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Abstract—We consider a wireless control system where varying channel conditions on the shared wireless medium.
multiple power-constrained sensors transmit plant output mea- |n previous work we have shown that such channel-aware
surements to a controller over a shared wireless medium. agigns can be utilized when scheduling independent dontro
A centralized scheduler grants channel access to a smglet ks whose performance requirements translate to differe
sensor on each time step. Assuming an a priori designed asks w S p.r rmance requir nts tr sg r
controller, we design scheduling and transmit power policies Channel utilization demands [11]. Here we consider the prob
that opportunistically adapt to the random wireless channel lem of scheduling plant output measurements from sensors
conditions experienced by each sensor. The objective is to obtain to controller when the sensors have limited power resources
a stable system, by minimizing the expected decrease rate of a (Section Il). These power resources can be used during

given Lyapunov function, while respecting the sensors’ power - .
constraints. We develop an online optimization algorithm based transmission to counteract channel fading effects androbta

on the random channel sequence observed during execution @ higher decoding probability at the receiver/controlte2][
which converges almost surely to the optimal protocol design. However, the channel fading conditions that a sensor expe-

riences change randomly over time and also differ among
sensors [13, Ch. 14]. Hence dynamically assigning access
Wireless control systems in, e.g., industrial or buildingg the sensor currently experiencing, e.g., the most falera
automation applications, often involve sensing and awigat conditions, can save up power. On the other hand, scheduling
devices at different physical locations that communicatghould lead to a closed loop control system with stability
control-relevant information over shared wireless medium gy grantees.
Scheduling access to the medium is critical to avoid inter- \we formulate the design of channel-aware scheduling
ferences between transmissions but also affects the bverghy power allocation protocols in a stochastic optimizatio
control performance. Previous work in wired and/or wirelesframework (Section 11-A), where a protocol is feasible if
networked control systems, focused on deriving stabilithe sensors’ power constraints are met. The objective is
conditions under given scheduling protocols — see, . [1to optimize a closed-loop stability margin measured as the
[3]. The typical approach is to convert the system in SOM@ecrease rate of a given Lyapunov function, in expectation
form of a switching system whence stability properties oan byyer the random channel conditions. In Section 1l we presen
derived [2], often in conjunction with other network phenom o gptimization algorithm based on the Lagrange dual prob-
ena such as communication delays, uncertain communicatigfin The algorithm does not require prior knowledge of the
times, and/for packet drops. ___channel distribution, and it can be implemented online hase
Beyond the question of stability, the problem of designing, 5 random observed channel sequence. We show that the
schedulers suitable for control applications has also b?%lrfgorithm converges almost surely to a feasible protocol,
addressed. The proposed protocols can be generally @@ssifyhich additionally leads to a stable system if the system is
as either fixed or dynamic. Typical examples of the firsiapilizable with respect to the selected Lyapunov fumctio
type are periodic protocols, i.e., repeating in a predefingfje conclude with numerical simulations and a discussion on
sequence (e.g., round-robin). Fixed protocols leadingde s s results.
bility [4], controllability and observability [5], or mimizing Notation: A set of variablesag,aq,...a, is denoted
linear quadratic objectives [6] have been proposed. Deri\é‘ompactly asag.,. We denote by>, >, = the comparison
ing otherwise optimal scheduling sequences is recognizggin respect to the cones of the real-dimensional non-
as a hard combinatorial problem [7]. Dynamic schedule,qeg(mve orthanR™, of the realn x n symmetric positive
design constitutes a different approach where based on thgyi_definite matrice$”, and of the reah x n symmetric

current plant/control system states, informally speakthg  positive definite matrices” | respectively. For a matrid/

subsystem with the largest state discrepancy is schedoled fo genote by M| the Frobenius norm.
communicate. Examples of such dynamic schedulers can be
found in, e.g., [2], [8]-[10]. Il. PROBLEM FORMULATION

In this paper we focus on scheduling for wireless con- we consider the wireless control architecture of Fig. 1
trol systems and, in contrast to the abpvg approach_es, Wferem sensors measuring plant outputs communicate over
examine how scheduling can opportunistically exploit th, shared wireless medium to the system controller. To avoid
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{kgatsis, pajic, aribeiro, pappag@seas.upenn.edu. transmitted sensor measurements might get lost. We irdicat
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Y1 hy with period T the closed loop system can be transformed
Scheduler/ (see, e.g., [1], [2]) by augmenting the state space as
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Fig. 1. Sensor scheduling in a wireless control architectiach sensor i=0 I;C 0 I—-1; Uk—1 0

