. 2 In addition, vP ∈ Rn and vM ∈ Rp

are bounded process and measurement noise vectors –
i.e., there exist δvP , δvM ∈ R such that for all t ≥ 0,

‖vP (t)‖2 ≤ δvP , ‖vM (t)‖2 ≤ δvM . (2)

Note that we make no assumptions about the distribu-
tions of the sensor and measurement noise models.

Attack Model. We assume that the attacker was able
to compromise information flow from a subset of sensors
K ⊆ S; 3 however, we make no assumption about the
set K (e.g., its size or elements). Hence, the sensor mea-
surements delivered to the controller can be modeled as

yc(t) = y(t) + a(t). (3)

Here, a(t) ∈ Rp denotes the sparse attack signal injected
by the attacker at time t via the compromised informa-
tion flows (i.e., sensors) from K; hence, K = supp(a(t)).

We use a commonly adopted threat model (e.g., [3]) where:

(i) the attacker has the full knowledge of the system,
its dynamics and design (e.g., controller and ID),
as well as the employed security mechanisms – e.g.,
the times when authentication is used,

(ii) the attacker has the required computation power
to calculate suitable attack signals to inject via the
set K, while planning ahead as needed,

(iii) the attacker’s goal is to design attack signal a(t)
such that it always remain stealthy (i.e., undetected
by the ID), while maximizing control degradation.

The notions of stealthiness and control performance
degradation depend on the controller, and thus will be
formally defined after the controller design is introduced.

Controller Design. The controller employs an RSE
whose output is used for standard feedback control, and
an ID (Fig. 1). To simplify our notation while describing
the RSE, the model (1) can be considered in the form

x(t+ 1) = Ax(t),

y(t) = yc(t) = Cx(t) + w(t) + a(t);
(4)

specifically, we can ignore the contribution of u(t) as it
is a known signal (no attacks on actuator are considered
in this work) and thus has no effect on resilient state
estimation. As shown in [13, 14], the bounds on the size
of measurement noise w in (4) can be related to the

2 To simplify our notation, unless otherwise stated, we will
use i instead of si to denote the i-th sensor.
3 To simplify our presentation, we refer to these sensors as
compromised since the effects of network-based attack are
mathematically equivalent to compromising the sensors [22].

bounds on the size of process and measurement noise
vectors vP and vM ; i.e., there exists δw > 0 such that

||w(t)|| ≤ δw, for all t ≥ 0. (5)

Resilient State Estimator. The goal of an RSE is to
reconstruct the system state x(t) from N sensor mea-
surements {y(t), ..., y(t+N − 1)}. We assume that N =
n; however, the results can be extended to the case
N < n, or N > n. To formally capture RSE require-
ments, we rewrite the system model from (4) as

y(t) = Ox(t) + a(t) + w(t), (6)

where O = [OT
1 | ... | OT

p ]T . For each sensor i and a
subset of sensorsK, we define the matrices Oi and OK as

OK =
[
(PKC)T (PKCA)T . . . (PKCAN−1)T

]T
, (7)

with Oi = O{si}. Also, each of the block vectors a, y,

w ∈ RpN , satisfies a(t) = [aT
1 (t) | ... | aT

p (t)]T , y(t) =

[yT
1 (t) | ... | yT

p (t)]T and w(t) = [wT
1 (t) | ... | wT

p (t)]T .
Now, for each sensor i ∈ S, it holds that

yi(t) = Oix(t) + ai(t) + wi(t) (8)

with ai(t) = [ai(t) | ai(t + 1) |...| ai(t + N − 1)]T ∈
RN denoting the values injected via ith sensor at time
steps t, ..., t + N − 1, with ai(t) = 0 if i /∈ K. Finally,
yi(t) = [yi(t) | yi(t + 1) |...| yi(t + N − 1)]T ∈ RN and
wi(t) = [wi(t) | wi(t+ 1) |...| wi(t+N − 1)]T ∈ RN are
the values of sensor i measurements and its noise.

In general, the RSE functionality can be captured as [1]

E : RNp 7→ Rn ×RNp s.t. E(y(t)) =
(
x̂(t), â(t)

)
. (9)

Here, x̂(t) and â(t) are the state and attack vectors es-
timated from the delivered sensor measurements. The
estimation error of an RSE is defined as

∆x(t) = x̂(t)− x(t). (10)

A conventional RSE is the l0-based decoder [14], or its
equivalent forms (e.g., [1, 18]), defined as optimization

min
x̂(t),â(t)

∑p

i=1
I
(
‖âi(t)‖ > 0

)
s. t. y(t) = Ox̂(t) + ŵ(t) + â(t)

ŵ(t) ∈ Ω.

(11)

Here, Ω denotes the feasible set of noise vectors, deter-
mined by the noise bounds from (5). The vectors ŵ(t)
and â(t) are estimated at time t independently from the
estimated vectors at time step t − 1. Hence, we denote
ŵ(t) = [ŵT

1 (t) | ... | ŵT
p (t)]T , â(t) = [âT

1 (t) | ... | âT
p (t)]T ,

with ŵi(t) = [ŵ
(t)
i (t)|...|ŵ(t)

i (t + N − 1)]T and âi(t) =
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[â
(t)
i (t)|...|â(t)

i (t+N − 1)]T , in which â
(t)
i (k) and ŵ

(t)
i (k)

are the estimated noise and attack vectors at time k, as
computed at time t, for k = t, ..., t+N − 1.

When not more than s sensors are compromised in a 2s-
sparse observable system [17], the estimation error of the
RSE (11) is bounded [14]; 2s-sparse observable depends
on the properties of the observability matrix of (A,C).

Intrusion Detector. We consider two ID used to detect
the presence of any system anomaly (including attacks):

(1) IDI: We capture the IDI functionality in the general
form as mapping DI : RNp 7→ B defined as

DI(â(t)) = I(‖â(t)‖ > 0); (12)

i.e., if the estimated attack vector is non-zero, IDI

raises alarm. Note that our goal is not to identify
the exact set of attacked sensors, which would result
in a nonzero threshold in (12), as shown in [14].

(2) IDII: We define the IDII as DII : RNp+2n 7→ B with

DII(â(t), x̂(t), x̂(t− 1)) =

I
(
‖â(t)‖ > 0

)
∨ I
(
||x̂(t)−Ax̂(t− 1)|| > d

)
;

(13)

here, ∨ is Boolean OR and d is defined by Prop. 1.

