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Abstract— We consider a wireless control system where
multiple power-constrained sensors transmit plant output mea-
surements to a controller over a shared wireless medium.
A centralized scheduler grants channel access to a single
sensor on each time step. Assuming an a priori designed
controller, we design scheduling and transmit power policies
that opportunistically adapt to the random wireless channel
conditions experienced by each sensor. The objective is to obtain
a stable system, by minimizing the expected decrease rate of a
given Lyapunov function, while respecting the sensors’ power
constraints. We develop an online optimization algorithm based
on the random channel sequence observed during execution
which converges almost surely to the optimal protocol design.

I. I NTRODUCTION

Wireless control systems in, e.g., industrial or building
automation applications, often involve sensing and actuating
devices at different physical locations that communicate
control-relevant information over shared wireless mediums.
Scheduling access to the medium is critical to avoid inter-
ferences between transmissions but also affects the overall
control performance. Previous work in wired and/or wireless
networked control systems, focused on deriving stability
conditions under given scheduling protocols – see, e.g., [1]–
[3]. The typical approach is to convert the system in some
form of a switching system whence stability properties can be
derived [2], often in conjunction with other network phenom-
ena such as communication delays, uncertain communication
times, and/or packet drops.

Beyond the question of stability, the problem of designing
schedulers suitable for control applications has also been
addressed. The proposed protocols can be generally classified
as either fixed or dynamic. Typical examples of the first
type are periodic protocols, i.e., repeating in a predefined
sequence (e.g., round-robin). Fixed protocols leading to sta-
bility [4], controllability and observability [5], or minimizing
linear quadratic objectives [6] have been proposed. Deriv-
ing otherwise optimal scheduling sequences is recognized
as a hard combinatorial problem [7]. Dynamic scheduler
design constitutes a different approach where based on the
current plant/control system states, informally speaking, the
subsystem with the largest state discrepancy is scheduled to
communicate. Examples of such dynamic schedulers can be
found in, e.g., [2], [8]–[10].

In this paper we focus on scheduling for wireless con-
trol systems and, in contrast to the above approaches, we
examine how scheduling can opportunistically exploit the
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varying channel conditions on the shared wireless medium.
In previous work we have shown that such channel-aware
designs can be utilized when scheduling independent control
tasks whose performance requirements translate to different
channel utilization demands [11]. Here we consider the prob-
lem of scheduling plant output measurements from sensors
to controller when the sensors have limited power resources
(Section II). These power resources can be used during
transmission to counteract channel fading effects and obtain
a higher decoding probability at the receiver/controller [12].
However, the channel fading conditions that a sensor expe-
riences change randomly over time and also differ among
sensors [13, Ch. 14]. Hence dynamically assigning access
to the sensor currently experiencing, e.g., the most favorable
conditions, can save up power. On the other hand, scheduling
should lead to a closed loop control system with stability
guarantees.

We formulate the design of channel-aware scheduling
and power allocation protocols in a stochastic optimization
framework (Section II-A), where a protocol is feasible if
the sensors’ power constraints are met. The objective is
to optimize a closed-loop stability margin measured as the
decrease rate of a given Lyapunov function, in expectation
over the random channel conditions. In Section III we present
an optimization algorithm based on the Lagrange dual prob-
lem. The algorithm does not require prior knowledge of the
channel distribution, and it can be implemented online based
on a random observed channel sequence. We show that the
algorithm converges almost surely to a feasible protocol,
which additionally leads to a stable system if the system is
stabilizable with respect to the selected Lyapunov function.
We conclude with numerical simulations and a discussion on
our results.

Notation: A set of variablesa0, a1, . . . ak is denoted
compactly asa0:k. We denote by≥,�,≻ the comparison
with respect to the cones of the realm-dimensional non-
negative orthantRm

+ , of the realn × n symmetric positive
semi-definite matricesSn

+, and of the realn× n symmetric
positive definite matricesSn

++ respectively. For a matrixM
we denote by‖M‖ the Frobenius norm.

II. PROBLEM FORMULATION

We consider the wireless control architecture of Fig. 1
wherem sensors measuring plant outputs communicate over
a shared wireless medium to the system controller. To avoid
interferences between transmissions, a centralized scheduler
guarantees that at most one sensor isscheduledto access
the medium at each time step. Due to uncertainties in the
wireless channel, which we will be model in detail next, the
transmitted sensor measurements might get lost. We indicate
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Fig. 1. Sensor scheduling in a wireless control architecture. Each sensor
i measures and transmits a plant outputyi to a centralized controller over a
shared wireless medium. A scheduler implemented at the receiver/controller
opportunistically selects which sensor accesses the channel at each time step
based on the random wireless channel conditionsh1, . . . , hm experienced
by the sensors.

with γi,k ∈ {0, 1} the event that sensori is scheduled at
the discrete time stepk and the respective transmission is
successful. Let alsoγ0,k ∈ {0, 1} denote the event that no
sensor transmits successfully at timek, so that

∑m

i=0
γi,k =

1 for all k since these events are disjoint.
Let xk ∈ R

n denote the overall state of the plant and con-
trol system before transmission at timek. System evolution
from xk to xk+1 depends on whether a transmission occurs
at time k and which of the sensors transmits. Suppose the
system follows linear dynamics denoted byAi ∈ R

n×n if
sensori transmits successfully (γi,k = 1), andA0 ∈ R

n×n

when no sensor transmits (γ0,k = 1). We describe then the
system evolution by the switched linear discrete time system

xk+1 =

m
∑

i=0

γi,k Aixk + wk. (1)

with wk modeling an independent identically distributed
(i.i.d.) noise process with mean zero and covarianceW � 0.
An example of such a setup follows.

