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Abstract—We consider a wireless control architecture with
multiple control loops and a shared wireless medium. A scheduler
observes the random channel conditions that each control system
experiences over the shared medium and opportunistically selects
systems to transmit at a set of non-overlapping frequencies. The
transmit power of each system also adapts to channel conditions
and determines the probability of successfully transmitting and
closing the loop. We formulate the problem of designing optimal
channel-aware scheduling and power allocation mechanisms that
minimize the total power consumption while meeting control
performance requirements for all systems. In particular it is
required that for each control system a given Lyapunov function
decreases at a specified rate in expectation over the random
channel conditions. We develop an offline algorithm to find the
optimal communication design, as well as an online protocol
which selects scheduling and power variables based on a random
observed channel sequence and converges almost surely to the
optimal operating point. We illustrate in simulations the power
savings of our approach compared to other non-channel-aware
schemes.

I. INTRODUCTION

Modern wireless control environments in e.g., smart build-

ings or industrial applications, include numerous wireless

sensor and actuators communicating with controllers. The

need for efficiently sharing the available wireless medium

between these devices becomes apparent. Scheduling access

to the shared medium helps eliminate interferences between

transmissions, but the rate at which a control system accesses

the medium affects closed loop performance. This necessitates

the development of wireless communication and resource

management mechanisms that are control-aware. Moreover,

since wireless devices in such applications are often battery-

operated, these mechanisms are desired to be energy-efficient.

Scheduling in wired or wireless networked control systems

has received a lot of attention in the past. Scheduling mecha-

nisms usually examined are either static or dynamic. Typical

examples of the first type are periodically protocols where

the wireless devices transmit in a predefined repeating order,

e.g., round-robin. Stability conditions under such scheduling

protocols can be examined by converting the system in some

form of a switching system, usually including other network

phenomena such as delays, uncertain communication times,

or packet drops – see, e.g., [2]–[5]. The problem of designing

static schedules suitable for control applications has also been

addressed. Periodic sequences leading to stability [6], control-

lability and observability [7], or minimizing linear quadratic
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objectives [8] have been proposed. Deriving otherwise optimal

scheduling sequences is recognized as a hard combinatorial

problem [9], [10].

Dynamic schedulers on the other hand do not rely on a

predefined sequence but decide access to the communication

medium at each step, for example by dynamically assigning

priorities to the competing tasks. Priorities commonly depend

on the current plant/control system states, i.e., informally

speaking, the subsystem with the largest state discrepancy

is scheduled to communicate. Examples of such dynamic

schedulers can be found in [4], [11]–[13]. Recent efforts have

also focused on scheduling event-based controllers [14], [15].

Another approach, motivated by the problem of scheduling

control tasks sharing a computation (CPU) rather than a

communication resource, is to abstract control performance

requirements in the time/frequency domain. Knowing for

example how often a task needs access to the resource, to

communicate and close the loop in our case, static/offline and

dynamic/online schedules meeting the desired requirements

can be obtained using algorithms from real-time scheduling

theory [16], [17].

However, in the case of multiple control tasks sharing

a wireless communication medium the existing scheduling

mechanisms in the control literature do not explicitly model or

account for the wireless physical layer aspects of the problem.

In particular, time-varying channel conditions cause large

unpredictable variations in wireless channel transferences,

referred to as fading [18, Ch. 3,4]. The problem of designing

wireless communication networks to counteract such channel

variability and maximize the utility to the users has received

considerable attention [19]–[21]. The aim in these works is to

allocate the available communication resources, e.g., medium

access, power resources, channel capacity, by opportunistically

adapting to the randomly varying channel conditions.

In this paper we propose a channel-aware approach for

scheduling independent control tasks sharing a wireless com-

munication medium (Fig. 1). The channel conditions on the

medium not only change randomly over time, but also differ

among the control systems at a given time step. We consider

a scheduler that selects at most one control system to transmit

over each of a number of available frequencies at each time

step. Such a channel-aware mechanism can opportunistically

exploit channel information to, e.g., grant channel access to

control loops experiencing favorable channel conditions, or

equivalently avoid closing the loop under adverse conditions.

Similar to our previous work for single-loop systems in [22],

[23] we allow for the selection of transmit power when

a system is scheduled. Transmit power and channel fading

determine the probability of successful message delivery at

the receiver.

Our opportunistic scheduling and power policies are de-



signed to serve a set of predesigned control tasks over the

shared wireless medium. To enable a control-aware commu-

nication design, a suitable abstraction of the control sys-

tem dynamics and performance requirements is required. In

this paper each control system is abstracted by some given

Lyapunov function and control performance is specified as

a desired decrease rate for this Lyapunov function (Section

II). Since scheduling and power allocation in our design

depend on random wireless channel conditions our control

performance guarantees are expressed in a stochastic sense.

Our design is required to ensure that all Lyapunov functions

decrease at the specified rates at every time step in expectation

over the channel conditions. Note that, in contrast to this

stochastic requirement, at most one loop closes at any time

step deterministically. As a result we express control perfor-

mance requirements in a static single-time-step framework

unlike, e.g., timing/frequency abstractions [16] or periodic

sequences [7] which would be hard to analyze under random

wireless communication. We also point out that previous

works often construct Lyapunov functions to prove stability

under proposed schedulers [4], [6], [14], while in contrast

here we employ Lyapunov functions as a control performance

specification to enable design of our scheduler.

We formulate the problem of optimal channel-aware

scheduling and power allocation that minimize the expected

total power consumption subject to the expected Lyapunov

decrease rate constraints (Section II-A). In Section III we

develop an offline algorithm to solve the problem in the dual

domain and characterize the form of the optimal solution.

The optimal power allocation is decentralized among users

and frequencies, and the optimal scheduler opportunistically

assigns control systems to frequencies depending on channel

conditions. Moreover, in Section IV we develop an online

communication algorithm which, unlike the offline one, does

not require knowledge of the channel distribution but uti-

lizes only a channel sequence observed during execution.

The online algorithm bears an intuitive pricing interpretation

(Section IV-A), and we establish that if scheduling and power

allocation are selected this way, the desired Lyapunov per-

formance constraints are met in the limit in a strong sense

(almost surely). Finally, simulations in Section V illustrate the

opportunistic nature of our channel-aware approach as well as

the reduction in power consumption (at a magnitude of 80%
in examples) compared to non-channel-aware mechanisms. We

conclude with a discussion and future research directions in

Section VI.

Notation: We denote the real m-dimensional non-negative

orthant with R
m
+ , and the comparison with respect to the

orthant (i.e., element-wise) with ≥, i.e., x ≥ y if and only if

x−y ∈ R
m
+ . The cone of n×n real symmetric positive semi-

definite matrices is denoted by Sn
+, and the comparison with

respect to this cone with �. The set of n× n real symmetric

positive definite matrices is denoted by Sn
++.

II. PROBLEM DESCRIPTION

Consider the wireless control architecture of Fig. 1 consist-

ing of m independent networked control systems. Each control

Plant/ Control
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· · ·

Plant/ Control

System m

Access Point/

Channel-aware Scheduler

h1 hm
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Wireless
Medium

Fig. 1. Architecture for opportunistic scheduling of control tasks over
a shared wireless medium. Independent control systems close the loop by
transmitting over the shared wireless medium to a common receiver/access
point. For simplicity the case of a single transmission frequency is shown,
where each control system i experiences random channel conditions hi. A
centralized scheduler located at the access point observes all channel states
and opportunistically decides which system is scheduled to transmit and close
the loop.

loop i (i = 1, 2, ...,m) includes a wireless transmitter commu-

nicating to a common receiver/access point. For example this

can be a wireless sensor transmitting plant measurements to

a common access point responsible for computing the control

inputs to the systems. A centralized scheduler, implemented at

the access point, decides which control system is given access

to the shared wireless channel.

We denote the state of system i at each time k by xi,k ∈
R

ni . We assume that different descriptions for the evolution

of each system i from xi,k to xi,k+1 are given depending on

whether a transmission occurs at time k or not. Let us indicate

with γi,k ∈ {0, 1} the event that a successful transmission

occurs at time k for the subsystem i. Then we describe the

system evolution by a switched linear time invariant model,

xi,k+1 =

{

Ac,i xi,k + wi,k, if γi,k = 1
Ao,i xi,k + wi,k, if γi,k = 0

. (1)

At a successful transmission the system dynamics are de-

scribed by the matrix Ac,i ∈ R
ni×ni , where ’c’ stands for

closed-loop, and otherwise by Ao,i ∈ R
ni×ni , where ’o’

stands for open-loop. We assume that Ac,i is asymptotically

stable, implying that if system i were to transmit at each

slot its respective state evolution is stable. The open loop

matrix Ao,i may be unstable. The additive terms wi,k model an

independent identically distributed (i.i.d.) noise process with

mean zero and covariance Wi � 0. Note that the noise terms

are modeled as independent across time k for each plant i
and also independent across plants i. Furthermore, it is worth

noting that closed-loop dynamics for all of the m systems are

fixed, meaning that adequate controllers have been already

designed. In this paper we focus on designing the wireless

communication aspects of the control system. The above

networked control system description (1) can model various

control operations, as shown in the following examples.

Example 1. Suppose each closed loop i consists of a linear



plant of the form

xi,k+1 = Aixi,k +Biui,k + wi,k, (2)

and a wireless sensor transmitting the plant state measurement

xi,k to a controller/actuator which provides input ui,k. Let then

the controller apply a linear feedback ui,k = Kixi,k when

a measurement is received (γi,k = 1), otherwise apply for

simplicity ui,k = 0 when no measurement is received (γi,k =
0). The resulting closed loop system can be written as

xi,k+1 =

{

(Ai +BiKi)xi,k + wi,k, if γi,k = 1
Ai xi,k + wi,k, if γi,k = 0

. (3)

which is of the form (1) with Ac,i = Ai+BiKi and Ao,i = Ai.