We use DI(â) and DII(â, x̂) instead of DI(â(t)) and
DII(â(t), x̂(t), x̂(t−1)), respectively. We also denote the
system (4) with IDi (i ∈ { I, II}) as Σi(A,C, δw,K). Yet,
if results hold for both IDs, we remove the subscript i.

Proposition 1 For the system without attack, it holds
that ||x̂(t)−Ax̂(t−1)|| ≤ d = 2

√
Nδw||O†||2(1+ ||A||2).

PROOF. Constraints in (11) at time t and t−1 imply

Ox(t) + w(t) =Ox̂(t) + ŵ(t)

Ox(t− 1) + w(t− 1) =Ox̂(t− 1) + ŵ(t− 1)
(14)

For ∆w(t) = w(t)− ŵ(t), since (A,C) is observable,

x̂(t) =x(t)−O†∆w(t)

x̂(t− 1) =x(t− 1)−O†∆w(t− 1).
(15)

Hence, from (4), ||x̂(t)−Ax̂(t−1)|| = ||AO†∆w(t−1)−
O†∆w(t)|| ≤ ||O†||2||∆w(t)|| + ||A||2||O†||2||∆w(t −
1)||. On the other hand, ||∆w(t)||2 ≤ 2

√
Nδw, which

also holds for ∆w(t− 1), and thus concludes the proof.

2.2 Problem Formulation

In this work, we focus on the following two problems.

Problem 1 : Under which conditions, a stealthy attacker
could introduce arbitrarily large estimation errors (10)?

From (12), (13), the stealthiness conditions for IDI, IDII

are
DI(â) = 0, DII(â, x̂) = 0. (16)

Note that if an attack is stealthy from IDII it cannot
be detected by IDI either. Due to the batch-processing
nature of the RSE and bounded-size noise, the approach
and conditions from [24, 7] cannot be used. Hence, we
introduce PA for LTI systems with bounded-size noise.

Problem 2 : As we show in next section, for a large class
of systems ΣI(A,C, δw,K), an unbounded state estima-
tion error can be inserted by compromising a subset
of sensors. Although the use of IDII (i.e., for systems
ΣII(A,C, δw,K)) restricts these conditions, unstable
plants are vulnerable to perfect attacks (i.e., stealthy
attacks that cause unbounded estimation errors). On
the other hand, the use of security mechanisms, such
as message authentication, could ensure integrity of the
received sensor measurements. Thus, a stealthy attack
vector has to satisfy ai(t) = 0 when the measurement
of sensor si is authenticated at time t, and a(t) = 0 if
integrity of all sensors is enforced at time t. Since au-
thentication comes with additional computational and
communication cost, we study the effects of intermittent
data authentication on attack impact. Our goal is to find
conditions that the authentication policy (i.e., times
when authentication is used) should satisfy so that the
systems ΣI(A,C, δw,K), ΣII(A,C, δw,K) are not PA.

3 PA of LTI Systems with Bounded-Noise

The notion of PA is introduced in [24, 7] for systems
with a statistical (χ2) ID and a Kalman-filter imple-
menting continuous (i.e., streamed) processing of sensor
measurements. On the other hand, most existing RSEs
for systems with bounded noise (e.g., [14, 18, 21, 20]) are
based on batch-processing of sensor data – i.e., process-
ing a window of sensor measurements at each time step
(mostly even without taking previous computations into
account). Thus, the notion of PA needs to differentiate
between PA at a single time point vs. PA over a time in-
terval. In this section, we first define these two notions of
PA for systems with one of the two IDs, before providing
the necessary and sufficient conditions individually.

Definition 1 System ΣI(A,C, δw,K) is perfectly attack-
able at a single time step if for any M > 0, there exists a
stealthy sequence of attack signals a(t) over N time steps
(i.e., satisfying (16)), for which the RSE estimation er-
ror satisfies ||∆x(t)|| > M . Such attack vector a(t) is
called a perfect attack for the system ΣI(A,C, δw,K).

Definition 1 does not require that the attack is stealthy
before or remains stealthy at time steps after t. Such no-
tion of PA for the system ΣII(A,C, δw,K) is not relevant
because the IDII, from (13), validates that the estimated
states in every two consecutive steps do not violate plant
dynamics. Thus, we characterize a more realistic require-
ments for stealthy attacks – PA over a time-interval.
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Definition 2 System Σ(A,C, δw,K) is perfectly attack-
able over time if for all M > 0 there exists a sequence of
attack signals a(t),a(t+1), ... and a time point t′ ≥ t such
that for all k, where k ≥ t′, it holds that ||∆x(k)|| > M ,
and for all time steps, the estimated attack vectors â sat-
isfies the corresponding stealthiness requirements in (16).

To simplify our presentation, instead of formally stating
that the estimation error may be arbitrarily large, we
may say that the estimation error is unbounded.

Remark 1 If the system ΣII(A,C, δw,K) is perfectly at-
tackable over time, then the ΣI(A,C, δw,K) is also per-
fectly attackable over time because the stealthiness condi-
tion in (16) for IDII also includes the condition for IDI.

Note that PA over time is a stronger notion than PA at
a single time point because DI

(
â(t))

)
should be equal to

zero for all time steps. Therefore, the following holds.

Proposition 2 If the system ΣI(A,C, δw,K) is PA over
time, then it is also PA at a single time step.

3.1 PA of ΣI(A,C, δw,K) System

We now capture conditions for PA at a single time.

Theorem 1 System ΣI(A,C, δw,K) is PA at a single-
time step if and only if pair (A,PK{C) is not observable.

PROOF. (⇒) Let us assume that the pair (A,PK{C)
is observable, while the system ΣI(A,C, δw,K) is PA at a
single time step, which we denote as t. Then, there exists
a stealthy attack sequence a(t) for which the RSE esti-
mated attack vector â(t) = 0 and ‖∆x(t)‖ is unbounded.