1 measures and transmits a plant outputo a centralized controller over a

shared wireless medium. A scheduler implemented at the retmiméroller  where Io = 0, and indexk corresponds to the variables
opportunistically selects which sensor accesses the ehaheach time step before transmission at timeg. This is a system of the form
based on the random wireless channel conditiops . ., h,, experienced . ) L

by the sensors. (1). The dual architecture where a controller distributiesipp

inputs to a set of actuators can be similarly formulated.

with v, € {0,1} the event that sensaris scheduled at In this work the system dynamlcs are given, i.e., a con-
the discrete time step and the respective transmission isroller has been already designed, and we focus on design-
successful. Let alsag . € {0,1} denote the event that no iNg the. wireless communlcatlon (schedullng a_md gsspmated
sensor transmits successfully at titheso thaty " ;. x = transmit powe_r) which _affects the transmls_s_lon indicators
1 for all k since these events are disjoint. 7i,k- We describe the wireless channel conditions for link
Let z;, € R” denote the overall state of the plant and conPetween sensarand the controller, at timé by the channel
trol system before transmission at time System evolution fading coefficient,; ;. that sensof experiences if it transmits
from z, t0 2.1 depends on whether a transmission occurdt time k. Due to propagatlon effects, the channel fading
at time & and which of the sensors transmits. Suppose thatesh; » change unpredictably [13, Ch. 3] and take values
system follows linear dynamics denoted Hy ¢ R**" if ina subset{ C R, of the_posmve reals. Channel states
sensori transmits successfullyy(; — 1), and A, € Rnxn hi. change not only over time but also between sensors
when no sensor transmitsy(; = 1). We describe then the @ We grouph;,, for 1 < i < m at time k in a vector

system evolution by the switched linear discrete time syste/x € H™, and we adopt a block fading model whereby
hi, are random variables independent across time stots

1) and identically distributed with a multivariate distribar ¢

m
= i Az . .
Tkt Z Yirk AilBk + W on H™. Channel states are also independent of the plant

=0

. . . . . L rocess noisev,. We assume thak, are available before
with w;, modeling an independent identically d'Str'bumd{)ransmission — see Remark 1 for a practical implementation.
(i.i.d.) noise process with mean zero and covariaite- 0.

We make the following technical assumption to avoid a
An example of such a setup follows. degenerate channel distribution, but otherwise no othier pr
Examp|e 1. Consider a linear continuous time p|ant information about the channel distribution will be needed f
the communication design in this paper.
T = Apx + Byu+w, ] o o
_C @) Assumption 1. The joint distribution¢ of channel states,,
y==rT has a probability density function cH™.

perturbed by some white noiie. processEach outpu;(t) If sensori is scheduled to transmit at timeit selects a
of the vector outputy(t) € R™ is measured by a wireless transmit power levep; x € [0, pmax]. Channel fading and

sensori, for i = 1,...,m. Also consider a continuous time y.onemit power affect the probability of successful dengdi
dynamic controller of the message at the receiver. In particular, given thedmw
5= Auz + B, error-correcting code (FEC) in use, the probabiljtyhat a

packet is successfully decoded is a function of the received
signal-to-noise ratio (SNR). The SNR is proportional to
designed for desirable performance when fed with the plathe received power level expressed by the produgtof
output § = y. Due to the wireless sensor communicatiorthe channel fading state and the allocated transmit power.
the controller has access to a perturbed vergioh the real Overall we express the probability of success by some given
outputy. If at most one sensor measurement can be receiveglationship of the formg(h; i, p; ) — see [12] for more

on discrete time steps,, a standard convention [1], [2] is details on this model. An illustration of this relationshgp

to update the received output at the controller and hold trfghown in Fig. 2. The assumptions on the form of the function
remaining ones constant, i.e., q(hp) are the following.

u = Fz+ Gy, (3

. m . Assumption 2. The functiong(.) as a function of the product
§(te) = > L [risCa(te) + (1 = 7ix)d(te-1)], (@) = hp for r > 0 satisfies:
=t (@ q(0) =0,
where;; is a square matrix witt{i, i) being the only non- (b) ¢(r) is continuous, and strictly increasing whefr) >
zero element and equal to 1. If communication is periodic 0, i.e., for anyr’ > r it holds thatq(r’) > ¢(r),



Probability of successful decoding for practical FEC codes

PR i ‘ ‘ expressed as mappings = a(hg), pr = p(hy) of the form

***** R R A={a:H" s Ay}, P={p: H™ 5 [0, pax]™}. (9)

I R A R S e Since channel statésg, are i.i.d. over time: these mappings
***** do not need to change over time. Substitutw@), p(.) in
our communication model (7), the expected probability of
***** £ it Attt Anieiaints S successful transmission for a sensat time & becomes