Example 2. As a more general example consider again

the plants in (2) and wireless sensors, one for each plant,

measuring system outputs of the form

yi,k = Cixi,k + vi,k, (4)

where vi,k is some i.i.d. measurement noise with zero mean

and finite covariance. A dynamic control law based on this

plant output and adapted to the packet drops updates a local

controller state according to

zi,k+1 = Fi zi,k + γi,k (Fc,i zi,k +Gi yi,k), (5)

i.e., corrects appropriately the local state whenever a mea-

surement is received. For example zi,k may represent a local

estimate of the plant state [2]. The control input applied by

the controller can similarly be modeled as

ui,k = Ki zi,k + γi,k (Kc,i zi,k + Li yi,k), (6)

The overall closed loop system is obtained by joining plant

and controller states into
[

xi,k+1

zi,k+1

]

=

[

Ai BiKi

0 Fi

] [

xi,k

zi,k

]

+

[

I
0

]

wi,k+

γi,k

[

BiLiCi BiKc,i

GiCi Fc,i

] [

xi,k

zi,k

]

+ γi,k

[

BiLiCi

Gi

]

vi,k,

(7)

which is again of the form (1).

Let us now describe the wireless communication system

and model how it determines the packet transmission suc-

cesses, i.e., the indicators γi,k. Suppose there are f different

frequencies that each system may use to communicate to

the access point and let the wireless channel conditions for

a system i and frequency j at time slot k be denoted as

hij,k. Channel conditions hij,k refer to the channel fading

coefficient that system i experiences if it transmits at time

slot k over frequency j. Due to propagation effects the

channel fading hij,k changes unpredictably [18, Ch. 3] and

takes values in a subset H ⊆ R+ of the positive reals. We

adopt a block fading model [18, Ch. 4] whereby channel

states {hij,k, 1 ≤ i ≤ m, 1 ≤ j ≤ f} are modeled as

constant during each transmission slot k, but independent and

identically distributed across different time slots k according to

some joint distribution φ on Hm×f . They are also independent

of the plant process noise wi,k. We assume the channel states
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Fig. 2. Complementary error function for practical FEC codes. The probability
of successful decoding q for a FEC code is a sigmoid function of the received
SNR ∼ h p.

are available to the access point before transmission – see

Remark 1 for a practical implementation. We also make the

following technical assumption on their joint distribution to

exclude the possibility of channel states becoming degenerate

random variables.

Assumption 1. The joint distribution φ of channel states

{hij,k, 1 ≤ i ≤ m, 1 ≤ j ≤ f} has a probability density

function on Hm×f .

If system i transmits at time k over frequency j it selects

a transmit power level pij,k taking values in [0, pmax]. Then

channel fading and transmit power affect the probability of

successful decoding of the transmitted packet at the receiver.

In particular given the forward error-correcting code (FEC) in

use, the probability q that a packet is successfully decoded

is a function of the received signal-to-noise ratio (SNR). The

SNR is proportional to the received power level expressed by

the product h · p of channel fading and the allocated transmit

power. Overall we express the probability of success by a given

relationship of the form q(hij,k · pij,k) – for more details on

this model, the reader is referred to [22]. An illustration of

this relationship is given in Fig. 2. The following technical

assumption on the form of the function q(hp) will be helpful

in the subsequent sections.

Assumption 2. The function q(.) as a function of the product

r = h p for r ≥ 0 satisfies:

(a) q(0) = 0,

(b) q(r) is continuous, and strictly increasing when q(r) > 0,

i.e., for r′ > r it holds that q(r′) > q(r) > 0,

(c) for any µ ≥ 0 and for almost all values h ∈ H the set

argmin0≤p≤pmax
p− µ q(h p) is a singleton.

Parts (a) and (b) of this assumption state that the probability

of successful decoding q(h p) is zero when the received power

level h p is small, and it becomes positive q(h p) > 0 and

strictly increasing for larger values of h p. These properties

are verified for cases of practical interest as shown in Fig. 2.

Part (c) is more stringent but not restrictive in practice. The

function q(hp) typically has a sigmoid form with exponential

tails as shown in Fig. 2. This verifies that the power minimizer

in (c) is unique for almost all channel gains h, and is either

equal to zero or belongs to the strictly concave exponential

tail. We also note that the minimizer set in (c) exists by the



continuity assumption in (b). These properties are assumed

for technical reasons that will become clear later (see the

discussion before Theorem 1).

Apart from packet drops due to low received SNR, packet

collisions may occur if more than one of the control systems

transmit at a given time slot on the same frequency over the

shared wireless medium. For this reason we are interested in

designing a mechanism to select which system accesses each

of the available frequencies at the channel, i.e., which system

is scheduled to transmit. We denote with αij,k = 1 the decision

to schedule system i on frequency j at time k, and αij,k = 0
otherwise. To avoid packet collisions we let at most one system

transmit on each frequency j, that is
∑m

i=1 αij,k ≤ 1. We

allow each system i to transmit on at most one frequency,

that is
∑f

j=1 αij,k ≤ 1. Mathematically we may denote then

the set ∆m,f of all feasible scheduling decisions αij,k at each

time k as

∆m,f =

{

α ∈ {0, 1}m×f :

∑m
i=1 αij ≤ 1, 1 ≤ j ≤ f,

∑f
j=1 αij ≤ 1, 1 ≤ i ≤ m

}

.

(8)

For compactness we group channel states, scheduling deci-

sions, and power allocations of the overall communication

system at time k into matrices hk ∈ H
m×f , αk ∈ ∆m,f ,

and pk ∈ [0, pmax]
m×f respectively. We can then model the

transmission event γi,k of system i at time k given scheduling

variables, power allocation, and channel state, as a Bernoulli

random variable with success probability

P[γi,k = 1
∣

∣hk, αk, pk] =

f
∑

j=1

αij,k q(hij,k, pij,k) (9)

This expression states that the probability of a message for

system i being successfully received equals the probability

that the message is correctly decoded if system i is scheduled

to transmit on any of the f available frequencies. Note that,

by design of the scheduling variables, system i uses at most

one frequency, and we make the implicit assumption that no

interferences arise from transmissions on different frequencies.

Our goal is to design the communication variables of

the shared wireless control system, i.e., the scheduling and

power allocation. Since the randomly varying channel affects

the communication process, we are interested in selecting

scheduling and power variables that adapt to channel states

hk in order to counteract these effects. Overall we express

the scheduling and power decisions αk, pk respectively as

mappings of the form

A = {α : Hm×f → ∆m,f},

P = {p : Hm×f → [0, pmax]
m×f}, (10)

so that αk = α(hk), pk = p(hk). Since channel states hk

are i.i.d. over time k these mappings do not need to change

over time. Substituting the scheduling and power allocation

mappings α(.), p(.) in our communication model described by

(9) the probability of successful transmission for each system

i at any given slot k becomes

P(γi,k = 1) = Ehk

{

P[γi,k = 1
∣

∣hk, α(hk), p(hk)]
}

= Eh

f
∑

j=1

αij(h) q(hij , pij(h)). (11)

Here the expectation is with respect to the joint distribution

φ of the channel realization hk which we assumed to be

identical for any time k, hence we drop the index k. Note

also that the communication process modeled by the sequence

{γi,k, 1 ≤ i ≤ m, k ≥ 0} depends only on variables related to

the wireless communication counterpart of the overall system,

and is in particular independent of the system evolutions

{xi,k, 1 ≤ i ≤ m, k ≥ 0}.
Our primary goal in designing the communication variables

of the system is to guarantee a level of closed loop control

performance for each subsystem. To formalize the problem

description we consider Lyapunov-like performance require-

ments for the control systems. In particular suppose that for

each system i a quadratic Lyapunov function of the form

Vi(xi) = xT
i Pixi, xi ∈ R

ni , (12)

with positive definite matrix Pi ∈ Sni

++ is given. A Lyapunov-

like requirement then states that these functions should de-

crease at given rates ρi < 1 during the evolution of each

subsystem i. This evolution however is random because of

the stochastic nature of the wireless communication/control

system, i.e., due to process noise, random channel states,

randomized channel access, and packet drops. To take these

effects into account we require that for all systems i at time k
the Lyapunov functions at the next time step decrease at the

desired rates ρi < 1 in expectation, that is

E
[

Vi(xi,k+1)
∣

∣xi,k

]

≤ ρi Vi(xi,k) + Tr(PiWi) (13)

for any possible value of the current plant states xi,k ∈ R
ni .

The expectation over the next system state xi,k+1 on the left

hand side accounts via (1) for the randomness introduced by

the process noise wi,k as well as the transmission success

γi,k. The latter is expressed in (11) and depends on the

observed channel state hk as well as the communication

decisions αk, pk. The noise wi,k by (1) appears additively in

the next plant state independently of the current transmission

success and plant state. Since Vi(.) is quadratic and the

noise has a covariance Wi, we conclude that that the term

E
[

Vi(xi,k+1)
∣

∣xi,k

]

includes a persistent noise perturbation

equal to Tr(PiWi). That is the reason the constant Tr(PiWi)
is artificially added at the right hand side of condition (13). The

intuition behind condition (13) is as follows. If (13) holds for

each time step k = 0, . . . , N , then by taking the expectation

at both sides and by iterating backwards in time we find that

EVi(xi,N ) ≤ ρi EVi(xi,N−1) + Tr(PiWi)

≤ . . . ≤ ρNi EVi(xi,0) +

N−1
∑

k=0

ρki Tr(PiWi). (14)

Hence, system states have second moments that decay expo-

nentially with rate ρi with respect to initial states, and in the



limit remain bounded by Tr(PiWi)/(1 − ρi), since the sum

in (14) converges due to ρi < 1.

On the other hand, apart from control performance re-

quirements an efficient communication design should make an

efficient use of the available power resources at the devices.