Consider data from noncompromised sensors in K{; i.e.,

PK{y(t)
(i)
= OK{x(t)+PK{w(t)

(ii)
= OK{ x̂(t)+PK{ŵ(t),

where (i) holds from (6) as the sensors are non-
compromised, whereas (ii) holds from (11) since the
attack is stealthy (i.e., â(t) = 0). Hence, it fol-
lows that OK{∆x(t) = PK{∆w(t), where ∆w(t) =
w(t) − ŵ(t). Since the matrix OK{ is full rank,

∆x(t) =
(
OK{

)†(PK{∆w(t)
)
, and thus

‖∆x(t)‖ ≤
∥∥∥(OK{

)†∥∥∥( ‖PK{∆w(t)‖
)
. (17)

The matrix
(
OK{

)†
has a bounded norm, w(t) and ŵ(t)

are also bounded. Thus, the right side of (17) is bounded,
meaning that ∆x(t) is bounded, which is a contradiction.

(⇐) Suppose that the pair (A,PK{C) is not observ-
able; thus, there exists a nonzero vector z such that
OK{z = 0. Let us assume that the system is in state x(t)

when attack a(t) =
[
(PKa(t))T (PK{a(t))T

]T
= Oz =[

(OKz)
T 0
]T

is applied. Then, from (6) we have that

y(t) = Ox(t)+w(t)+a(t) = Ox̂(t)+ŵ(t)+ â(t). (18)

Consider ŵ′(t) = ŵ(t), x̂′(t) = x̂(t) + z and â′(t) = 0.
Now, (x̂′(t), ŵ′(t), â′(t)) is a feasible point for the RSE
optimization problem from (11) that also minimizes the
objective to zero. Thus, the output of RSE (x̂(t), â(t))
also has to have the same value for the objective function
– i.e., â = 0, and the attack will not be detected.

Since (A,C) is observable, from (18) and (10), we have
∆x(t) = O†∆w(t) + O†a(t) = O†∆w(t) + z. As ∆w(t)
is bounded, and z is any nonzero vector in the null-space
of OK{ , it can be chosen with an arbitrarily large norm.
Thus, ΣI(A,C, δw,K) is PA at a single time step.

As the plant (A,C) is observable, the next result follows.

Corollary 1 System ΣI(A,C, δw,S) (i.e., all sensors
compromised) is perfectly attackable at a single time step.

Corollary 2 If the attack to the system ΣI(A,C, δw,K)
has the form a(t) = Oz(t), for some z ∈ Rn, then â(t) =
0 and the RSE error satisfies ∆x(t) = O†∆w(t) + z.

Remark 2 Although in this paper we consider l0-based
estimators, it is straightforward to show that the results of
Theorem 1 are valid for any batch processing estimators
like l1-based estimator or estimators from [18, 17].

Example 1 To illustrate PA at time point, consider sys-
tem ΣI(A,C, δw,K) with δw = 0, K = S = {s1}, N = 2,

A = [ .3 1
0 .5 ] , C =

[
1 0
]
. The attack vector a(t) =[

aT (t) aT (t+ 1)
]T

= Oz results in estimation error

∆x(t) = z and â(t) = 0, for z being any arbitrary nonzero
vector; thus, can generate a perfect attack vector at time t.

We now provide a necessary and sufficient condition that
the system ΣI(A,C, δw,K) is PA over time.

Theorem 2 Consider the system ΣI(A,C, δw,K) and
let us define the matrix F (K, N) as

F (K, N) =
[
OT
K{ (PKC)T ... (PKCAN−2)T

]T
. (19)

a) Suppose F (K, N) is not full rank. Then, the system
ΣI(A,C, δw,K) is perfectly attackable over time if and
only if it is perfectly attackable at a single time step.

b) Suppose F (K, N) is full rank. Then ΣI(A,C, δw,K) is
PA over time if and only if it is PA at a single time step,A
is unstable and at least one eigenvector vi corresponding
to an unstable eigenvalue satisfies vi ∈ N (OK{).
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From Theorem 2 it holds that, unlike the notion of PA in
systems with probabilistic noise and statistical IDs [24,
7, 3], for systems with bounded noise and l0-based RSEs,
a system can be perfectly attackable over time even if the
plant is not unstable. Before proving Theorem 2, first we
introduce the following lemmas used in the proof.

Lemma 1 Consider attack on the system ΣI(A,C, δw,K)
in the form a(t) = Oz(t), where it also holds that if
N (F (K, N)) = 0 then z(t) 6∈ N (A). If z(t + 1) =
Az(t) +α(t), where α(t) ∈ N (F (K, N)), then a(t+ 1) =
Oz(t+ 1) is also a stealthy attack vector for the system.

PROOF. For a(t+1) to be a feasible attack vector, we
need to show thatPK{a(t+1) = 0, which is equivalent to

OK{z(t+ 1) = OK{(Az(t) + α(t)) = 0. (20)

As α(t) ∈ N (F (K, N)), we have OK{α(t) = 0. From
Cayley-Hamilton theorem and assumption that OK{z(t) =

0 (since PK{a(t) = 0 as sensors from K{ are not com-
promised), we have OK{Az(t) = 0; thus, (20) also holds.

We now show time consistency for the attacks; i.e., that
the corresponding elements of PKa(t+1),...,PKa(t+N−
1) of vectors PKa(t) and PKa(t+ 1) are equal. We have

PKa(t+ 1) =
[
(PKC)T . . . (PKCAN−1)T

]T
(Az(t) + α(t))

=
[
(PKCA)T . . . (PKCAN )T

]T
z(t) + OKα(t)

PKa(t) =
[
(PKC)T . . . (PKCAN−1)T

]T
z(t).

By comparing the shared elements of vectors PKa(t) and
PKa(t+1) we have that they are equal, ending the proof.

Lemma 2 Let the system ΣI(A,C, δw,K), at two con-
secutive time steps t and t + 1 have estimation error
∆x(t) and ∆x(t+ 1), while D

(
â(t)

)
= D

(
â(t+ 1)

)
= 0.

Then ∆x(t + 1) = A∆x(t) + α(t) + p(t), where α(t) ∈
N (F (K, N)) and p(t) is a bounded vector.