0 L L L L L ]

e Y N P(Yie = 1) = En,, {Plyig = 1] hi, (hi), p(hi)] }
Fig. 2. Complementary error function for practical FEC cod&he = Ena;(h) q(hi, pi(h)), (10)
probability of successful decodingfor a FEC code is a sigmoid function ) ] )
of the received SNR- h p. where in the last equality we dropped the index of the

channel variablé;, since they are i.i.d. with distributior
(c) for any . > 0 and for almost all valueé € H the set over timek, meaning that the probabilities in (10) become

argming,<, p— pg(hp) is a singleton. constant for allk. Similarly by (8) we have
Parts (a),(b) of this assumption state that the probability m
of successful decoding(h p) will be zero when the received P(yox =1) = 1= Epai(h)q(hi,pi(h).  (11)

power levelh p is small, and it becomes positivgéh p) > 0 =1

and strictly increasing for larger values afp. Part (c) is  The goal of the communication design is to make an

more stringent, stating essentially thgh p) cannot behave efficient use of the power resources available at the sensors

linearly in p for a range of channel valugs As shown in  while ensuring that the resulting control system is stalsle.

Fig. 2 for cases of practical interegthp) has a sigmoid particular suppose each sensdras a power budgéi; and

form and all the above requirements are expected to holdwe require that the expected power consumption induced by
Before transmission, a scheduler selects which sensor wile communication design at each stois limited to

access the channel. We allow for randomized scheduling

and we denote withy; ; the probability that sensoi is Epai(h)pi(h) <b;, foralli=1,....m. (12)

selected at timé. For simplicity we require that exactly one

sensor is scheduled, meaning thaf" ; «; » = 1. Hence the

scheduling decision is a probability vector of the form

The expectation on the left hand side is with respect to the
channel distributiorh;, ~ ¢ and accounts for the consumed
transmit power whenever sensois scheduled.
Next we motivate the control system stability specification
» (6)  under the described communication design the transmission
sequence{vy; x,0 < i < m, k > 0} is independent of
Given schedulingey, € A™, power allocationp, € the system state,. The resulting system (1) becomes a
[0, pmax]™, @and channel statk;, € H™, we can model the random jump linear system with i.i.d. jumps since probabil-
transmission events; ;, as Bernoulli random variables with ities P(y; , = 1) are constant over timé. Necessary and
sufficient stability conditions for such systems are known.

akEAm:{aeRm:aZO,Zaizl

i=1

Plyie = 1| hies e, pie) = i i q(hi e, i) (7)
Theorem 1. [14, Cor. 1] Consider system (1) with constant
probabilitiesP(~; , = 1) for all k. Then the system is mean
square stable, i.e., there exist, € R" and X, € S" such

This expression states that the probability that sensorc-
cessfully transmits equals the probability thas scheduled
to transmitand the message is correctly decoded at th
receiver. The event that no sensor transmits happens with

probability lim ||Ezg — 00| = 0, and lim ||Exgpz; — Xoo| =0
k—o0 k—o0
Plyok = 1| by, i) = 1= > ik q(hik,pix), (8) if and only if there exists a matri® € ST, satisfying
i=1
which is the complement of the probability that some sensor Zp(% w=1ATPA; < P. (14)
transmits. i=0 )

Our goal is to design scheduling and power allocation
protocols that exploit the random channel conditions on the
shared wireless medium in order to make an efficient u
of the sensors’ power resources and lead to a stable cont?olp, . .
system. The exact problem specification is presented nextpartlcular, (14) is equivalent to

A. Communication design specification E[V(zpe1) |2k = ZP(%’“ =12l ATPA;zy, + Tr(PW)
We consider scheduling and power variabtes p;, that i=0
adapt to the current channel statég, so they can be < V(xg) +Tr(PW) (15)

The intuition behind the theorem is that for fixed prob-
ilites P(v;x = 1) a Lyapunov-like functionV(z) =
x, z € R™ decreases in expectation at each step. In



holding for anyz; € R™, where the first equality follows policy. The algorithm employs the Lagrange dual problem
from (1). Motivated by this observation about stability, weof (16) and exploits the fact that there is no duality gap.
pose the problem of designing wireless communication varMoreover, the algorithm can be implemented online based
ables that make the decrease rate in (15) as low as possilda.a random channel sequence and converges almost surely
Suppose a quadratic Lyapunov functiol(z) = to the optimal operating point with respect to (16).

zT Pz, z € R™, with P € S7 ., is fixed. We are interested  To define the Lagrange dual problem of (16) consider non-
in channel-aware scheduling and power allocation varsabléegative dual variables € R’ corresponding to each of