Example 1. Consider a linear continuous time plant

ẋ = Apx+Bpu+ w,

y = Cx, (2)

perturbed by some white noise processw. Each outputyi(t)
of the vector outputy(t) ∈ R

m is measured by a wireless
sensori, for i = 1, . . . ,m. Also consider a continuous time
dynamic controller

ż = Acz +Bcŷ,

u = Fz +Gŷ, (3)

designed for desirable performance when fed with the plant
output ŷ = y. Due to the wireless sensor communication
the controller has access to a perturbed versionŷ of the real
outputy. If at most one sensor measurement can be received
on discrete time stepstk, a standard convention [1], [2] is
to update the received output at the controller and hold the
remaining ones constant, i.e.,

ŷ(tk) =

m
∑

i=1

Iii [γi,kCx(tk) + (1− γi,k)ŷ(tk−1)] , (4)

whereIii is a square matrix with(i, i) being the only non-
zero element and equal to 1. If communication is periodic

with period Ts the closed loop system can be transformed
(see, e.g., [1], [2]) by augmenting the state space as

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ŷk−1



+





wk

0
0



 (5)

where I00 ≡ 0, and indexk corresponds to the variables
before transmission at timetk. This is a system of the form
(1). The dual architecture where a controller distributes plant
inputs to a set of actuators can be similarly formulated.

In this work the system dynamics are given, i.e., a con-
troller has been already designed, and we focus on design-
ing the wireless communication (scheduling and associated
transmit power) which affects the transmission indicators
γi,k. We describe the wireless channel conditions for linki,
between sensori and the controller, at timek by the channel
fading coefficienthi,k that sensori experiences if it transmits
at time k. Due to propagation effects, the channel fading
stateshi,k change unpredictably [13, Ch. 3] and take values
in a subsetH ⊆ R+ of the positive reals. Channel states
hi,k change not only over timek but also between sensors
i. We grouphi,k for 1 ≤ i ≤ m at time k in a vector
hk ∈ Hm, and we adopt a block fading model whereby
hk are random variables independent across time slotsk
and identically distributed with a multivariate distribution φ
on Hm. Channel states are also independent of the plant
process noisewk. We assume thathk are available before
transmission – see Remark 1 for a practical implementation.
We make the following technical assumption to avoid a
degenerate channel distribution, but otherwise no other prior
information about the channel distribution will be needed for
the communication design in this paper.

Assumption 1. The joint distributionφ of channel stateshk

has a probability density function onHm.

If sensori is scheduled to transmit at timek it selects a
transmit power levelpi,k ∈ [0, pmax]. Channel fading and
transmit power affect the probability of successful decoding
of the message at the receiver. In particular, given the forward
error-correcting code (FEC) in use, the probabilityq that a
packet is successfully decoded is a function of the received
signal-to-noise ratio (SNR). The SNR is proportional to
the received power level expressed by the producth p of
the channel fading state and the allocated transmit power.
Overall we express the probability of success by some given
relationship of the formq(hi,k, pi,k) – see [12] for more
details on this model. An illustration of this relationshipis
shown in Fig. 2. The assumptions on the form of the function
q(hp) are the following.

Assumption 2. The functionq(.) as a function of the product
r = h p for r ≥ 0 satisfies:
(a) q(0) = 0,
(b) q(r) is continuous, and strictly increasing whenq(r) >

0, i.e., for anyr′ > r it holds thatq(r′) > q(r),
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Fig. 2. Complementary error function for practical FEC codes.The
probability of successful decodingq for a FEC code is a sigmoid function
of the received SNR∼ h p.

(c) for anyµ ≥ 0 and for almost all valuesh ∈ H the set
argmin0≤p≤pmax

p− µq(h p) is a singleton.

Parts (a),(b) of this assumption state that the probability
of successful decodingq(h p) will be zero when the received
power levelh p is small, and it becomes positiveq(h p) > 0
and strictly increasing for larger values ofh p. Part (c) is
more stringent, stating essentially thatq(h p) cannot behave
linearly in p for a range of channel valuesh. As shown in
Fig. 2 for cases of practical interestq(h p) has a sigmoid
form and all the above requirements are expected to hold.