PROOF. FromDI

(
â(t)

)
= DI

(
â(t+1)

)
= 0, as in (18)

a(t) = O∆x(t) + ∆w(t)

a(t+ 1) = O∆x(t+ 1) + ∆w(t+ 1).
(21)

Since the sensors from K{ are not compromised,
OK{∆x(t) = −PK{∆w(t) holds. Thus, we have that

OK{A∆x(t) =
[
(PK{CA)T . . . (PK{CAN )T

]
∆x(t) =[

−(PK{∆wt(t+ 1))T . . . −(PK{∆wt(t+N − 1))T βT (t)
]T

= h(t),

where β(t) = PK{CAN∆x(t) and ∆wt(k) = w(k) −
ŵt(k) for k = t, ..., t+N−1. Using Cayley-Hamilton the-
orem, it holds that AN = c0I+ ...+cN−1A

N−1, for some
c0, ..., cN−1 ∈ R. Thus, we get β(t) = PK{

(
c0∆wt(t) +

...+ cN−1∆wt(t+N − 1)
)
. On the other hand, we have

OK{∆x(t+ 1) = −PK{∆w(t+ 1). Hence, it follows that

OK{(∆x(t+ 1)−A∆x(t)) = −PK{∆w(t+ 1)− h(t)

=∆ r1(t) (22)

The attack vectors for compromised sensors are

PKa(t) =
[
(PKC)T (PKCA)T . . . (PKCAN−1)T

]T
∆x(t)

+ PK∆w(t)

PKa(t+ 1) =
[
(PKC)T (PKCA)T . . . (PKCAN−1)T

]T
×∆x(t+ 1) + PK∆w(t+ 1)

Let us define ON−2
K =

[
(PKC)T · · · (PKCAN−2)T

]T
.

Consistency in the overlapping terms of the vectors in
above equations, implies that

ON−2
K ∆x(t+ 1) +


PK∆wt+1(t+ 1)

...

PK∆wt+1(t+N − 1)

 =

ON−2
K A∆x(t) +


PK∆wt(t+ 1)

...

PK∆wt(t+N − 1)

 .
Now, we define

r2(t) =∆


PK∆wt(t+ 1)

...

PK∆wt(t+N − 1)

−

PK∆wt+1(t+ 1)

...

PK∆wt+1(t+N − 1)

 .
Combining the above equation with (22) results in

F (K, N)(∆x(t+ 1)−A∆x(t)) =

[
r1(t)

r2(t)

]
=∆ r(t), (23)

where r(t) is bounded since both r1(t) and r2(t) are
bounded. Thus, the solution of (23) can be captured as

∆x(t+ 1)−A∆x(t) = α(t) + p(t) (24)

where p(t) ∈ Rn is any bounded vector that satisfies
F (K, N)p(t) = r(t) and α(t) ∈ N (F (K, N)).

Lemma 3 Suppose that ΣI(A,C, δw,K) is PA at a single
time step and ∆x(t) is bounded while â(t) = 0. IfF (K, N)

6



is full rank, then there exists no attack vector a(t+1) such
that ∆x(t+1) becomes arbitrarily large while â(t+1) = 0.

PROOF. Assume that we can find attack a(t + 1)
such that ∆x(t + 1) becomes arbitrarily large while
â(t + 1) = 0. Since ∆x(t) is bounded and â(t) = 0, it
means that a(t) is also bounded. Also, PK{a(t+N) = 0.
Let us define the augmented vectors as aF (t + 1) =[
aT (t+ 1)|...|aT (t+N − 1)|PK{aT (t+N)

]T
; similarly

∆wF (t+ 1). Then, from the constraint of (11) we have
that ∆x(t+ 1) = F †(K, N)aF (t+ 1)−F †(K, N)wF (t+
1).The right side of the equation is bounded whereas the
left may be arbitrarily large, which is a contradiction.

Corollary 3 If F (K, N) for the system ΣI(A,C, δw,K)
is full rank, then a stealthy cannot induce an unbounded
estimation error in the initial step of the attack.

PROOF. Before starting attack at time t0, the estima-
tion error is bounded. Now, based on Lemma 3, if the
matrix F (K, N) is full rank, it will be impossible to have
unbounded estimation error ∆x(t0) while â(t0) = 0

Lemma 4 There exists a nonzero attack vector a(t)
(i.e., ε < ‖a(t)‖ with ε > 0) such that D(â(i), x̂(i)) = 0
for any t− (N − 1) ≤ i ≤ t+ (N − 1).

PROOF. The claim should be proven for both DI and
DII. As the proof for DII also covers the case for DI IDs,
due to space constraint, we will focus on DII.

Based on the stealthiness condition DII(â(i)) = 0 for
any t− (N − 1) ≤ i ≤ t+N − 1, it holds that

y(i) = Ox(i) + w(i) + a(i) = Ox̂(i) + ŵ(i). (25)

ŵ(i) = w(i) + a(i) and x̂(i) = x(i) are a feasible point
for constraint (25). In this case, ||x̂(i) − Ax̂(i − 1)|| =
||x(i)− Ax(i− 1)|| = 0 satisfies the second stealthiness
condition of IDII from (13), for any i. Thus, we need to

find a nonzero attack a(i) such that ||ŵ(i)|| ≤
√
Nδw

is satisfied. If for any t − (N − 1) ≤ i ≤ t + N − 1 it

holds that ||w(i)|| <
√
Nδw, then any nonzero attack

vector satisfying ||a(i)|| <
√
Nδw − ||w(i)|| is stealthy –

note that no other constraint beyond the norm-bound is
required. Similarly, if for some i′, ||w(i′)|| =

√
Nδw, then

a(i) = γw(i) + a′(i) with any a′(i) satisfying ||a′(i)|| ≤
(1−|γ+1|)

√
Nδw and −2 < γ < 0 is a stealthy nonzero

attack vector. (again, a′(i′) in only norm constrained).

Remark 3 In Definitions 1, 2, we only focus on whether
there exists such a sequence of nonzero stealthy attack
vectors that results in unbounded estimation errors, and
thus, making the system PA – i.e., we do not consider
how the attacker attempts to find it.

PROOF. [Proof of Theorem 2]
a) First, assume that the system ΣI(A,C, δw,K) is PA
over time. Based on Remark 1, it is also PA at a single
time step. Inversely, assume that ΣI(A,C, δw,K) is PA
at a single time step. Suppose that the attack starts at
time t0. Thus, DI(â(t)) = 0 for any t < t0 − (N − 1).
The augmented attack vector a(t0 − (N − 1)) will be

a(t0 − (N − 1)) =
[
0T (PKa(t0 − (N − 1)))T

]T
, (26)

where PKa(t0 − (N − 1)) =
[
0 . . . 0 (PKa(t0))T

]T
.