The induced overall expected power consumption on each slot

k is given by

Ehk

m
∑

i=1

f
∑

j=1

αij,k(hk)pij,k(hk), (15)

summing up the transmit power of each system i and fre-

quency j if the system is scheduled to transmit. The ex-

pectation here is with respect to the joint distribution φ of

channels hk. We design scheduling and power allocation (cf.

(10)) that are control-performance aware (cf. (13)) and also

energy-efficient (cf. (15)) through a stochastic optimization

framework that we present next.

Remark 1. The centralized scheduler of the multiple access

channel architecture in Fig. 1 requires channel state infor-

mation. The channel conditions for each system i can be

measured at the access point at the beginning of each time

slot by short pilot signals sent from the wireless transmitters

of all systems to the access point. Depending on the mea-

sured channel states the access point decides which plant is

scheduled to close the loop during the time slot. We note that

perfect state information is not required, as h can denote in

practice an estimate of the channel state – see also [22]. We

also point out that even though the pilot signals for the channel

estimation incur some power consumption, we assume that

practically this is much lower than the power necessary for

transmitting the packets of the control systems, especially for

large packet lengths (e.g. long headers). Hence the power for

channel estimation is not included in our objective in (15).

A. Scheduling and power allocation as stochastic optimization

We formulate the problem of designing scheduling and

power allocation in an optimization framework as follows.

Problem 1 (Optimal Scheduling and Power Allocation De-

sign). Consider a shared wireless control architecture with

f frequencies and m systems of the form (1), quadratic

Lyapunov performance requirements by (13), channel states

hk ∈ H
m×f i.i.d. with distribution φ, and communication

modeled by (9). The design of optimal scheduling and power

allocation as functions of the current channel states αk =
α(hk) and pk = p(hk) respectively is posed as

minimize
α,p∈(A,P)

Ehk

m
∑

i=1

f
∑

j=1

αij,k(hk)pij,k(hk) (16)

subject to E
[

Vi(xi,k+1)
∣

∣xi,k

]

≤ ρiVi(xi,k) + Tr(PiWi)

for all xi,k ∈ R
ni , i = 1, . . . ,m.

In other words, at each time step we seek to minimize the

total expected power consumption (15) of the design while

satisfying the Lyapunov requirements (13) for all systems i
and for any value of the current plant states xi,k ∈ R

ni , since

scheduling and power allocation adapt to channel states but

are independent of the plant states. To make explicit how the

functions α(.), p(.) appear in the constraints of the problem,

i.e., the Lyapunov requirements, observe that by (1) we have

that

E
[

Vi(xi,k+1)
∣

∣xi,k

]

= P(γi,k = 1) xT
i,kA

T
c,iPiAc,ixi,k

+ P(γi,k = 0) xT
i,kA

T
o,iPiAo,ixi,k + Tr(PiWi), (17)

where we used the fact that the random variable γi,k is

independent of the system state xi,k as it depends only on the

communication variables (cf. (9)-(11)). Plugging (17) at the

left hand side of the constraints in (16) we get for xi,k 6= 0

P(γi,k = 1) ≥
xT
i,k(A

T
o,iPiAo,i − ρiPi)xi,k

xT
i,k(A

T
o,iPiAo,i −AT

c,iPiAc,i)xi,k

. (18)

The decision variables α(.), p(.) determine P(γi = 1) at the

left hand side of this constraint by (11). Since condition (18)

needs to hold at any value of xi,k ∈ R
ni , we can rewrite it as

P(γi,k = 1) ≥ ci where

ci = sup
y∈Rni ,y 6=0

yT (AT
o,iPiAo,i − ρiPi)y

yT (AT
o,iPiAo,i −AT

c,iPiAc,i)y
. (19)

Computing ci is a simple semidefinite programming problem

which can be easily solved using available convex optimization

software. The value ci represents the minimum probability

of transmission for each system i that guarantees the desired

Lyapunov decay rate ρi – see also Remark 2. It can alterna-

tively be thought of as a minimum required utilization factor

of the shared wireless channel, analogously to a utilization of a

shared CPU in, e.g., [17]. Intuitively, large value of ci implies

that system i requires more resources, i.e., more frequent

channel access and possibly higher power expenditures.

Summarizing, the Lyapunov constraints in optimization (16)

can be simplified by solving the auxiliary problems (19) for

each control loop i, so that the optimization (16) can be

equivalently written as

minimize
α,p∈(A,P)

Eh

m
∑

i=1

f
∑

j=1

αij(h)pij(h) (20)

subject to ci ≤ Eh

f
∑

j=1

αij(h) q(hij , pij(h)), i = 1, . . . ,m

Here we have dropped the time indices k from the variables

hk since they are identically distributed over time. Finally we

make a constraint qualification assumption that is typical in

optimization theory, i.e., that a strictly feasible solution exists.

Assumption 3. There exist variables α′ ∈ A and p′ ∈ P that

satisfy the constraints of the optimization problem (20) with

strict inequality, i.e.,

ci < Eh

f
∑

j=1

α′
ij(h) q(hij , p

′
ij(h)), i = 1, . . . ,m (21)

By the equivalence between problems (16) and (20), con-

dition (21) can be interpreted as a feasibility/schedulability

assumption for the shared wireless control system. It requires



that there exist some channel-aware scheduling and power

allocation such that the control performance requirements (13)

of all control systems are met. This assumption however does

not provide any information on how to find such a solution.

In the rest of the paper we examine problem (20), which

is equivalent to the optimal scheduling and power allocation

design for the shared wireless control architecture in Problem

1. Since this problem is feasible by Assumption 3 let us

denote the optimal value by P and an optimal solution pair

by α∗(.), p∗(.). In the following section we characterize the

form of the optimal solution and describe a methodology to

obtain it.

Remark 2. Since ci is a required lower bound on the proba-

bility of successful transmission for system i, it must be that

the value satisfies ci < 1. Equivalently the right hand side of

(19) needs to be less than one for all values of y, which in turn

is equivalent to AT
c,iPiAc,i � ρiPi. This condition states that

the closed-loop part of system (1) should satisfy the required

decrease rate ρi for the given quadratic Lyapunov function Vi,

or in other words that if system i transmits all the time the

Lyapunov requirement is met.

III. OPTIMAL SCHEDULING AND POWER ALLOCATION

In this section we examine how the optimal scheduling

and power allocation for the wireless control system can be

recovered by considering the optimization problem in the dual

domain. This allows us to develop an offline algorithm to solve

the problem and provides an explicit characterization of the

form of the optimal solution.

First let us derive the Lagrange dual problem of (20).

Consider non-negative dual variables µ ∈ R
m
+ corresponding

to each one of the m constraints of (20). The Lagrangian then

is defined as

L(α, p, µ) = Eh

m
∑

i=1

f
∑

j=1

αij(h)pij(h)

+

m
∑

i=1

µi

[

ci − Eh

f
∑

j=1

αij(h) q(hij , pij(h))

]

, (22)

while the dual function is defined as

g(µ) = inf
α,p∈(A,P)

L(α, p, µ). (23)

For future reference we also denote the set of functions

α(.), p(.) that minimize the Lagrangian at µ by

(A,P)(µ) = argmin
α,p∈(A,P)

L(α, p, µ), (24)

whenever the minimizers exist. This set might contain in

general multiple solutions and we denote with α(µ), p(µ) an

arbitrary element pair of the set. Since the pair itself is a

function on Hm (cf. (10)), we denote the value of the pair

at a point h ∈ Hm by α(µ;h), p(µ;h).
The Lagrange dual problem is defined as follows.

D = sup
µ∈R

m
+

g(µ). (25)

According to Lagrange duality theory the optimal dual value

D is a lower bound on the optimal cost P of problem (20).

The following proposition however establishes a strong duality

result (D = P ) for the problem under consideration and

provides a relationship between the optimal primal and dual

variables.

Proposition 1. Let Assumptions 1 and 3 hold. Let P be the

optimal value of the optimization problem (20) and (α∗, p∗)
be an optimal solution, and let D be the optimal value of the

dual problem (25) and µ∗ be an optimal solution. Then

(a) P = D (strong duality)

(b) µ∗
i

[

ci − Eh

∑f
j=1 α

∗
ij(h) q(hij , p

∗
ij(h))

]

= 0 for all i =

1, . . . ,m (complementary slackness)

(c) (α∗, p∗) ∈ (A,P)(µ∗)

Proof: Statement (a) under assumptions 1 and 3 follows

immediately from [21, Theorem 1] where a similar optimiza-

tion setup is examined. The proof is omitted due to space

limitations.

To show (b) observe that, by definition of the dual function

in (23), at the point µ∗ we have that

g(µ∗) ≤ L(α∗, p∗, µ∗) (26)

Since µ∗ is optimal for (25) and using part (a) we have for the

left hand side of (26) that g(µ∗) = D = P . On the other hand,

the right hand side of (26), by the definition of the Lagrangian

at (22), equals

L(α∗, p∗, µ∗) = P

+

m
∑

i=1

µ∗
i

[

ci − Eh

f
∑

j=1

α∗
ij(h) q(hij , p

∗
ij(h))

]

, (27)

because the objective of (20) at the optimal solution (α∗, p∗)
equals the optimal value P . These expressions for the left and

right hand sides of the inequality in (26) therefore give

P ≤ P +

m
∑

i=1

µ∗
i

[

ci − Eh

f
∑

j=1

α∗
ij(h) q(hij , p

∗
ij(h))

]

. (28)

This implies that the sum on the right hand side is non-

negative. However all summands are non-positive, because

µ∗ ≥ 0 since it is feasible for the dual problem (25), and

also the term in the brackets in (28) are non-positive because

(α∗, p∗) are feasible for the primal problem (20). The only

possibility then is that all summands in (28) are identically

zero, which proves statement (b).