Before transmission, a scheduler selects which sensor will
access the channel. We allow for randomized scheduling
and we denote withαi,k the probability that sensori is
selected at timek. For simplicity we require that exactly one
sensor is scheduled, meaning that

∑m

i=1
αi,k = 1. Hence the

scheduling decision is a probability vector of the form

αk ∈ ∆m =

{

α ∈ R
m : α ≥ 0,

m
∑

i=1

αi = 1

}

, (6)

Given schedulingαk ∈ ∆m, power allocationpk ∈
[0, pmax]

m, and channel statehk ∈ Hm, we can model the
transmission eventsγi,k as Bernoulli random variables with

P[γi,k = 1
∣

∣hk, αk, pk] = αi,k q(hi,k, pi,k) (7)

This expression states that the probability that sensori suc-
cessfully transmits equals the probability thati is scheduled
to transmit and the message is correctly decoded at the
receiver. The event that no sensor transmits happens with
probability

P[γ0,k = 1
∣

∣hk, αk, pk] = 1−

m
∑

i=1

αi,k q(hi,k, pi,k), (8)

which is the complement of the probability that some sensor
transmits.

Our goal is to design scheduling and power allocation
protocols that exploit the random channel conditions on the
shared wireless medium in order to make an efficient use
of the sensors’ power resources and lead to a stable control
system. The exact problem specification is presented next.

A. Communication design specification

We consider scheduling and power variablesαk, pk that
adapt to the current channel stateshk, so they can be

expressed as mappingsαk = α(hk), pk = p(hk) of the form

A = {α : Hm 7→ ∆m}, P = {p : Hm 7→ [0, pmax]
m}. (9)

Since channel stateshk are i.i.d. over timek these mappings
do not need to change over time. Substitutingα(.), p(.) in
our communication model (7), the expected probability of
successful transmission for a sensori at timek becomes

P(γi,k = 1) = Ehk

{

P[γi,k = 1
∣

∣hk, α(hk), p(hk)]
}

= Ehαi(h) q(hi, pi(h)), (10)

where in the last equality we dropped the index of the
channel variablehk since they are i.i.d. with distributionφ
over timek, meaning that the probabilities in (10) become
constant for allk. Similarly by (8) we have

P(γ0,k = 1) = 1−

m
∑

i=1

Ehαi(h) q(hi, pi(h)). (11)

The goal of the communication design is to make an
efficient use of the power resources available at the sensors
while ensuring that the resulting control system is stable.In
particular suppose each sensori has a power budgetbi and
we require that the expected power consumption induced by
the communication design at each slotk is limited to

Ehαi(h)pi(h) ≤ bi, for all i = 1, . . . ,m. (12)

The expectation on the left hand side is with respect to the
channel distributionhk ∼ φ and accounts for the consumed
transmit power whenever sensori is scheduled.

Next we motivate the control system stability specification.
Under the described communication design the transmission
sequence{γi,k, 0 ≤ i ≤ m, k ≥ 0} is independent of
the system statexk. The resulting system (1) becomes a
random jump linear system with i.i.d. jumps since probabil-
ities P(γi,k = 1) are constant over timek. Necessary and
sufficient stability conditions for such systems are known.

Theorem 1. [14, Cor. 1] Consider system (1) with constant
probabilitiesP(γi,k = 1) for all k. Then the system is mean
square stable, i.e., there existx∞ ∈ R

n andX∞ ∈ S
n
+ such

that

lim
k→∞

‖Exk − x∞‖ = 0, and lim
k→∞

‖Exkx
T
k −X∞‖ = 0

(13)
if and only if there exists a matrixP ∈ Sn

++ satisfying

m
∑

i=0

P(γi,k = 1)AT
i PAi ≺ P. (14)

The intuition behind the theorem is that for fixed prob-
abilities P(γi,k = 1) a Lyapunov-like functionV (x) =
xTPx, x ∈ R

n decreases in expectation at each step. In
particular, (14) is equivalent to

E
[

V (xk+1)
∣

∣xk

]

=

m
∑

i=0

P(γi,k = 1)xT
kA

T
i PAixk + Tr(PW )

< V (xk) + Tr(PW ) (15)



holding for anyxk ∈ R
n, where the first equality follows

from (1). Motivated by this observation about stability, we
pose the problem of designing wireless communication vari-
ables that make the decrease rate in (15) as low as possible.

Suppose a quadratic Lyapunov functionV (x) =
xTPx, x ∈ R

n, with P ∈ Sn
++, is fixed. We are interested

in channel-aware scheduling and power allocation variables
(cf. (9)) that minimize the Lyapunov decrease rate in (15)
and also meet the power budgets (12). This is a stochastic
optimization problem of the form

Optimal scheduling and power allocation design

minimize
r, α∈A, p∈P

r2 (16)

subject to Eh

m
∑

i=1

αi(h)pi(h) ≤ bi, i = 1, . . . ,m (17)

D0 −

m
∑

i=1

Ehαi(h) q(hi, pi(h))Di � rP (18)

where for compactness we defined

D0 = AT
0 PA0, Di = AT

0 PA0 −AT
i PAi, (19)

for i = 1, . . . ,m. The semidefinite constraint (18) follows
from (14) by substituting the probabilities (10), (11) induced
by the communication design and introducing an auxiliary
variabler for the Lyapunov decrease rate (or increase ifr >
1). The objective in (16) is an increasing function ofr, so that
the optimal rate is as small as possible, and for convenience
is chosen to be strictly convex. For technical reasons we keep
an implicit constraint0 ≤ r ≤ rmax, which is not restrictive.
The left hand side in (18) will always be bounded since the
terms in expectations are probabilities (bounded by 1).