As F (K, N) is not full rank, there exists a nonzero vector
z(t0 − (N − 1)) where F (K, N)z(t0 − (N − 1)) = 0 and

a(t0 − (N − 1)) =
[
0 . . . 0 (PKa(t0))T

]T
=

[
OK{

OK

]
z(t0 − (N − 1)) = Oz(t0 − (N − 1)).

(27)

Here, z(t0 − (N − 1)) can be chosen arbitrarily large
– i.e., a(t0 − (N − 1)) is a perfect attack vector. Now,
from Lemma 1, the consecutive perfect attack vectors
can also be constructed using a(t) = Oz(t) with z(t) =

At−t0+(N−1)z(t0− (N − 1)) +
∑t−1

i=t0
At−i−1α(i) for any

t > t0− (N −1), where α(i) ∈ N (F (K, N)). Since α can
be arbitrarily large, the system will have arbitrarily large
estimation error for t ≥ t0 − (N − 1) while remaining
stealthy from IDI – i.e., ΣI(A,C, δw,K) is PA over time.

b) (⇐) Suppose that A is unstable and the system is PA
at a time step; thus, OK{ is not full rank. From Lemma 4
(and its proof), there exists a nonzero attack vector a(t0)
such that for any t0 − (N − 1) ≤ i ≤ t0, DI(â(i)) = 0,
as well as a(t0) = Oz(t0) and OK{z(t0) = 0 (this holds,
from the proof of the lemma which only constraints a(t0)
to have a certain norm bound).

Based on Lemma 1 if z(t0+1) = Az(t0)+N (F (K, N)), it
is possible to have a(t0 +1) = Oz(t0 +1) with DI(â(t0 +
1)) = 0. Since F (K, N) is full rank, N (F (K, N)) = 0.
By continuing inserting attack vector in the form of
a(t) = Oz(t) for a period of time [t0, t], we can get
z(t) = At−t0z(t0). Now, we consider two cases:

Case I – The unstable eigenvalues of the matrix A
are diagonizable. Let us denote by v1, ..., vq eigenvec-
tors that correspond to unstable eigenvalues of matrix
A, which we sometimes refer to as ‘unstable’ eigenvec-
tors. From the theorem assumption, one of these eigen-
vectors vi ∈ N (OK{), i ∈ {1, ..., q}. Now, if we consider
z(t0) = cvi 6= 0, we get OK{z(t0) = 0 where c is cho-
sen so that ‖Oz(t0)‖ = ε, for some ε > 0. Hence, we get
z(t) = At−t0z(t0) = cλt−t0i vi. Since |λi| > 1, ||z(t)|| will
be unbounded if t→∞. Therefore, based on the Corol-
lary 2 and Definition 2 the system is PA over time.
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Case II – Unstable eigenvalues of A are not diagoniz-
able and we consider generalized eigenvectors. For each
independent eigenvector vi associated with |λi| ≥ 1, we
index its generalized eigenvector chain with length of
qi as vi+1, ..., vi+qi , where vi ∈ N (OK{). Now, con-
sider z(t0) = cvi+qi . Similarly to the Case I, we get

z(t) = At−t0z(t0) =
qi∑
l=0

c
(
t−t0
l

)
λt−t0−li vi+qi−l [2]. Since

|λi| ≥ 1, z(t) is unbounded when t → ∞. Hence, the
system will be PA over time.

(⇒ ) Let us assume that the system is PA over time and
A is stable. From Definition 2, for all M > 0 there exists
a time step t′ such that for any t ≥ t′, ||∆x(t)|| > M .

Since F (K, N) is full rank, from Corollary 3, the estima-
tion error is bounded when attack starts at t0 +N − 1,
i.e., ||∆x(t0)|| ≤ δ for some δ > 0. Now, for the inter-
val t0 < t < t′ from Lemma 2, ∆x(t) = At−t0∆x(t0) +∑t−1

i=t0
At−i−1p(i). Since the eigenvectors of A span Rn

(here we assume A is diagonizable, yet, the results can
be easily extended to the undiagonizable case), we have

‖∆x(t′)‖ =

∥∥∥∥∥∥At′−t0∆x(t0) +

t′−1∑
i=t0

At′−i−1p(i)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=1

djλ
t′−t0
j vj +

t′−1∑
i=t0

n∑
j=1

d′i,jλ
t′−i−1
j vj

∥∥∥∥∥∥
≤|λmax|t

′−t0 ‖∆x(t0)‖+

∥∥∥∥∥∥
t′−1∑
i=t0

|λmax|t
′−i−1p(i)

∥∥∥∥∥∥
≤δ +

1

1− |λmax|
pmax,

where λmax is the largest-norm eigenvalue and pmax =
maxt0≤i≤t′−1 ||p(i)||. As |λmax| < 1 (A is stable), for all

t′ > t0, we have |λmax|t
′−t0 < 1. Thus, ‖∆x(t′)‖ is bounded

for any t′ > t0, contradicting that the system is PA.

Now, assume that none of the unstable eigenvectors of
A belong toN (OK{). Again, we have that ∆x(t′) can be
written as ∆x(t′) = c1(t′)v1 + ...+cq(t′)vq +σ(t′), where

cj(t
′) = (djλ

t′−t0
j +

∑t′−1
i=t0

d′i,jλ
t′−i−1
j )vj for j = 1, ..., q

and σ(t′) is the expansion of ∆x(t′) over stable eigen-
values (satisfying σ(t′) → 0 as t′ → ∞). As the system
is PA over time, at least one of the coefficients cj(t

′)
should be arbitrarily large as t′ increases. Now, since
â(t) = 0, it follows that OK{∆x(t′) = PK{∆w(t′), mak-
ing OK{∆x(t′) bounded. Thus, OK{cj(t

′)vj is bounded
because v1, ..., vn span Rn (the results can be easily ex-
tended to the case where A is not-diagonizable) and the
other unstable eigenvectors cannot be used to compen-
sate for cj(t

′)vj . From OK{cj(t
′)vj being bounded while

cj(t
′) is arbitrarily large, it holds that vj ∈ N (OK{),

which is a contradiction – i.e., there exists an unstable
eigenvector that lies in N (OK{).