We have established that (28) holds with equality, so by

tracing back our steps, we have that (26) holds with equality

too, which, by the definition of the dual function on (23)

translates to

inf
α,p∈(A,P)

L(α, p, µ∗) = L(α∗, p∗, µ∗). (29)

This verifies statement (c).

This proposition states that strong duality holds even though

the original problem is not convex, regardless also of the form

of the function q(h, p) (Assumption 2 is not imposed). More

importantly, part (c) suggests the possibility of recovering



the optimal primal variables α∗, p∗ by solving first for the

optimal point µ∗ in the dual problem. As we present next,

this direction provides a significant advantage. The design of

infinite-dimensional scheduling and power allocation policies

that meet the control performance specifications in Problem

1 is reduced to the problem of determining finite-dimensional

optimal dual variables. A technical caveat of Proposition 1(c)

is that the optimal policies are included in a set which could

in general contain other irrelevant policies. As we show next,

Assumption 2 helps overcome this issue.

A. Dual subgradient method

To solve the dual problem in (25), that is, to maximize the

dual function g(µ), we employ a dual projected subgradient

algorithm [24, Ch. 8]. We first note that function g(µ) is

concave, as a pointwise infimum over functions linear in

µ (cf. (23)). A subgradient direction for g(µ) at any point

µ ∈ R
m
+ is a vector, denoted here as s(µ) ∈ R

m, that satisfies

g(µ′)− g(µ) ≤ (µ′ − µ)T s(µ) for all µ′ ∈ R
m
+ . (30)

If we pick α(µ), p(µ) ∈ (A,P)(µ) by (24) then a subgra-

dient s(µ) can be found as the constraint slack of the primal

problem (20) evaluated at these points, i.e.,

si(µ) = ci − Eh

f
∑

j=1

αij(µ;h) q(hij , pij(µ;h)). (31)

To show this observe that for any µ′ in general we have

g(µ′) ≤ L(α(µ), p(µ), µ′) by the definition of the dual

function in (23). Subtracting g(µ) = L(α(µ), p(µ), µ) from

both sides of this inequality and expanding the terms of the

Lagrangian as in (22) we get

g(µ′)− g(µ) ≤

m
∑

i=1

(µ′
i − µi)

[

ci − Eh

f
∑

j=1

αij(µ;h) q(hij , pij(µ;h))

]

. (32)

Comparing this with the property of the subgradient in (30),

we verify that (31) indeed gives a subgradient direction. We

also note for future reference that for any µ the subgradients

are bounded because at the right hand side of (31) the term ci is

bounded (cf.(19)) and the term in the expectation corresponds

to a probability (cf.(11)).

A projected dual subgradient ascent method to maximize the

concave dual function g(µ) consists of the following steps:

1) At iteration t given µ(t) find primal optimizers of the

Lagrangian at µ(t) according to (24),

p(µ(t)), α(µ(t)) ∈ (A,P)(µ(t)) (33)

2) Evaluate the subgradient vector s(µ(t)) by (31) and

update the dual variables by an ascent step

µ(t+ 1) = [µ(t) + ε(t)s(µ(t))]+ (34)

where [ ]+ denotes the projection on the non-negative

orthant and ε(t) > 0 is the stepsize.

The stepsizes are selected to be square summable but not

summable, i.e.,
∑

t≥1

ε(t)2 <∞,
∑

t≥1

ε(t) =∞. (35)

Before stating the convergence properties of the algorithm,

we note that in order to implement it we need an efficient

way to compute primal Lagrange optimizers in (33) that solve

(24). This problem also relates to our capability of finding the

optimal primal variables of interest α∗, p∗ as we have shown

in Proposition 1(c). Hence we turn our focus to problem (24).

A more convenient expression for the Lagrangian defined in

(22) can be obtained by rearranging terms to get

L(α, p,µ) = µT c+

Eh

m
∑

i=1

f
∑

j=1

αij(h) [pij(h)− µiq(hij , pij(h))] . (36)

This form provides a useful separation structure for the pri-

mal Lagrangian optimizers that we exploit in the following

proposition.

Proposition 2. For any µ ∈ R
m
+ the following hold true:

(a) Solutions α(µ), p(µ) ∈ (A,P)(µ) of problem (24) can be

obtained at each h ∈ Hm as

pij(µ;h) = pij(µi;hij) = argmin
0≤p≤pmax

p−µiq(hij , p) (37)

for any i = 1, . . . ,m and j = 1, . . . , f , and

α(µ;h) = argmin
α∈R

m×f
+

m
∑

i=1

f
∑

j=1

αij ξ(hij , µi) (38)

subject to

m
∑

i=1

αij ≤ 1,

f
∑

j=1

αij ≤ 1

where

ξ(hij , µi) = min
0≤p≤pmax

p− µiq(hij , p). (39)

(b) If Assumptions 1 and 2 hold, then for any solution

α(µ), p(µ) ∈ (A,P)(µ) the vector s(µ) defined in (31)

has a unique value.

Proof: See Appendix A

The first part of the proposition provides through equations

(37) and (38) a method to obtain primal Lagrange optimizers

that can be used in step (33) of the subgradient algorithm.

Interestingly, the minimizing scheduling and power allocation

decisions can be computed separately at each channel state

value, hence significantly simplifying the computation. A

further separability for the power allocation across systems

and frequencies is revealed – see Remark 3.

The second part of the proposition relies on Assumption 2

to establish that the subgradient vector takes a unique value.

Intuitively, Assumption 2 is used here to guarantee that the

optimal Lagrange minimizers are almost surely unique. For

example, Assumption 2(c) ensures this fact for the power mini-

mizer in (37). This uniqueness allows a further characterization

of the optimal primal variables than the set-characterization of



Proposition 1(c). In particular, as we establish in the following

theorem, the optimal scheduling and power allocation can be

obtained by the Lagrangian minimization procedure presented

in the first part of the above proposition.

Theorem 1 (Optimal Scheduling and Power Allocation).

Consider the design of channel-aware scheduling and power

allocation variables in Problem 1 for the shared wireless

control architecture of Fig. 1, and let Assumptions 1, 2, 3

hold. Then optimal scheduling α∗ and power allocation p∗

are obtained by (37)-(39) at a point µ∗ ∈ R
m
+ , which is an

optimal solution of the dual problem (25). A point µ∗ can be

obtained by iterating (33)-(34), i.e., µ(t) → µ∗, for stepsizes

satisfying (35).

Proof: See Appendix B

The theorem characterizes the optimal scheduling and power

allocation that meet the control performance specifications in

our shared wireless control architecture – see the following

remarks for more details about the form of the optimal policy.

It is worth noting that the optimal policy need not be unique.

More precisely, there might be many optimal dual solutions

µ∗, each corresponding to a different scheduling and power

allocation policy according to the theorem. However all such

policies will have the same objective value in (16).

The theorem also establishes a methodology to find the

optimal communication policy by iterating (33)-(34). This can

be viewed as an offline algorithm, and requires knowledge of

the channel distribution. In the next section we develop an

online algorithm that solves for the optimal communication

policy based instead only on a random sequence of channel

realizations observed during system execution.

Remark 3. According to Theorem 1, the optimal power

allocation can be obtained at each channel value h by solving

(37) at the point µ∗. In particular p∗ij(h) depends on the

variables µ∗
i and hij pertinent only to system i and frequency

j and not on the whole vectors µ∗ or h. This implies a de-

centralized power allocation among systems and frequencies,

made explicit in (37) by the notation pij(µi;hij). Similar

separability results are also known in the context of resource

allocation for wireless communication networks [21]. This fact

can be intuitively understood from the shared wireless control

architecture of Fig. 1, since each transmitter experiences dif-

ferent channel conditions and is responsible for an independent

control task. Moreover, this optimal power allocation can

be easily implemented in practice. The transmitter of each

control system i can store its value µ∗
i and adapt transmit

power, whenever scheduled, based on the channel conditions

it currently experiences. The optimal scheduling α∗(h) in (38),

on the other hand, is centralized since it depends on the whole

vector µ∗ and all channel states h.

Remark 4. Determining the optimal scheduling in (38) is

posed as a linear program by relaxing the integer constraints

of ∆m,f in (8). As mentioned in the proof of the proposition

there is no loss in doing so, as the optimal solution to the

linear program is integer. It is worth noting that (38) solves a

standard assignment problem1. Besides the linear program pre-

sented here, integer programming algorithms with complexity

polynomial in the number of systems m and frequencies f
exist [25, Ch. 7]. In the special case of a single frequency

(f = 1) the complexity of scheduling in (38) is linear in the

number of systems (O(m)), since the scheduler looks for and

schedules the system i with the minimum value ξ(hi, µi).

IV. ONLINE SCHEDULING AND POWER ALLOCATION

The algorithm presented in the previous section to ob-

tain optimal scheduling and power allocation for the shared

wireless control system of Problem 1 is hard to implement

in practice. In the primal step (33) one needs to obtain a

solution pair α(h), p(h) for a continuum of channel variables

h ∈ Hm×f , while for the dual step in (34) one needs to com-

pute the subgradient direction s(µ) in (31) by integrating over

the channel distribution φ. A practical implementation would

require drawing a large number of samples from φ and solving

for primal variables at these samples to obtain an estimate

of the actual subgradient direction. This is computationally

intensive, does not scale for a large number of systems m and

frequencies f , while also in most cases of practical interest

the channel distribution is not available.

These drawbacks motivate us to develop an online algorithm

to solve Problem 1. The algorithm is a stochastic version of the

primal/dual steps (33), (34) of the offline subgradient method

and does not rely on availability of the channel distribution. In

particular, suppose that at time k a channel realization hk is

observed, and the current power and scheduling decision are

selected by solving (37)-(38) at the current hk, i.e.,

pij,k = pij(µi,k;hij,k), i = 1, . . . ,m, j = 1, . . . , f,

αk = α(µk;hk). (40)

Then in contrast to updating the dual variables µk by (34)

after computing the vector (31), suppose only the current

channel measurement and power/scheduling choices are used.