Finally we note that problem (16) is always strictly feasi-
ble. Consider for instancep ≡ 0 andr ≥ 0 sufficiently large
so that both (17) and (18) hold with strict inequality. We
denote then the optimal value of the problem byP ∗ and an
optimal solution byr∗, α∗(.), p∗(.). Even though the problem
is infinite-dimensional and non-convex in general, in the
following section we present an algorithm based on the La-
grange dual problem which converges to the optimal solution.
Moreover the algorithm does not require any prior knowledge
of the channel distribution, but can be implemented using the
channel states measured online during execution.

Remark 1. The centralized channel-aware scheduler of
the multiple access channel architecture in Fig. 1 can be
implemented as follows. Channel conditions on each wireless
link can be measured by pilot signals sent from the sensors to
the receiver/controller at each time step before the scheduling
decision. Depending on the measured channel states, the
scheduler at the receiver selects and notifies via the reverse
channel a sensor to transmit. Channel state information can
also be passed this way back to the selected sensor, which
accordingly adapts its transmit power.

III. O PTIMAL SCHEDULING AND POWER ALLOCATION

In this section we present an algorithm that converges to
the optimal channel-aware scheduling and power allocation

policy. The algorithm employs the Lagrange dual problem
of (16) and exploits the fact that there is no duality gap.
Moreover, the algorithm can be implemented online based
on a random channel sequence and converges almost surely
to the optimal operating point with respect to (16).

To define the Lagrange dual problem of (16) consider non-
negative dual variablesν ∈ R

m
+ corresponding to each of

the m power capacity constraints in (17), and a symmetric
positive semidefinite matrixΛ ∈ S

n
+ corresponding to the

semidefinite constraint (18). The Lagrangian is written as

L(r, α, p, ν,Λ) = r2 +

m
∑

i=1

νi[Ehαi(h)pi(h)− bi]

+ Tr(Λ[D0 −

m
∑

i=1

Ehαi(h) q(hi, pi(h))Di − rP ]), (20)

while the dual function is defined as

g(ν,Λ) = min
r, α∈A, p∈P

L(r, α, p, ν,Λ). (21)

For convenience let us also denote the set of primal variables
r, α, p that minimize the Lagrangian atν,Λ by

(R,A,P)(ν,Λ) = argmin
r, α∈A, p∈P

L(r, α, p, ν,Λ). (22)

In general this set might contain multiple solutions. We will
refer to any such solution triplet asr(ν,Λ), α(ν,Λ), p(ν,Λ).
We define then the Lagrange dual problem as

D∗ = maximize
ν∈Rm

+
,Λ∈Sn

+

g(ν,Λ). (23)

By standard Lagrange duality theory the dual function
g(ν,Λ) at any pointν,Λ is a lower bound on the optimal cost
P ∗ of problem (16), hence alsoD∗ ≤ P ∗ (weak duality).
The following proposition however, based on the results in
similar stochastic optimization problems [15], establishes a
strong duality result (D∗ = P ∗) and provides a relationship
between the optimal primal and dual variables.

Proposition 1. Let Assumption 1 hold, letP ∗ be the optimal
value of the optimization problem (16) and(r∗, α∗, p∗) be
an optimal solution, and letD∗ be the optimal value of the
dual problem (23) andν∗,Λ∗ be an optimal solution. Then

(a) P ∗ = D∗ (strong duality)
(b) (r∗, α∗, p∗) ∈ (R,A,P)(ν∗,Λ∗)

Proof. As noted after problem (16), a strictly feasible solu-
tion always exists. Statement (a) under Assumption 1 and
strict feasibility follows from [15, Theorem 1] where a
similar optimization setup is examined. The proof is omitted
due to space limitations.

To show (b) consider a primal optimal solution
(r∗, α∗, p∗). This gives an optimal valueP ∗ for problem
(16). The Lagrangian in (20) at the point of optimal primal
and dual variables evaluates to

L(r∗, α∗, p∗, ν∗,Λ∗) = P ∗ +
m
∑

i=1

ν∗i si + Tr(Λ∗S) ≤ P ∗,

(24)



where for compactness we denote the constraint slack of
(r∗, α∗, p∗), i.e., the brackets in (20), assi for the power
constraints ofi and asS for the semidefinite constraint. Since
the optimal primal solution is feasible for (16), it satisfies
si ≤ 0 and S � 0, and since the dual variables satisfy
ν∗ ≥ 0 andΛ∗ � 0, we get the last inequality in (24).