Example 2 Consider the system ΣI(A,C, δw,K) from
Example 1; it holds that F (K, N) = C for N = 2. If we
assume that attack starts at time zero, then it suffices to

have a(−1) =
[
a(−1) a(0)

]T
= Oz(−1) with a(−1) =

0. By solving this equation, we get z(−1) =
[
0 η
]T

where

η can be chosen arbitrarily large to impose unbounded
estimation error at time −1 (consider that although the
attack starts at time 0, delay of the RSE causes unbounded
error even at time -1). By choosing z(t) = Az(t − 1)

for t ≥ 0, and using a(t) =
[
a(t− 1) a(t)

]T
= Oz(t),

the attack vector can be constructed over time. However,
if we choose N = 3, it is impossible to find the attack

vector a(−2) =
[
a(−2) a(−1) a(0)

]T
= Oz(−2) with

a(−2) = a(−1) = 0, and since matrix A is stable, it is
impossible to perfectly attack the system over time.

3.2 Perfect Attackabilty for ΣII(A,C, δw,K)

As previously described, for the system ΣII(A,C, δw,K)
only PA over time should be considered; we now capture
necessary and sufficient conditions.

Theorem 3 System ΣII(A,C, δw,K) is PA over time if
and only if ΣI(A,C, δw,K) is PA at a single time step, A
is unstable and least one eigenvector vi corresponding to
an unstable eigenvalue satisfies vi ∈ N (OK{).

PROOF. (⇒) Assume that ΣII(A,C, δw,K) is PA over
time. Then from Remark 1, ΣI(A,C, δw,K) is PA at sin-
gle time step. Hence, we need to show that A is unstable.
So, let us assume that A is stable while ΣII(A,C, δw,K)
is PA over time. From Definition 2, ∀M > 0 there exists
a time point t′ such that for all k ≥ t′, ||∆x(k)|| > M .
Now, let us assume that the attack starts at t0 +N − 1.
Since ∆x(t0 − 1) is bounded, from DII

(
â(t0), x̂(t0)

)
= 0

there exists δ > 0 such that ||∆x(t0)|| ≤ δ. Now, for the
interval t0 < t ≤ t′ we have ∆x(t) = At−t0∆x(t0) +∑t−1

i=t0
At−i−1(p(i) + α(i)) with ||∆x(t0)|| ≤ δ. On the

other hand, by combining the condition DII

(
â, x̂
)

= 0
for all time steps t ≥ t0 with (4) (x(t) = Ax(t−1)) we get

||x̂(t)−Ax̂(t− 1)||
= ||x̂(t)−Ax̂(t− 1)− x(t) +Ax(t− 1)||
= ||∆x(t)−A∆x(t− 1)|| = ||p(t) + α(t)|| ≤ d

(28)

Since the eigenvectors of A span the space Rn (here we
assume the matrixA is diagonizable, however, the results
can be easily extended to the undiagonizable case), it
holds that ∆x(t0) = α1v1 + ... + αnvn, p(i) = βi,1v1 +
...+βi,nvn and α(i) = γi,1v1 + ...+γi,nvn. Now, we have
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||∆x(t′)|| =

∥∥∥∥∥∥At′−t0∆x(t0) +

t′−1∑
i=t0

At′−i−1(p(i) + α(i))

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=1

αjλ
t′−t0
j vj +

t′−1∑
i=t0

n∑
j=1

(βi,j + γi,j)λ
t′−i−1
j vj

∥∥∥∥∥∥
≤ |λmax|t

′−t0 ‖∆x(t0)‖+

∥∥∥∥∥
t−1∑
i=t0

|λmax|t
′−i−1(p(i) + α(i))

∥∥∥∥∥
≤ δ +

d

1− |λmax|
,

where λmax is the eigenvalue with the largest absolute
value. Based on our assumption, |λmax| < 1 and for
t > t0 we have also |λmax|t−t0 < 1. Hence, ‖∆x(t′)‖
will be bounded for any t′ > t0, contradicting our as-
sumption that the system ΣII(A,C, δw,K) is PA. Finally,
proof that at least one unstable eigenvector belongs to
N (OK{)) directly follows the approach for Theorem 2.

(⇐) Suppose that matrix A has at least one eigenvalue
outside the unit circle. From Lemma 4, there exists a
nonzero attack vector a(t0) such that for any t0 − (N −
1) ≤ i ≤ t0, DII(â(i)) = 0. Thus, there exists ε > 0
such that ‖a(t0)‖ = ε, and similarly to the proof of
Theorem 2, we can consider a(t0) = Oz(t0). Since O
is full rank and ΣI(A,C, δw,K) is PA at a single time
point, z(t0) can be any nonzero vector that satisfies
‖Oz(t0)‖ = ε with OK{z(t0) = 0; any such vector z(t0)
may be chosen arbitrarily by the attacker.

From Lemma 1 if z(t0 + 1) = Az(t0), then attack a(t0 +
1) = Oz(t0 + 1) results in DI(â(t0 + 1)) = 0. Now, we
need to show ||x̂(t0 +1)−Ax̂(t0)|| ≤ d. From Corollary 2

||x̂(t0 + 1)−Ax̂(t0)|| = ||∆x(t0 + 1)−A∆x(t0)||
= ||O†∆w(t0 + 1) + z(t0 + 1)−AO†∆w(t0)−Az(t0)||
= ||O†∆w(t0 + 1)−AO†∆w(t0)|| ≤ d

By continuing with attacks in the form of a(t) = Oz(t)
for a period of time [t0, t], we get z(t) = At−t0z(t0) while
remaining stealthy from IDII. Now, consider two cases:

Case I – The unstable eigenvalues of A are diagoniz-
able. Let us denote by v1, ..., vq eigenvectors that corre-
spond to unstable eigenvalues of matrix A. From our as-
sumption, there exists vi ∈ N (OK{), i ∈ {1, ..., q}. Now,
if we consider z(t0) = cvi 6= 0, we get OK{z(t0) = 0,
where c is chosen such that ‖Oz(t0)‖ ≤ ε. Thus,
z(t) = At−t0z(t0) = cλt−t01 vi. Since |λi| > 1, ||z(t)|| will
be unbounded if t → ∞. Hence, from Corollary 2 and
Definition 2, the system will be PA over time.
Case II – The unstable eigenvalues of A are not
diagonizable and we consider generalized eigenvec-
tors. For each independent eigenvector vi associated
with |λi| ≥ 1, we index its generalized eigenvec-
tor chain with length qi as vi+1, ..., vi+qi . Consider

z(t0) = cvi+qi , where vi ∈ N (OK{). Similarly to Case I,

z(t) = At−t0z(t0) =
qi∑
l=0

c
(
t−t0
l

)
λt−t0−li vi+qi−1 [2]. Since

|λi| ≥ 1, z(t) is unbounded as t → ∞, and from Corol-
lary 2 the system is PA over time.