In particular, suppose we compute

si,k = ci −

f
∑

j=1

αij,k q(hij,k, pij,k), i = 1, . . . ,m, (41)

and update the variables µk by

µk+1 = [µk + εksk]+ (42)

where [ ]+ is the projection on the non-negative orthant and

εk > 0 is the stepsize.

To emphasize that this is an online algorithm we have

explicitly indexed the variables with k corresponding to real

time slots. This procedure, summarized in Algorithm 1, gives

scheduling and power variables {αk, pk, k ≥ 0} as well as

dual variables {µk, k ≥ 0} which are random because they de-

pend on the random observed channel sequence {hk, k ≥ 0}.
The main difference compared to the subgradient algorithm

of the previous section is that it follows random directions

1Technically the standard assignment problem requires equal number of
systems and frequencies. This can be accomplished by introducing dummy
systems or frequencies with zero values ξ(hij , µi).



Algorithm 1 Online Scheduling and Power Allocation

Input: m, f , c ∈ [0, 1]m, q : H × [0, pmax] 7→ [0, 1], εk ∈
R+, k ≥ 0

1: Initialize µ0 ∈ R
m
+ , k ← 0

2: loop

3: At time k observe channel state hk

4: Compute power allocation for all systems i and fre-

quencies j by

pij,k ← argmin
0≤p≤pmax

p− µi,kq(hij , p) (43)

ξij,k ← min
0≤p≤pmax

p− µi,kq(hij , p) (44)

5: Decide scheduling by solving

αk ← argmin
α∈∆m,f

m
∑

i=1

f
∑

j=1

αij ξij,k (45)

6: Compute for all i = 1, . . . ,m

si,k ← ci −

f
∑

j=1

αij,k q(hij,k, pij,k) (46)

7: Update dual variables by µk+1 ← [µk + εksk]+
8: end loop

sk in (41) instead of the exact subgradient directions s(µk)
by (31). Comparing these two expressions it is immediate that

the expected value of sk coincides with the subgradient s(µk),
so it is reasonable to conjecture that the online algorithm is

expected to move towards the maximum of the dual function,

as the subgradient method does. The following proposition

indeed establishes convergence in a strong sense.

Proposition 3. Consider the optimization problem (20) and its

dual derived in (25) and let Assumption 3 hold. Let a sequence

µk, k ≥ 0 be obtained by steps (40)-(42) based on a sequence

{hk, k ≥ 0} of i.i.d. random variables with distribution φ, and

stepsizes εk satisfying (35). Then almost surely we have that

lim
k→∞

µk = µ∗, and lim
k→∞

g(µk) = D (47)

where µ∗ is an optimal solution of the dual problem and D
is the optimal value of the dual problem.

Proof: See Appendix C

The proposition states that the stochastic online algorithm

yields a random sequence of dual variables µk that converges

to the optimal point µ∗ almost surely for any sequence

of channel realizations that is observed. However the real

problem of interest is the primal problem (20), or equivalently

Problem 1. This is the problem of optimal design of scheduling

and power allocation policies that satisfy the given Lyapunov

performance requirements (13) for each control system i,
while also minimizing the expected power expenditures of the

communication process. Hence it is important to characterize

how the control systems would actually perform if the commu-

nication variables are selected according to the proposed online

algorithm. This characterization is provided in the following

theorem.

Theorem 2 (Online Scheduling and Power Allocation). Con-

sider a shared wireless control architecture composed of m
systems of the form (1), f frequencies, and communication

modeled by (9) depending on channel states hk ∈ H
m×f

which are i.i.d. with distribution φ, and scheduling and power

allocation variables αk ∈ ∆m,f , pk ∈ [0, pmax]
m×f . Also

consider given quadratic Lyapunov performance requirements

(13) for each system and let Assumptions 1, 2, 3 hold. If

αk, pk are chosen according to (40)-(42), then almost surely

with respect to the channel sequence {hk, k ≥ 0} the control

performances for all systems i = 1, . . . ,m satisfy

lim sup
k→∞

E[Vi(xi,k+1)
∣

∣xi,k = xi, h0, . . . , hk−1]

≤ ρiVi(xi) + Tr(PiWi), (48)

for any state values xi ∈ R
ni . In addition, the power

consumption almost surely satisfies

lim sup
k→∞

E

[ m
∑

i=1

f
∑

j=1

αij,kpij,k

∣

∣

∣

∣

h0, . . . , hk−1

]

≤ P (49)

where P is the optimal value of the optimization problem (16).

Proof: See Appendix D.

According to the theorem the scheduling and power alloca-

tion variables selected by the online algorithm lead in the limit

to the desired Lyapunov requirements for all control systems

and to the optimal power expenditure, for almost all channel

sequences. We can also establish the following corollary.

Corollary 1. Consider the setup of Theorem 2. Then for any

positive constant δ > 0 there exists a time step N such that

for all times k ≥ N we have that

E
[

Vi(xi,k+1)
∣

∣xi,k

]

≤ (ρi + δ) Vi(xi,k) + Tr(PiWi) (50)

for any possible value of plant states xi,k ∈ R
ni and for all

systems i = 1, . . . ,m.

Proof: See Appendix E.

Recall that we initially asked for a communication design

that guarantees expected control performance requirements at

each time step k in (13). According to the above corollary our

online policy approximately satisfy this. After a sufficiently

long time horizon the expected decrease rates of all Lyapunov

functions get arbitrarily close to the desired ones. Before

proceeding to simulations of the stochastic online algorithm,

we present an intuitive interpretation of the algorithm from an

economic resource allocation point of view.

A. Pricing interpretation of online scheduling and power

allocation algorithm

In this section we provide an interpretation of the problem

variables as well at the online Algorithm 1 in economic terms.

In particular we may view each transmitter in the wireless

control architecture as an agent that utilizes some scarce

resource, namely transmit power, to produce some ’good’,

namely the probability of successfully transmitting and closing

the corresponding control loop. Our development in Sec-

tion II-A shows that each closed loop has a Lyapunov control



performance requirement (cf. (13)) that can be translated as

requiring ci units of good (cf. (19)). Under this view, the dual

variables µi can be interpreted as the ’unit price’ at which

each agent can ’sell’ the produced good. In this context the

role of Algorithm 1 is to determine unit prices such that all

demand levels ci are met and in the most profitable manner

from the agents’ perspective.

More specifically, consider a time step k where prices are

set to µk and the current channel conditions are described

by hk. If agent i gets access to the channel at frequency j,

the agent can spend an amount pij,k to produce q(hij,k, pij,k)
units of good, which can be sold at a price of µi,k per unit.

In this case the total profit for the agent can be expressed as

µi,k q(hij,k, pij,k)− pij,k, (51)

i.e., the difference between the total revenue µi,k q(hij,k, pij,k)
and the total cost pij,k. The optimal resource allocation pij,k
is the one maximizing the profit (51), matching exactly the

optimization over power provided in (43). The optimal profit

if agent i gets access to the channel at frequency j under

conditions hij,k equals −ξij,k given in (44).

Then the role of the scheduler is to opportunistically assign

agents to the available frequencies in a way that maximizes

the total aggregated profit. In particular the scheduler observes

current conditions hij,k for all agents i and frequencies j,

computes the possible profit −ξij, k of all agent/frequency

pairs, and searches for the scheduling α ∈ ∆m,f defined by

(8) that maximizes the total profit

∑

i,j

αij(−ξij, k) (52)

aggregated over all agents. This optimal scheduling matches

the one implemented by Algorithm 1 (cf. line (45)).

After the current scheduling αk and power pk decisions have

been made, the unit prices µk+1 for the next step are adjusted

depending on the current production levels. If the production

for system i exceeds the required level ci, i.e., si,k < 0 in (41),

then the unit price for system i is reduced to µi,k+εksi,k (cf.

line 7 in Algorithm 1). If on the other hand the production for

system i does not meet ci, i.e., si,k > 0, then the unit price i
increases to µi,k + εksi,k.

According to Proposition 3 and Theorem 2 the online

algorithm converges almost surely to the optimal prices µ∗,

under which the expected production meets demand, where

expectation is with respect to the channel conditions. Moreover

the expected total production cost (the objective of problem

(20)) becomes optimal in the limit.

Note however that Theorem 2 does not provide theoretical

guarantees on how fast the solution converges to the optimal

one. We discuss this issue along with other limitations of

the algorithm in Section VI. In the following section we

present simulations verifying our theoretical results, and also

indicating that the convergence of the algorithm is relatively

fast so that online control performance is not severely affected.

V. NUMERICAL SIMULATIONS

A. Opportunistic nature of scheduling and power allocation

We first illustrate through simulations the opportunistic na-

ture of the resource allocation mechanism for wireless control

systems obtained in Section III, in particular how scheduling

and power decisions adapt appropriately to channel conditions

to meet the control performance goals. Moreover we compare

the resulting performance with other simple non channel-

adaptive allocation mechanisms. Recall that by solving the

auxiliary problems (19), control systems with vector states are

converted to scalar constraints in optimization problem (20).

Hence without loss of generality we present an example with

scalar control systems.

Consider a heating system application controlling the tem-

perature in two independent rooms of a building. Assuming

the wireless control architecture of Fig. 1 with m = 2,

wireless sensors transmit the temperatures of each room to a

central location (the access point in Fig. 1) responsible for

adjusting the heating in the rooms. For simplicity suppose

both systems have identical dynamics of the form (1) with

state xi,k denoting the difference between current and some

desired temperature for room i. In particular suppose that when

system i transmits (γi,k = 1), heating is activated for system

i and results in stable dynamics Ac,i = 0.4 in (1). Otherwise

if γi,k = 0 the system is open loop unstable with Ao,i = 1.1
in (1), e.g., because heating is deactivated.