On the other hand by definition of the dual functiong in
(21) at the pointν∗,Λ∗ we have that

L(r∗, α∗, p∗, ν∗,Λ∗) ≥ g(ν∗,Λ∗) = P ∗ (25)

where for the last equality we used the fact thatg(ν∗,Λ∗) =
D∗ by dual optimality, andD∗ = P ∗ by part (a). Combining
(24) and (25) we conclude that all the included inequalities
hold with equality. Then (25) holding with equality shows
that r∗, α∗, p∗ yield an optimal value for the Lagrangian at
ν∗,Λ∗, and verifies (b) by definition (22).

Interestingly this proposition states that strong duality
holds despite the fact that (16) is not convex. More im-
portantly, as we follow next, it suggests the possibility of
developing an algorithm to find the optimal dual variables
ν∗,Λ∗, and then via (b) recover the optimal primal variables
r∗, α∗, p∗. To prepare for the algorithm, note that the La-
grangian in (20) can be equivalently written as

L(r, α, p, ν,Λ) = r2 − r Tr(ΛP ) + Tr(ΛD0)− νT b

+ Eh

m
∑

i=1

αi(h) [νipi(h)− Tr(ΛDi) q(hi, pi(h))] (26)

By this expression finding the primal Lagrange optimizers
in (21)-(22) is easy. By strict convexity and differentiability
with respect tor, the minimizerr(ν,Λ) is unique and equals

r(ν,Λ) = min{ 1/2Tr(ΛP ), rmax} (27)

where we enforced the implicit constraint0 ≤ r ≤ rmax.
Optimizing over the functionsα(.), p(.) in (26) is also

simplified because they are decoupled over channel states
h ∈ Hm. Power minimizers at eachh are given by

pi(ν,Λ;h) = argmin
0≤p≤pmax

νi p− Tr(ΛDi) q(hi, p), (28)

which implies a further decoupling among sensorsi – see
Remark 2. Scheduling minimizers for eachh in (26) are
obtained as

α(ν,Λ;h) = argmin
α∈∆m

m
∑

i=1

αi ξ(hi, νi,Λ), (29)

where

ξ(hi, νi,Λ) = min
0≤p≤pmax

νip− Tr(ΛDi) q(hi, p). (30)

By the form of∆m in (6) the minimizing scheduling is deter-
ministic. The scheduler picks with certainty the sensor with
the lowest valueξ(hi, νi,Λ) (or one of them if non-unique).
This reveals the opportunistic nature of the channel-aware
scheduler which, based on the current channel conditions,
dynamically assigns channel access to the sensor with lowest
relative valueξ(hi, νi,Λ).

We now present an iterative algorithm to solve the dual
problem. As noted earlier, this is an online algorithm de-
pending on an observed random channel sequence. Hence
the variables are indexed by real time stepsk ≥ 0. The
iterative steps of the algorithm are as follows:

i) At time stepk observe current channel conditionshk,
and given current dual variablesνk,Λk, compute primal
optimizers of the Lagrangian athk using (27)-(29) as

rk = r(νk,Λk) (31)

pi,k = pi(νk,Λk;hk), i = 1, . . . ,m, (32)

αk = α(νk,Λk;hk) (33)

ii) Update the dual variables as

νi,k+1 = [νi,k + ǫk(αi,kpi,k − bi)]+ (34)

Λk+1 = [Λk+ǫk(D0−
m
∑

i=0

αi,k q(hi,k, pi,k)Di−rkP )]+

(35)
where[ ]+ denotes the projection on the non-negative
orthant and on the positive semidefinite cone in (34) and
(35) respectively, andǫk ≥ 0 is a step size.

The intuition behind the algorithm is that dual variables
are updated in (34), (35) in a direction which in expectation
is a subgradient of the dual functiong. The following
proposition establishes that the algorithm converges to the
optimal solution for the dual of the optimal scheduling and
power allocation problem.

Proposition 2. Consider the optimization problem (16) and
its dual derived in (23). Based on a sequence{hk, k ≥ 0}
of i.i.d. random variables with distributionφ on Hm, let the
algorithm described in steps (i)-(ii) be employed with step
sizes satisfying

∞
∑

k=0

ǫ2k < ∞,

∞
∑

k=0

ǫk = ∞. (36)

Then almost surely with respect to{hk, k ≥ 0} it holds

lim
k→∞

(νk,Λk) = (ν∗,Λ∗), and lim
k→∞

g(νk,Λk) = D∗

(37)
whereν∗,Λ∗ is an optimal solution of the dual problem and
D∗ is the optimal value of the dual problem.

Proof. See Appendix A.

Besides optimizing over dual variables, the algorithm
can be interpreted as a communication protocol of how to
schedule sensors and allocate transmit power, adapting online
to the observed channel conditions. Since the communication
protocol is designed to serve the wireless control architecture
of Section II, the following theorem establishes the provided
control performance guarantees.