The condition of PA over time for ΣII(A,C, δw,K) is the
same as for ΣI(A,C, δw,K) when F (K, N) is full rank.
When F (K, N) is rank deficient, we can useN = n+1 to
make the matrix full rank and get the same PA condition
as for ΣII(A,C, δw,K). Yet, increasing N would increase
computational overhead at each time step, which may be
a problem in resource-constrained systems. Instead, one
can use ΣII(A,C, δw,K) (i.e., IDII) that only requires
additional comparison, from (13), at each time step.

4 Estimation with Intermittent Authentication

We now study the effects of intermittent data authen-
tication (sometimes refered to as intermittent integrity
enforcement [3]) on estimation error of Σ(A,C, δw,K).

Definition 3 The intermittent data authentication pol-
icy for i-th sensor (si ∈ S), denoted by (µi, Li) where
µi = {tik}∞k=0 such that tik > tik−1 and Li = sup(tik −
tik−1), ensures that ai(t

i
k) = 0.

Intermittent data authentication for sensor i guarantees
that the attack injected through the i-th sensor is zero at
some specific points (tik), whereas the interval between
each of consecutive points is at most Li time steps. A
global intermittent authentication policy is defined if all
sensors use same (µi, Li). We now capture conditions
that ΣI(A,C, δw,K), satisfying Theorem 1, is not PA.

Theorem 4 If Ii ⊆ S, i ∈ {1, ..., N}, consider matrix

OI,K{ =
[
(PI1∪K{C)T ...(PIN∪K{CAN−1)T

]T
. (29)

If intermittent data authentication is used at time t+i for
each sensor set Ii, i ∈ {0, ..., N−1}, then ΣI(A,C, δw,K)
is not PA at time t if and only if OI,K{ is full rank.

PROOF. (⇐) Suppose ΣI(A,C, δw,K) is PA at time t.
Since for any i ∈ 1, ..., N intermittent data authentica-
tion is used, PIia(t+ i) = 0, and thus

OI,K{x(t)+


PI1∪K{w(t)

...

PIN∪K{w(t+N − 1)

 =

OI,K{ x̂(t) +


PI1∪K{ŵ(t)

...

PIN∪K{ŵ(t+N − 1)

⇒
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OI,K{∆x(t) =

=


PI1∪K{

(
w(t)− ŵ(t)

)
...

PIN∪K{

(
w(t+N − 1)− ŵ(t+N − 1)

)
 (30)

We denote the right side of (30) as f(t). Since OI,K{

is full rank, from (30) we have ∆x(t) = O†I,K{f(t); i.e.,

‖∆x(t)‖ =
∥∥∥O†I,K{f(t)

∥∥∥ ≤ ∥∥∥O†I,K{

∥∥∥ ‖f(t)‖ = c̄. As the

actual and estimated noise are bounded, ‖f(t)‖ and c̄
are also bounded, contradicting PA of the system.

(⇒) System ΣI(A,C, δw,K) is not PA at time t, and as-
sume that OI,K{ is not full rank. Then, exists a nonzero
vector z such that OI,K{z = 0; thus, OK{z = 0 and

the pair (PK{C,A) is not observable, From Theorem 1,
ΣI(A,C, δw,K) is PA at t, which is a contradiction.

Theorem 4 provides an intermittent data authentication
policy such that the system is not PA at a single time
step. To derive conditions of not being PA for all time
steps, the condition of Theorem 4 should be satisfied at
each time. Our goal is to derive conditions that a system
is not PA over time, and we start with the following.

Proposition 3 Assume F (S, N) is not full rank. Then
system ΣI(A,C, δw,K) is not PA over time for any com-
promised sensor set K, if the intermittent data authenti-
cation policy is used with Li = 1, ∀i ∈ F , where F is a
sensor subset such that the pair (A,PFC) is observable.

PROOF. As for any t > 0, authentication is used in
{t, ..., t+N − 1}, PFa(t) = PFa(t+ 1) = ... = PFa(t+
N − 1) = 0. The corresponding matrix for the authenti-

cation policy is OF =
[
PFCT PF (CA)T ... PF (CAN−1)T

]T
.

Since OF is full rank, from Theorem 4, system
Σ(A,C,K) is not PA at time t. As this holds for any
time t, from Definition 2 the system is not PA over time.

From Proposition 3 it follows that if matrix F (S, N) is
not full rank, then we can avoid PA over time by using
data authentication at each time step for some specific
subset of sensors. Although this may seem conservative,
but in the following example, we show that a perfect
attack can be achieved by only compromising suitable
sensors at a single time step.

Example 3 Consider again the model from Example 1,
and assume that the attack is only injected at time zero.
There are two vectors z(−1), z(0) ∈ R2 which can sat-

isfy a(−1) =

[
a(−1)

a(0)

]
= Oz(−1) =

[
1 0

.3 1

][
z1(−1)

z2(−1)

]
,

a(0) =

[
a(0)

a(1)

]
= Oz(0) =

[
1 0

.3 1

][
z1(0)

z2(0)

]
, with

a(−1) = a(1) = 0. Solving the above two equations

gives a(0) = z2(−1) = z1(0) = − z2(0)
.3 and z1(−1) = 0.

Using Corollary 2, we get ∆x(−1) =
[
0 a(0)

]T
and

∆x(0) =
[
a(0) −.3a(0)

]T
(which can be chosen arbi-

trarily large by controlling the scalar a(0)), whereas IDI

will not trigger alarm in these two time steps. Consider
that a(0) is not included in other time steps; thus, by
inserting attack vector only at time zero, the system
ΣI(A,C, 0, s1) can have unbounded estimation error
without triggering alarm.