For simplicity we assume there is one (f = 1) available

frequency and for symmetry let channel states h1,k and h2,k

be independent for each system, both having an exponential

distribution with mean 1. The function q(h, p) is shown

in Fig. 2. For these scalar systems it suffices to consider

Lyapunov functions Vi(x) = x2. We require then that system 1

guarantees a high Lyapunov decrease ρ1 = 0.75 rate according

to (13), while system 2 only requires ρ2 = 0.90. For these

choices we get a higher required success of transmission

c1 ≈ 0.44 according to (19) for system 1, compared to a

lower c2 ≈ 0.30 of system 2.

After solving problem (20) offline according to the sub-

gradient method of Section III, the optimal channel-aware

scheduling and power allocation variables are depicted in

Fig. 3 and Fig. 4 respectively. We observe in Fig. 3 that

System 1, which requires higher transmission success c1, is

scheduled to transmit for most values of the channel states

h1, h2. System 2, which has a lower requirement, is scheduled

only if its channel h2 is sufficiently favorable and system 1

experiences an adverse channel h1. This illustrates how the

scheduler exploits opportunistically the channel conditions to

select which system will transmit to close the loop, in order

to meet the Lyapunov constraints in a power efficient manner.

We also note that when both systems experience very adverse

channels the scheduling decision becomes irrelevant because,

as we will see in Fig. 4, the optimal transmit powers then are

zero (no transmission).

The optimal power allocation is decentralized as we noted in

Remark 3, i.e., the transmit power pi for system i depends only

on the channel hi that system i experiences, and thus we plot

in Fig. 4 the power allocation for both systems on same axes.
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Fig. 4. Optimal channel-aware power allocation for the example presented
in Section V. Under adverse channel conditions systems do not transmit. The
channel threshold for transmission for system 1 is lower than that of system 2
because the former has a higher Lyapunov decrease rate requirement. System
1 also requires higher transmit power.

For both systems, when the channel conditions are adverse it

is not worth to spend transmit power. System 1, which has a

more demanding control constraint, requires in general higher

transmit power since, as we saw in Fig. 3, it is scheduled to

transmit even under adverse channel conditions. This is also

captured in the expected power consumption of each system

computed numerically as Ehα
∗
1(h)p

∗
1(h1) ≈ 11mW and

Ehα
∗
2(h)p

∗
2(h2) ≈ 6.5mW . The minimum total power budget

required to meet the control objectives then is approximately

17.5mW .

To demonstrate the power savings obtained by the oppor-

tunistic resource allocation we compare to a simple non-

channel-aware communication mechanism. In particular sup-

pose that at each step a system is chosen randomly to ac-

cess the channel/frequency. With a slight abuse of notation

suppose systems 1 and 2 are chosen with probabilities α1

and α2 = 1 − α1 respectively. When a system is selected,

we suppose it transmits with a constant power level pc.

The control performance requirements (cf. (20)) in this case

Control
objective
ρ

Mean
Fading
hi1

Mean
Fading
hi2

Transmit
Rate at
Freq. 1

Transmit
Rate at
Freq. 2

Plant 1 0.75 1 1 0.25 0.23

Plant 2 0.9 1 1 0.18 0.15

Plant 3 0.9 1 2 0.07 0.25
TABLE I

SYSTEM PARAMETERS & ONLINE TRANSMISSION RATES

become αi Ehi
q(hi pc) ≥ ci for i = 1, 2 and the total power

cost is (α1+α2) pc = pc. We briefly comment then on possible

designs for α1 and pc.

First, observe from the channel-aware design in Fig. 4 that

a system never transmits with power level larger than 50mW .

Suppose then we select the power budget pc = 50mW . It turns

out that the two control performance requirements cannot be

achieved in this case, because we compute
∑

i=1,2

αi Ehi
q(hi pc) = Ehi

q(hi pc) ≈ 0.65 < c1 + c2 ≈ 0.74

(53)

meaning that the constraints are infeasible. Searching numer-

ically for a value pc where the random access scheme meets

the control objectives, we find pc ≈ 73mW . Contrasting this

amount with the optimal power budget of the opportunistic

case above, in this example the channel-aware resource al-

location succeeded almost a 80% decrease in power budget

compared to a not channel-aware random access scheme.

B. Stochastic online scheduling and power allocation

Next we implement the stochastic online algorithm of

Section IV in a setup with three (m = 3) control loops

sharing two (f = 2) frequencies. For example consider again

the room heating system of the previous section including

three rooms/systems with identical dynamics, Ao,i = 1.1
and Ac,i = 0.4 as before. We set the desired Lyapunov

decrease rates as ρ1 = 0.75, ρ2 = ρ3 = 0.9, implying that

system 1 is more demanding in communication resources. We

assume channel states hij are independent across systems i
and frequencies j, and have exponential distributions with

means given in Table I. In particular we model that system

2 experiences better channel quality (higher channel fading

gain) in frequency 2.

The evolution of the dual variables µk during Algorith 1

is shown in Fig. 5. After a number of iterations (time k
in this example corresponds to seconds) they remain in a

small neighborhood around the optimal µ∗, as anticipated

by the theoretical a.s. convergence in Prop. 3. Consequently,

the scheduling and power allocation decisions taken online

are almost feasible for the constraints of problem (20) after

a number of iterations. We observe that the dual variable

corresponding to system 1 is the largest, consistent with the

fact that it has a harder control requirement to meet. Using

the economic interpretation of Section IV-A about the dual

variables, the price at which agent 1 can sell its produced

good is higher, giving the incentive to schedule agent 1 to

produce more often. On the other hand, systems 2 and 3 have

the same control requirements but the dual variable for system

2 is larger. The reason is that system 2 experiences worse
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Fig. 5. After a number of steps during the online algorithm the dual variables
µk remain in a neighborhood around the optimal µ∗.

channel conditions than system 3 (cf. Table I), which imply

higher required transmit power, or in economic terms a higher

production cost in (51). By setting a higher selling price µ2,

system 2 becomes profitable enough so that it is scheduled to

produce at a sufficient rate to meet the requirement.

In Table I we show the average transmission rates that

the online algorithm selected during system execution. In

particular we evaluate the average number of time slots where

each system i was selected to transmit (with a positive power

level) at each frequency j as 1/N
∑N

k=1 αij,kI (pij,k > 0).
System 3 was scheduled mainly at frequency 2, exploiting its

better channel quality. This forced systems 1 and 2 to use

frequency 1 more often. Also system 1, which has higher

control requirement, transmitted more often than the other

systems. We note that this behavior resulted from the online

algorithm using only an observed channel sequence, not any

prior knowledge on the channel quality distribution.

Finally, we examine the evolution of the three heating

control systems when the online algorithm is employed for

scheduling and power decisions. Suppose that for all systems

i the states xi, which measure deviations from reference

room temperatures, are perturbed by disturbances wi,k as in

(1), which we model as independent Gaussian with mean

zero and variance Wi = 1 (at some normalized units of

temperature). We plot in Fig. 6 the evolution of the empir-

ical quadratic averages 1/N
∑N

k=1 x
2
i,k. Recall that when the

Lyapunov condition (13) is satisfied, we get from (14) that the

expected limit quadratic costs are bounded by Wi/(1 − ρi).
We observe from Fig. 6 that after some initial transient the

online communication algorithm keeps the empirical average

quadratic costs close to the theoretical required upper bounds.

VI. DISCUSSION AND CONCLUSIONS

This paper considers opportunistic channel-aware sched-

ulers for wireless control systems with multiple loops clos-

ing over a shared wireless medium. We develop a suitable

stochastic optimization formulation, and design scheduling

and transmit power policies that minimize the total expected

power expenditures while guaranteeing that given Lyapunov

functions for each control system exhibit desired expexted

decrease rates for stability and performance. We develop an

offline optimization algorithm to solve the problem, as well
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Fig. 6. Average quadratic costs during the online scheduling and power
allocation algorithm. The stochastic algorithm keeps the average quadratic
cost of each control system close to the upper bound of the limit expected
cost, shown with dashed lines, induced theoretically by the required Lyapunov
decrease rates.

as an online communication algorithm that converges to the

optimal based on random observed channel sequences. An

extension of the present paper for scheduling inter-dependent

control tasks is considered in [26].

The proposed online algorithm guarantees almost sure con-

vergence, but a theoretical characterization of the convergence

rate is not provided. The online algorithm also uses decreasing

stepsizes, which limits the adaptability to an environment

with non-stationary channel distributions. These issues will

be the focus of future work. Moreover, our methodology

relies on the existence of feasible scheduling and power

allocation policies (Assumption 3), hence sufficient system

conditions for this to hold would be desirable. A different

research direction is to include, apart from channel states,

the measured plant system states when making the scheduling

decisions, as in, e.g., [11]–[13], or in the single-loop power

management paradigm of [22]. Furthermore, the problem of

joint scheduling and controller design, which would allow

control adapting to communication events as in [3], poses new

research challenges. Finally, the present development can serve

as a framework for examining decentralized channel access

mechanisms, such as random access [18, Ch. 14], which would

obviate the use of a centralized scheduler in Fig. 1.

APPENDIX

A. Proof of Proposition 2 2

We first show part (a) of the proposition. Consider the

problem of minimizing the Lagrangian as given at the form

(36) over variables α(.), p(.) for some µ ∈ R
m
+ . Since µT c is

constant the problem is equivalent to

inf
α,p∈(A,P)

Eh

∑

i,j

αij(h) [pij(h)− µiq(hij , pij(h))] . (54)

2Within this proof we denote
∑m

i=1

∑f
j=1

as
∑

i,j for compactness.