Theorem 2. Consider the wireless control architecture of
Fig. 1 with plant dynamics described by (1), and a given
function V (x) = xTPx, P ∈ S

n
++. Consider transmission

variablesγi,k described by (7), (8), depending on channel



stateshk ∈ Hm which are i.i.d. with distributionφ, schedul-
ing αk ∈ ∆m, and power allocationpk ∈ [0, pmax]

m. Let
Assumptions 1, 2 hold. Ifαk, pk adapt to the channel se-
quenceh0:k according to algorithm (31)-(35), with stepsizes
ǫk satisfying (36), then almost surely the power consumption
for each sensori satisfies

lim sup
k→∞

E [αi,kpi,k |h0:k−1] ≤ bi, (38)

and the decrease rate ofV (x) satisfies for anyx ∈ R
n

lim sup
k→∞

E
[

V (xk+1)
∣

∣xk = x, h0:k−1

]

≤ r∗V (x)+Tr(PW )

(39)
wherer∗ is the optimal solution of problem (16).

Proof. See Appendix B.

According to the theorem, the protocol converges almost
surely to a configuration that respects the sensors’ power
constraints and minimizes the decrease rate of the given
Lyapunov function. This however does not a priori imply
system stability. If the algorithm converges to somer∗ > 1
then the resulting communication protocol may lead to either
an unstable or a stable system. This does not contradict the
necessary and sufficient stability condition of Theorem 1
which states thatsomeappropriate quadratic Lyapunov func-
tion exists. The online algorithm is based on a fixed function,
under which stability may not be provable. If howeverr∗ <
1 then indeed stability is guaranteed (cf. Theorem 1). A
necessary and sufficient condition forr∗ < 1 is that the
feasible set of problem (16) contains a pointr < 1. We
restate this observation in the following corollary.

Corollary 1. Consider the setup of Theorem 2 and addition-
ally suppose the optimization problem (16) contains a feasi-
ble solution withr < 1. Then almost surelyP [γi,k|h0:k−1]
for i = 1, . . . ,m converge to values such that system (1) is
mean square stable.

After some remarks on the structure of the communication
protocol, we present numerical simulations of the online
algorithm in the following section.

Remark 2. The online communication protocol implies a
decentralized power allocation. In step (32), as noted in
(28), the transmit powerpi,k for sensori, when scheduled,
depends not on the whole channel vectorhk but only on
the channel statehi,k of the respective linki, as well as
on the variablesνi,k,Λk. Similar separability results are
common in wireless communication networks [15]. From an
implementation perspective, as noted in Remark 1, channel
stateshi,k can be estimated at each sensori. The variables
νi,k,Λk can be sent from the scheduler to the scheduled
sensori at each time step. Asνi,k,Λk → ν∗i ,Λ

∗ according
to Prop.2, at the limit operating point each sensor can locally
storeν∗i ,Λ

∗ and select power according to the stored values
and the current channel conditions. We note however that the
scheduling variable in (33) is centralized since, as noted in
(29), it depends on all dual variables and the channel states
observed by all sensors.
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Fig. 3. Rate variablerk during online algorithm. The variable converges
to a Lyapunov decrease rate less than 1, implying mean square stability.
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remains bounded, after an initial transient phase where the online algorithm
has not converged to a stabilizing communication protocol.
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Fig. 5. Sensors’ average power consumption during the onlinealgorithm.
In the limit both satisfy the power constraintbi = 20mW .

IV. N UMERICAL SIMULATIONS

We consider the frequently used benchmark example of
a batch reactor [2], [8]. The continuous time plant and
controller dynamics can be found in the referred works,
and involve a plant with 4 states, 2 inputs and m = 2
outputs, and a PI controller with 2 states. Following Example
1 we obtain under a transmission periodTs = 0.02s the
discrete time switched dynamics of the form (1). Then a
quadratic Lyapunov function needs to be chosen. Consider
a function that would guarantee stability if each sensors
transmits successfully40% of the time, e.g., satisfying

2
∑

i=1

0.4AT
i PAi + 0.2AT

0 PA0 = 0.98P − 0.001 I. (40)

The value0.98 is selected after some trials and relates to the
fact that the system has an eigenvalue very close to 1 (also
documented in [2]), while the term−0.001 I guarantees the
left and right hand sides are almost equal.

We model the channel gainsh1,k, h2,k as independent over
time k and also among the two sensors, both exponentially
distributed with a normalized mean 1. The maximum trans-
mit power and the power budgets are modeled aspmax =
100mW andbi = 20mW respectively for both sensors. The
function q(h p) is shown in Fig. 2.

We run the online algorithm of (31)-(35) in Section III,
which converges to a communication protocol where sensors
1, 2 transmit with probabilities≈ 0.54, 0.40 respectively,
slightly deviating from the values assumed in the Lyapunov



construction (40). As shown in Fig. 3 the algorithm con-
verges to a protocol that stabilizes the system according to
(39), since the rate variablerk tends tor∗ ≈ 0.98. Stability is
also verified at the system state plot in Fig. 4. The resulting
protocol meets the sensor’s power constraints, as we see in
Fig. 5 where we plot the mean power1/N

∑N

k=1
αi,kpi,k

for each sensori during the algorithm. Before convergence,
sensor 2 does not transmit often enough or with enough
power, explaining the large initial states in Fig. 4.