The above example shows that for ΣI(A,C, δw,K) when
F (S, N) is not full rank, a stealthy attack can result
in arbitrarily large estimation error, even by injecting
false data only at one time step. Hence, it is essential
to use data authentication at all time steps – i.e., non-
intermittently. However, as shown below, when F (S, N)
is full rank, ΣI(A,C, δw,K) cannot be PA over time even
when only intermittent authentication is used; this holds
for ΣII(A,C, δw,K) independently of the F (S, N) rank.

Theorem 5 Consider two cases: a) ΣI(A,C, δw,K) with
full rank F (S, N); b) ΣII(A,C, δw,K). Both (a) and (b)
are not PA over time if the intermittent authentication
policy is used withLi = T , ∀i ∈ F for a bounded T , where
F is any sensor set such that (A,PFC) is observable.

PROOF. From Lemma 2 and (18), it follows that

∆x(t+ 1) =A∆x(t) + α(t) + p(t)

a(t) =O∆x(t) + ∆w(t)
(31)

for any t ≥ t0 if the attacker initiates the attack at time
t0 + N − 1. For system (a), α(t) = 0 and since p(t) is
bounded at all time steps t, thus p(t) +α(t) is bounded.
For system (b) the stealthiness condition ||∆x(t + 1)−
A∆x(t)|| < d causes ||p(t) + α(t)|| < d. Thus, for both
cases p(t) +α(t) is bounded. Assume tk0 is the first time
instant that authentication is used after t0. Then ∀i ∈ F
we have

ai(tk0
) = ai(tk0

+ T ) = ... = 0 (32)

Hence, PFa(tk0
) = PFa(tk0

+T ) = ... = 0. On the other
hand, from (31) we get PFa(t) = PFC∆x(t)+PF∆w(t)
for any t ≥ t0 +N − 1. Now, consider PFa(tk0

+ iT ) for
any i ≥ 0. Then, for j ∈ {1, ..., N − 1} we have

PFa(tk0
+ (i+ j)T ) = PFCAjT∆x(tk0

+ iT )

+

tk0
+(i+j)T −1∑
f=tk0

+iT

PFCAtk0
+(i+j)T −1−f (p(f) + α(f))

+ PF∆w(tk0 + (i+ j)T ) = 0;

10



for j = 0, PFa(tk0
+ (i+ j)T ) = PFCAjT∆x(tk0

+ iT ).
By augmenting PFa(tk0 + (i+ j)T ), ∀j ∈ {0, ..., N −1},

PFa(tk0 + iT )
...

PFa(tk0
+ (i+N − 1)T )

 = 0⇒

[
(PFC)T . . . (PFCA(N−1)T )T

]T
∆x(tk0 + iT ) =

∑tk0
+(i)T −1

f=tk0
+iT PFCAtk0

+(i)T −1−f (p(f) + α(f))

...∑tk0
+(i+N−1)T −1

f=tk0
+iT PFCAtk0

+(i+N−1)T −1−f (p(f) + α(f))



+


PF∆w(tk0

+ (i)T )
...

PF∆w(tk0 + (i+N − 1)T )


Now, since

[
(PFC)T (PFCAT )T . . . (PFCA(N−1)T )T

]T
is full rank and the right side of the above equation is
bounded, we have ∆x(tk0 +iT ) is bounded for any i ≥ 0.
On the other hand, from (31) and the fact that α(t) and
p(t) are bounded for t ≥ t0, we can conclude that ∆x(t)
is bounded for any iT ≤ t ≤ (i+ 1)T for any i ≥ 0.

5 Numerical Results

We illustrate our results on a realistic case study – Ve-
hicle Trajectory Following (VTF). Specifically, we show
how the attacker can perfectly attack the system when
the necessary conditions are satisfied and how intermit-
tent data authentication effectively prevents such at-
tacks. We consider the model from [4], discretized with
sampling time .01 s; i.e., A = [ 1 .01

0 1 ] , B = [ .0001
.01 ] , C =

[ 1 0 0
0 1 1 ]

T
. We assume that all sensors are compromised –

i.e., K = S = {s1, s2, s3} . Therefore, the system is PA
over time as A is also unstable. For simulation, we also
assume that each element of sensor and system noise
comes from uniform distribution vP , vM ∼ U(−.05, .05).
Moreover, N = 2 and the maximum possible estimation
error when the system is not under attack is obtained as
||∆x|| ≤ ||O†||||∆w|| = .0789 from (15).

Fig. 2 shows the evolution of the l2 norm of estimation
error in different scenarios. In Fig. 2a, ||∆x(t)|| is shown
when the system is not under attack, whereas in Fig 2b
the system is under a perfect attack. In Fig 2c, we consid-
ered two different data authentication policies µ10 and
µ100; meaning L = 10 and L = 100, respectively, while
the system is under by stealthy attack. As shown, when
data authentication is used, the system is not PA over
time and the estimation error remains bounded, and very
low for less than 10% of authenticated measurements; as

the period of authentication increases, a stealthy attack
can achieve higher maximum estimation error.

Finally, we considered resilient state estimation within
the VTF – trajectory tracking; Fig 3 shows 60 seconds
simulation. As shown, if a data authentication policy is
used with L = 10 (i.e., 10% of authenticated messages),
we obtain suitable control performance even under
stealthy attack. If authentication is not used, a stealthy
attack can force the system from the desired path.

6 Conclusion

In this work, we considered the problem of resilient state
estimation for LTI systems with bounded noise, when a
subset of sensors are under attack. We defined two no-
tions of perfect attackability (PA) – at a time point and
over time – where stealthy attacks can cause an arbitrar-
ily large estimation errors, and derived necessary and
sufficient conditions for PA. We showed that, unlike the
Kalman filter-based observers, batch processing-based
resilient state estimators (RSE), such as l0-based RSE,
may be perfectly attackable even if the plant is not unsta-
ble. Furthermore, we studied the effects of intermittent
data authentication on attack-induced estimation error.
We showed that it is sufficient to even intermittently use
data authentication, once every bounded time period, to
ensure that a system is not perfectly attackable.
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