Without loss of generality we can exchange the expectation

over h and the minimization over functions α(.), p(.) in (54)

to equivalently solve for each h ∈ Hm×f

inf
α(h)∈∆m,f

p(h)∈[0,pmax]
m×f

∑

i,j

αij(h) [pij(h)− µiq(hij , pij(h))] (55)

This step is valid because any pair of functions α, p that

does not minimize the objective in (55) on a set of values

of variables h with φ-positive measure must yield a strictly

larger expected value in the objective of (54). In other words,

the minimizers of (54) can only differ from the minimizers of

(55) at a set of values for h with measure zero.

Then note that at any h ∈ Hm×f and any choice for the

variable α(h) we have that αij(h) ≥ 0. Hence the optimization

over p(h) in (55) can be rearranged to

inf
α(h)∈∆m,f

∑

i,j

αij(h)

inf
pij(h)∈[0,pmax]

pij(h)− µiq(hij , pij(h)). (56)

The optimization over power variables pi,j(h) in this expres-

sion corresponds exactly to (37). Using the notation introduced

in (39), the minimization over scheduling variables α(h) in

(56) becomes

inf
α(h)∈∆m,f

∑

i,j

αij(h) ξ(hij , µi), (57)

The expression given in (38) is obtained by relaxing the integer

constraint αij ∈ {0, 1} of the set ∆m,f (cf.(8)) in problem (57)

with αij ≥ 0. The resulting problem (38) is a linear program,

but the optimal solution will be integer (see, e.g., [25, Th.

7.5]) and feasible with respect to ∆m,f .

Now let us prove part (b) of the proposition. We need to

show that any pair α(µ), p(µ), which are functions of h, that

solves (54) gives a unique evaluation of s(µ) given in (31).

Since si(µ) involves integrating the term

f
∑

j=1

αij(µ;h) q(hij , pij(µ;h)) (58)

with respect to the distribution φ of h ∈ Hm×f , it suffices to

show that (58) is unique φ-a.s.

By the argument presented already, minimizing (54) is a.s.

equivalent to minimizing (55). The latter is again equivalent

to the problem (56) since all αij(h) ≥ 0. Note that the only

case where the optimizers in (55) can differ from the ones

obtained in (56) is if αij(µ;h) = 0 for some i, j is optimal

at some values h ∈ Hm×f and the power minimizer pij(µ;h)
in (55) can be chosen arbitrarily. But this does not affect the

computation of si(µ) since (58) will equal zero. Hence we

only need to show that the minimizers α(µ;h), p(µ;h) in (56)

imply a.s. uniqueness of (58).

For values of h where the minimizers α(µ;h), p(µ;h) of

problem (56) are unique it is immediate that (58) has a unique

value, hence we only need to consider h where the minimizers

are not unique. By Assumption 2(c) the minimizer p(µ;h),
which is given in (37), is unique for almost all h, therefore

we only need to focus on the set of values for h where the

minimizer α(µ;h), described by (38), is not unique.

Let us denote by E the set of interest, i.e., the set of h ∈
Hm×f where α(µ;h) in (38) is not unique. By considering all

possible pairs of multiple solutions α′ 6= α′′ in the finite set

∆m,f , we can rewrite E as a union E =
⋃

α′ 6=α′′∈∆m,f
Eα′,α′′

where Eα′,α′′ ⊆ Hm×f such that

h ∈ Eα′,α′′ ⇔ α′, α′′ ∈ argmin
α∈∆m,f

∑

i,j

αij ξ(hij , µi). (59)

In other words, the set Eα′,α′′ is the set of values h where

both α′, α′′ are optimal for (38). The rest of the proof shows

that on any Eα′,α′′ the value of (58) is almost surely unique.

The set Eα′,α′′ depends on the shape of the function ξ
defined in (39), so next we point out two properties of

ξ(hij , µi).

Fact 1: For almost all hij where the optimal value of

problem (39) is ξ(hij , µi) = 0, the optimal solution is unique

and equals pij(µ;h) = 0.

Proof of Fact 1: First we note that for any hij , the choice

p = 0 is feasible for problem (39) and by Assumption 2(a)

it gives an objective p − µiq(hij , p) = 0. So whenever the

optimal value of problem (39) is 0, then p = 0 is an optimal

solution. This optimal solution is unique for almost all hij

because of Assumption 2(c).

Fact 2: If at some hij the optimal value of problem (39) is

ξ(hij , µi) < 0, then for h′
ij > hij we have that ξ(h′

ij , µi) <
ξ(hij , µi).

Proof of Fact 2: First note that at the given hij it must

be that the optimal solution pij(µ;h) of problem (39) sat-

isfies q(hij , pij(µ;h)) > 0. This is true because otherwise

q(hij , pij(µ;h)) = 0 implies ξ(hij , µi) = pij(µ;h) ≥ 0.

Second by Assumption 2(b) when q(.) > 0, it is strictly

increasing in its argument. Thus we have

ξ(hij ,µi) = pij(µ;h)− µiq(hij , pij(µ;h))

> pij(µ;h)− µiq(h
′
ij , pij(µ;h)) ≥ ξ(h′

ij , µi) (60)

for h′
ij > hij .

Let us now fix some α′ 6= α′′ ∈ ∆m,f and consider the

set Eα′,α′′ . Pick indices ı,  where α′, α′′ differ, i.e., without

loss of generality, α′
ı, = 1, α′′

ı, = 0. Consider first the case of

h ∈ Eα′,α′′ where ξ(hı,, µı) = 0. By Fact 1 above we know

that this implies pı,(µ;h) = 0 is almost surely the unique

optimizer of (37). But in that case q(hı,, pı,(µ;h)) = 0, and

the choice of αı,(h) does not affect the value of (58), which

is zero.

Second, we examine the set h ∈ Eα′,α′′ where ξ(hı, µı) <
0. We will show that this event happens with φ-probability

zero. In particular by Assumption 1 φ has a probability

density function on Hm×f , or more formally φ is absolutely

continuous with respect to the Lebesgue measure on Hm×f .

Hence to show that the discussed event has φ-measure zero, it

suffices to show that it has Lebesgue measure zero. Note that



we can upper bound the set as follows

Eα′,α′′

⋂

{h : ξ(hı, µı) < 0}

⊆ {h :
∑

i,j

(α′′
ij − α′

ij) ξ(hij , µi) = 0, ξ(hı, µı) < 0}

= {h :
∑

i6=ı,j 6=

(α′′
ij − α′

ij) ξ(hij , µi) = ξ(hı, µı) < 0} (61)

The subset in the first step is justified from the fact that, in

contrary to the definition of Eα′,α′′ in (59), we do not take

α′, α′′ to be optimal for problem (38). We only require that

they yield the same objective in the problem. The second step

follows by the appropriately selected indices ı, .
We will now argue that the last set in (61) has Lebesgue

measure zero. If we fix the values of all the vari-

ables/coordinates hij , i 6= ı, j 6= , there is at most one

value for the variable/coordinate hı that belongs in the set.

The reason is that for values of the hı coordinate where

ξ(hı, µı) < 0, Fact 2 above states that ξ(hı, µı) is strictly

monotonic in hı. Hence there can be at most one value hı

that equals the sum within the last set of (61). This means that

the last set in (61) can be equivalently described by a mapping

from an m ·f−1 dimensional space to the space Hm×f , or in

other words it is a lower-dimensional subset of Hm×f . Hence

it has Lebesgue measure zero. This implies that the first set

in (61) has Lebesgue (and φ) measure zero as well.

The above procedure can be iterated for any pair α′, α′′ to

conclude that in their union set E the value of the subgradient

vector is almost surely unique.

B. Proof of Theorem 1

Let µ∗ be an optimal solution of the dual problem (25).

First, we argue that every pair α(µ∗), p(µ∗) chosen from

the set of Lagrangian minimizers (A,P)(µ∗) at the point µ∗

(cf. (24)) is an optimal solution to primal Problem 1 (equiv-

alently (20)). Under Assumptions 1 and 2, Proposition 2(b)

states that the vector s(µ∗) in (31) has the same value at any

chosen pair α(µ∗), p(µ∗). Since s(µ∗) is also the constraint

slack of the chosen pair in the primal problem (20), then any

Lagrange optimizers α(µ∗), p(µ∗) have the same constraint

slack. Moreover, under Assumptions 1 and 3, Proposition

1(c) states that the optimal primal variables α∗, p∗ are one

such pair of Lagrange optimizers at µ∗, and by definition

they have a feasible constraint slack. Hence all Lagrange

optimizers α(µ∗), p(µ∗) have the same feasible constraint

slack as α∗, p∗. Additionally all optimizers α(µ∗), p(µ∗) yield

the same minimum Lagrangian value L(α(µ∗), p(µ∗), µ∗). By

the form of the Lagrangian in (22) it follows that all optimizers

α(µ∗), p(µ∗) also give the same primal objective in (20) as

the point α∗, p∗, i.e., the minimum P . Hence any optimizer

pair α(µ∗), p(µ∗) is primal optimal. The first statement of the

theorem follows because the scheduling and power allocation

obtained by (37)-(39) at µ∗ describe one pair of Lagrange

optimizers at µ∗, i.e., are optimal solutions to Problem 1.

The convergence of iterations (33)-(34) to the optimal dual

variable µ∗ for stepsizes in (35) relies on the boundedness of

the subgradient vectors (as mentioned after (32)) and follows

from a standard subgradient method argument – for a proof

see, e.g., [24, Prop. 8.2.6].

C. Proof of Proposition 3

We begin by noting that at every time k the vector sk
computed by (41) is a stochastic subgradient for the dual

function g(µ) at the point µk, i.e.,

g(µ′)−g(µk) ≤ (µ′−µk)
T
E[sk

∣

∣µk] for all µ′ ∈ R
m
+ . (62)

To show this fact compare equations (40)-(41) of the online

algorithm with (31) to conclude that E[sk
∣

∣µk] = s(µk)
because hk is i.i.d for every k. Inequality (62) then follows

directly from (30).