V. CONCLUDING REMARKS

In this paper we considered the problem of scheduling
power-constrained sensors in wireless control systems. We
developed a protocol where scheduling decisions and trans-
mit power allocation are selected online based on the ob-
served random wireless channel conditions and the objective
is to obtain a configuration such that the control system is
stable. The protocol is based on a given Lyapunov function,
under which however the system might not be stabilizable.
The problem of determining Lyapunov functions suitable for
the scheduling algorithm requires further examination, and
also relates to how the control operation is pre-designed.
Future work includes as well the design of schedulers addi-
tionally adapting to plant state as in, e.g., [2], [8].

APPENDIX

A. Proof of Proposition 2

Using the notation introduced in the Lagrange optimizers
in (27)-(29) let us define

si(ν,Λ;h) =αi(ν,Λ;h)pi(ν,Λ;h)− bi, (41)

S(ν,Λ;h) =D0 −

m
∑

i=0

αi(ν,Λ;h) q(hi, pi(ν,Λ;h))Di

− r(ν,Λ)P. (42)

This way the terms in the parentheses of steps (34), (35)
can be expressed via the vectors(νk,Λk;hk) and the matrix
S(νk,Λk;hk) respectively.

First we note that the vectors(ν,Λ;h) and the matrix
S(ν,Λ;h) are stochastic subgradients for the dual function
g in (21) at the pointν,Λ, i.e.,

g(ν′,Λ′)− g(ν,Λ) ≤ (ν′ − ν)T Ehs(ν,Λ;h)

+ Tr((Λ′ − Λ)T EhS(ν,Λ;h) (43)

for all ν′ ∈ R
m
+ and Λ′ ∈ S

n
+. The expectations in this

expression are with respect to the distributionφ of h. To
show (43) observe that for anyν′,Λ′ we have by the
definition of the dual function in (21) and the Lagrange
minimizers in (22) that

g(ν′,Λ′) ≤ L({r, α, p}(ν,Λ), ν′,Λ′) (44)

Subtracting from each side of this inequality the term
g(ν,Λ) = L({r, α, p}(ν,Λ), ν,Λ) and expanding the terms
of the Lagrangian as in (20) we get exactly (43).

Hence steps (34), (35) of the algorithm follow random
subgradient directions. Note also that subgradients are always
bounded in our problem since all terms in (41), (42) are

bounded. Moreover, since the primal problem (16) is always
strictly feasible, it follows easily that the optimal dual
variables are finite. We establish the following fact.

Fact 1. At eachk it holds that

E
[

‖νk+1 − ν∗‖2 + ‖Λk+1 − Λ∗‖2 |νk,Λk

]

≤ ‖νk − ν∗‖2

+ ‖Λk − Λ∗‖2 + 2ǫ2kB
2 − 2ǫk(D

∗ − g(νk,Λk)) (45)

where B is a bound on the stochastic subgradients
‖s(ν,Λ;h)‖ ≤ B and ‖S(ν,Λ;h)‖ ≤ B for any ν,Λ, h.

Proof. First use the expression forνk+1 in (34), with sk =
s(νk,Λk;hk), to write

‖νk+1−ν∗‖ = ‖[νk+ǫksk]+−ν∗‖ ≤ ‖νk+ǫksk−ν∗‖, (46)

where the last inequality holds because projecting on the
positive orthant cone can only decrease the distance from a
point ν∗ in the orthant cone. Squaring the norms in (46),
expanding the square of the right hand side, and taking
expectation on both sides givenνk,Λk we get

E[‖νk+1 − ν∗‖2 |νk,Λk] ≤ ‖νk − ν∗‖2 + ǫ2kB
2

+ 2ǫk(νk − ν∗)TE[sk
∣

∣ νk,Λk], (47)

where we bounded‖sk‖2 < B2. Similar arguments for the
variableΛk+1 lead to

E[‖Λk+1−Λ∗‖2 |νk,Λk] ≤ ‖Λk − Λ∗‖2 + ǫ2kB
2

+ 2ǫkTr((Λk − Λ∗)E[Sk

∣

∣ νk,Λk]). (48)

The statement (45) follows from summing (47) and (48) and
applying inequality (43) with the substitution(ν′,Λ′, ν,Λ) =
(ν∗,Λ∗, νk,ΛK).

Our goal is to use (45) to show that‖νk − ν∗‖2 +
‖Λk − Λ∗‖2 → 0 almost surely. The proof relies on a
supermartingale convergence argument frequently used in
stochastic optimization. First note that at anyνk,Λk the
dual function is lower than the optimal value (cf. (23)), so
D∗ − g(νk,Λk) ≥ 0. Hence (45) can be simplified to

E
[

‖νk+1 − ν∗‖2 + ‖Λk+1 − Λ∗‖2 |νk,Λk

]

≤ ‖νk − ν∗‖2

+ ‖Λk − Λ∗‖2 + 2ǫ2kB
2. (49)

Then consider the non-negative random variable

ak = ‖νk − ν∗‖2 + ‖Λk − Λ∗‖2 +

∞
∑

ℓ=k

2ǫ2lB
2, (50)

which depends on the sequence (filtration)Fk =
{ν0:k,Λ0:k}. Note that ak is bounded (hence integrable)
becauseνk,Λk generated by (34), (35) are bounded at every
k and also the stepsizes are square summable. By the relation
(49) it easily follows thatak satisfiesE[ak+1

∣

∣Fk] ≤ ak.
Such a stochastic process is called a supermartingale [16,
Ch. 5]. Moreover, a non-negative supermartingale converges
almost surely to some limit random variable [16, Th. 5.2.9].
Observe that the second summand

∑∞

ℓ=k 2ǫ
2
l S

2 of ak in
(50) is deterministic and converges to 0 because of square
summability of the stepsizes. Hence the random variable



‖νk − ν∗‖2 + ‖Λk −Λ∗‖2 converges almost surely (to some
random variable).

To arrive at a contradiction suppose the limit random
random variable is not identically zero.Equivalently, with
probability δ > 0 we have‖νk − ν∗‖2 + ‖Λk − Λ∗‖2 ≥ ǫ
for someǫ > 0 for all sufficiently largek. This implies that
νk,Λk are bounded away from the optimal, hence

E

∞
∑

k=0

2ǫk(D
∗ − g(νk,Λk)) = +∞. (51)

Note however that taking expectation in (45) and iterating
for k = 0, . . . , N − 1 we get

E
[

‖νN − ν∗‖2 + ‖ΛN − Λ∗‖2
]

≤ ‖ν0 − ν∗‖2 + ‖Λ0 − Λ∗‖2

+

N−1
∑

k=0

2ǫ2kB
2 − E

N−1
∑

k=0

2ǫk(D
∗ − g(νk,Λk)). (52)

The left hand side is non-negative, but (51) implies that
in the limit as N → ∞ the right hand side becomes
negative. This is a contradiction. Therefore it must be that
‖νk−ν∗‖2+‖Λk−Λ∗‖2 converges to zero with probability
1. By continuity of the (concave) dual functiong(ν,Λ) we
also have thatg(νk,Λk) converges tog(ν∗,Λ∗) = D∗ a.s.

B. Proof of Theorem 2

We will show (38) and (39) by relating them to the
online optimization of problem (16) and its dual. Note that
the algorithm in (31)-(33) selectsrk, pk, αk as functions of
νk,Λk, hk, where νk,Λk further depend on the observed
history h0:k−1. Using the notation introduced in (41), (38)
can be equivalently be written as

lim sup
k→∞

Ehk
s(νk,Λk;hk) ≤ 0, (53)

where we suppressed the dependence on the historyh0:k−1

in (38) by the variablesνk,Λk. The expectation in (53) is
only with respect tohk, not the past (random) history.

Equation (39) can be transformed in a similar way. Since
(39) needs to hold for any vectorx we may use the
semidefinite notation, as we did in converting (15) to (18),
to rewrite (39) equivalently as

lim sup
k→∞

{Ehk
S(νk,Λk;hk) + (r(νk,Λk)− r∗)P} � 0,

(54)
where we made use of the notation introduced in (42).

By Prop. 2 νk,Λk → ν∗,Λ∗ a.s., hence by continuity
of the functionr(ν,Λ) in (27) we have thatr(νk,Λk) →
r(ν∗,Λ∗) a.s. We also note thatr∗ = r(ν∗,Λ∗) as follows
from Prop.1(b) and the uniqueness of the Lagrangian mini-
mizer r (cf.(26), (27). Hencer(νk,Λk) → r∗ a.s. The rest
of the proof shows thatEhk

s(νk,Λk;hk), Ehk
S(νk,Λk;hk)

become non-positive in the limit almost surely, so that (53)
and (54) hold true.

As we argued in the proof of Prop. 2 the vector
Ehk

s(νk,Λk;hk) and matrixEhk
S(νk,Λk;hk) are subgra-

dients of the dual functiong(νk,Λk) with respect toνk and
Λk respectively (cf.(43)). Sinceg is concave andνk,Λk →
ν∗,Λ∗, all limit points of the sequence of subgradients

Ehk
s(νk,Λk;hk) andEhk

S(νk,Λk;hk) are subgradients at
ν∗,Λ∗ [17, Prop. 4.2.3].

Thus for (53) and (54) we need to show that all subgra-
dients ofg at ν∗,Λ∗ are non-positive. It can be shown that
under Assumption 2 the subgradient takes a unique value.
This fact is omitted due to space limitations but can be
found in [11, Lemma 1]. Then by Prop.1(b) the value of the
subgradient ofg at ν∗,Λ∗ can be computed as the constraint
slack of the the optimal primal variablesr∗, α∗, p∗, which is
non-positive because the optimal point is primal feasible.
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