Then note that by Assumption 3 there exists a strictly

feasible primal solution α′, p′. Call P ′ the resulting objective

value (20) at this point, and let a positive constant ε′ > 0
denote the constraint slack of (21) at this point, i.e., ci + ε′ ≤
Eh

∑f
j=1 α

′
ij(h) q(hij , p

′
ij(h)). Then we may bound the dual

function (23) at the optimal µ∗ by

D = g(µ∗) ≤ L(α′, p′, µ∗) = P ′+

m
∑

i=1

µ∗
i

[

ci−Eh

f
∑

j=1

α′
ij(h) q(hij , p

′
ij(h))

]

≤ P ′ −

m
∑

i=1

µ∗
i ε

′

Rearranging the above inequality, and since µ∗ ≥ 0, it follows

that µ∗
ℓ ≤

∑m
i=1 µ

∗
i ≤ (P ′−D)/ε′ for every ℓ, i.e., the optimal

dual variables are finite.

Since the optimal dual variables are finite, the distance

‖µk − µ∗‖ between any random µk obtained by Algorithm 1

and the set of optimal dual variables µ∗ is a well-defined and

bounded random variable. The following lemma gives an up-

per bound on this distance. Here recall that as we commented

after (31) the subgradients s(µ) are always bounded in our

problem.

Lemma 1. Let D be the optimal value of the dual problem

(25), µ∗ be an optimal solution, and S be the bound on the

subgradient ‖s(µ)‖ ≤ S for any µ ∈ R
m
+ . Then at each step

k of Algorithm 1 the update of µk+1 satisfies

E[‖µk+1−µ∗‖2 |µk] ≤ ‖µk−µ∗‖2+ ε2kS
2−2εk(D− g(µk))

(63)

Proof: First use the expression µk+1 = [µk + εksk]+ in

Algorithm 1 to write

‖µk+1−µ
∗‖ = ‖[µk+εksk]+−µ

∗‖ ≤ ‖µk+εksk−µ
∗‖, (64)

where the last inequality holds because when projecting on the

positive orthant the distance from a point µ∗ in the orthant can

only decrease. Taking expectation on both sides given µk and

expanding the square norm of the right hand side, we get

E[‖µk+1 − µ∗‖2 |µk] ≤‖µk − µ∗‖2 + ε2kS
2

+ 2εk(µk − µ∗)TE[sk
∣

∣µk] (65)

where we bounded ‖E[sk
∣

∣µk]‖
2 < S2. The statement (63)

follows from (65) by applying inequality (62) with the substi-

tution µ′ = µ∗.



Our goal is to use (63) to show that ‖µk+1 − µ∗‖2 → 0
almost surely. To pursue this we will define a sequence that

behaves as a supermartingale stochastic process and use the

a.s. convergence results for such processes. In particular we

will make use of the following result [27, Th. E7.4].

Theorem 3. Suppose {ak, k ≥ 0} and {bk, k ≥ 0} are

integrable non-negative stochastic processes adapted to a

filtration Fk, i.e., ak, bk measurable with respect to Fk, and

they also satisfy

E[ak+1

∣

∣Fk] ≤ ak − bk (66)

Then ak converges almost surely and bk is almost surely

summable, i.e.,
∑∞

k=0 bk <∞ a.s.

To make the connection between the above theorem and

(63) define

ak = ‖µk − µ∗‖2 +

∞
∑

ℓ=k

ε2l S
2, (67)

bk = 2εk(D − g(µk)), (68)

and let Fk = {µ0, . . . , µk}. Note that the process ak is

well defined because by assumption the stepsizes are square

summable. Moreover ak ≥ 0 and also bk ≥ 0 because by

definition D is the maximum value g(µk) can take (cf. (25)).

Also ak and bk are bounded variables for every k because µk

generated by Algorithm 1 is bounded at every k. Thus ak and

bk are integrable, and trivially measurable with respect to Fk.

To check that condition (66) holds use the definition of ak to

write

E[ak+1

∣

∣Fk] = E[‖µk+1 − µ∗‖2 |µk] +
∞
∑

ℓ=k+1

ε2l S
2

≤ ‖µk − µ∗‖2 + ε2kS
2 − 2εk(D − g(µk)) +

∞
∑

ℓ=k+1

ε2l S
2

(69)

where for the last inequality we used (63). It is immediate that

the right hand side of (69) equals ak−bk by our appropriately

constructed processes. Hence all conditions of Theorem 3 hold

true.

The theorem states that ak converges almost surely to

some random variable. Observe that the second summand
∑∞

ℓ=k ε
2
l S

2 of ak in (67) is deterministic and converges to

0 because of square summability of the stepsizes. Thus we

conclude that the random variable ‖µk − µ∗‖2 converges

almost surely to some random variable.

To arrive at a contradiction suppose the limit random

random variable is not identically zero, i.e., it takes positive

values with nonzero probability. Equivalently there exist δ > 0
and ε > 0 such that with probability δ we have ‖µk−µ

∗‖ ≥ ε
for all sufficiently large k. This implies that µk are bounded

away from the optimal, i.e., that for sufficiently large k we

have D−g(µk) ≥ ε′ for some ε′ > 0. Hence with probability

δ we have

∞
∑

k=0

bk =

∞
∑

k=0

2εk(D − g(µk)) = +∞ (70)

But this contradicts with Theorem 3 which states that
∑∞

k=0 bk = ∞ can only happen at a set of probability

measure zero. Therefore ‖µk − µ∗‖ must converge to zero

with probability 1.

By continuity of the concave dual function g(µ) we also

have that g(µk) converge to the optimal value g(µ∗) = D
a.s.

D. Proof of Theorem 2

To show that (48) holds we first convert it into an equivalent

one involving variables relating to the dual problem (25).

Imitating the steps leading from problem (16) to problem (20),

the statement of (48) becomes equivalent to

lim sup
k→∞

ci − Ehk

[ f
∑

j=1

αij,k q(hij,k, pij,k)

∣

∣

∣

∣

µk

]

≤ 0. (71)

Here to suppress notation we have exploited the fact that

according to the online algorithm the variables αk, pk depend

just on the value of the variable µk and not on the whole

observed channel history (but µk does depend on the whole

history).

Then by the expression of sk given in (41) condition (71) is

equivalent to lim supk→∞ Ehk
[sk

∣

∣µk] ≤ 0. Also we already

argued in the proof of Prop. 3 that Ehk
[sk

∣

∣µk] = s(µk) where

s(µk) is given by (31) and expresses a subgradient of the dual

function g at µk. To sum up, we have shown so far that (48)

is equivalent to lim supk→∞ s(µk) ≤ 0.

Under Assumption 3 we have established in Proposition 3

that for the online algorithm µk → µ∗ almost surely with

respect to the channel sequence {hk, k ≥ 0}. Then we note a

convex analysis fact by [24, Prop. 4.2.3]. If g is concave, and

µk → µ∗, and s(µk) is selected as a subgradient of g at µk,

then every limit point of s(µk) is a subgradient of g at µ∗.

Hence for the sequence of µk obtained by the online algorithm

we have that almost surely the sequence s(µk) converges to a

subgradient of g at µ∗.

Also, as follows from Danskin’s theorem [24, Prop. 4.5.1],

the subgradients of the dual function g at any point µ belong

in the convex hull of the vectors s(µ) obtained in (31). Hence

the sequence s(µk) converges almost surely to the convex hull

of the vectors s(µ∗). But under Assumptions 1, 2, and 3, as

we argued in the proof of Theorem 1, the vectors s(µ∗) take a

unique value that satisfies s(µ∗) ≤ 0. Hence for the sequence

of µk obtained by the online algorithm we have that almost

surely lim supk→∞ s(µk) ≤ 0, which verifies statement (48).

Finally let us prove (49). Recall that the dual function

equals g(µ) = L(α(µ), p(µ), µ) where α(µ), p(µ) are chosen

as Lagrange optimizers at µ according to (24). Using the

definition of the Lagrangian at (22) and the interpretation of

the subgradient s(µ) at (31) as the constraint slack, we have

that for any µk

g(µk) = L(α(µk), p(µk), µk)

= Eh

m
∑

i=1

αi(µk;h)pi(µk;h) + µT
k s(µk) (72)



Now observe that the expectation in (49) equals the expec-

tation given in (72) because by design of Algorithm 1 the

primal variables αk, pk are selected as Lagrange optimizers at

µk. Therefore to show that (49) holds a.s. it suffices to show

that the expectation in (72) converges a.s. to P which equals

D by strong duality.

Proposition 3 establishes that the left hand side of (72)

converges to g(µk)→ D, and also that µk → µ∗ a.s. We have

also already argued that s(µk) → s(µ∗) a.s. Therefore also

µT
k s(µk) → µ∗T s(µ∗) a.s. But by Prop. 1(b) µ∗T s(µ∗) = 0.

This shows that the expectation at the right hand side of (72)

converges to D, which completes the proof.

E. Proof of Corollary 1

The result follows from the preceding proof of Theorem 2.

Once again imitating the steps leading from problem (16) to

problem (20), we see that (50) is equivalent to

ci − E

f
∑

j=1

αij,k q(hij,k, pij,k) ≤ δ′ (73)

for some appropriate positive constant δ′ > 0. The term on

the left hand side is the expected value of the term in (71)

with respect to the random sequence {hk, k ≥ 0} and, as in

the proof of Theorem 2, equals Es(µk). Hence the result we

want to prove is equivalent to lim supk→∞ Es(µk) ≤ 0. In

the proof of Theorem 2 we showed that the random variables

s(µk) converge almost surely to s(µ∗), and that the limit

point satisfies s(µ∗) ≤ 0. Additionally the variables s(µk)
are bounded (see proof of Prop. 3), hence by the Domi-

nated Convergence Theorem [28, Thm. 1.5.6] we conclude

that limk→∞ Es(µk) = E limk→∞ s(µk) = Es(µ∗) ≤ 0,

where the last inequality follows from the monotonicity of

expectation. This completes the proof.
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