(cf. (9)) that minimize the Lyapunov decrease rate in (15he m power capacity constraints in (17), and a symmetric
and also meet the power budgets (12). This is a stochaspiositive semidefinite matrix\ € S’} corresponding to the
optimization problem of the form semidefinite constraint (18). The Lagrangian is written as

Optimal scheduling and power allocation design Lir,a,p,v, A) = 2 + Zl/i[]Ehai(h)pi(h) by

minimize  r? (16) P
r,a€A, peP

subject to E,,,zm:a,;(h)p,;(h) <b, i=1,....m @7  TIrADo- ;Eho‘i(h)qw“pi(h))Di —rP)), (20)

=1

Dy — ZEhQi(h) q(hi, pi(h))D; < rP (18)
=1

while the dual function is defined as

A) = i L(r A). 21

g, A) = min _ L(ra,p,v,A) (21)

where for compactness we defined For convenience let us also denote the set of primal vasable
Do =AYPAy,, D;=ATPAy— ATPA,, (19) r, «,p that minimize the Lagrangian at A by

for i = 1,...,m. The semidefinite constraint (18) follows (R, A, P)(v,A) = argmin L(r,a,p,v,A). (22)

from (14) by substituting the probabilities (10), (11) ired r, €A, pEP

by the communication design and introducing an auxiliaryn general this set might contain multiple solutions. Wel wil

variabler for the Lyapunov decrease rate (or increase i  refer to any such solution triplet agv, A), a(v, A), p(v, A).

1). The objective in (16) is an increasing functionrofo that \We define then the Lagrange dual problem as

the optimal rate is as small as possible, and for convenience . o

is chosen to be strictly convex. For technical reasons wp kee D = maximize g(v,A). (23)

an implicit constrain® < r < r,.x, Which is not restrictive. A

The left hand side in (18) will always be bounded since thB8Y standard Lagrange duality theory the dual function

terms in expectations are probabilities (bounded by 1).  9(v,A) atany point/, A is a lower bound on the optimal cost
Finally we note that problem (16) is always strictly feasi-P* of problem (16), hence als®* < P* (weak duality).

ble. Consider for instanqe; 0andr >0 Sufﬁcient|y |arge The fOIIOWing prOpOSition however, based on the results in

so that both (17) and (18) hold with strict inequality. WeSimilar stochastic optimization problems [15], estal#ista

denote then the optimal value of the problem By and an strong duality resultp* = P*) and provides a relationship

optimal solution by, a*(.), p*(.). Even though the problem between the optimal primal and dual variables.

is infinite-dimensional and non-convex in general, in th‘?’roposition 1. Let Assumption 1 hold, Ig¢* be the optimal
following section we present an algorithm based on the Las e of the optimization problem (16) arfe*, o*, p*) be
grange dual problem which converges to the optimal solution , optimal solution, and leD* be the optimal value of the

Moreover the algorithm does not require any prior knowledgg, 4 problem (23) and*, A* be an optimal solution. Then
of the channel distribution, but can be implemented usieg th R . .
channel states measured online during execution. (a) P* = D" (strong duality)

(b) (r*,a*,p*) € (R, A, P)(v*,A*)

Remark 1. The centralized channel-aware scheduler o . _
the multiple access channel architecture in Fig. 1 can erOOf' As noted after problem (16), a strictly feasible solu-

implemented as follows. Channel conditions on each Wiraeleé'o_n alway_s .?X'Sts' Statement () under Assumption 1 and
link can be measured by pilot signals sent from the sensors?H'(_:t feas!b|l_|ty _fOHOWS fr_om [153 Theorem 1] v_vhere a
the receiver/controller at each time step before the sdimedu similar opt|m|z§lt|9n §etup is examined. The proof is oruitte
decision. Depending on the measured channel states, 91 ¢ to space Ilmltatlons.. . . .
scheduler at the receiver selects and notifies via the revers ° *srlow (b) consider a primal o*ptlmal solution
channel a sensor to transmit. Channel state information C{E‘?’a ,P"). This gives an optimal valug>* for problem

also be passed this way back to the selected sensor, wh )- The Lagrangian in (20) at the point of optimal primal
" and dual variables evaluates to

accordingly adapts its transmit power. O
m
Il1. OPTIMAL SCHEDULING AND POWER ALLOCATION L(r*,a*, p*, v, A*) = P* + Z”?'*S’? + Tr(A*S) < P*,
In this section we present an algorithm that converges to i=1

the optimal channel-aware scheduling and power allocation (24)



where for compactness we denote the constraint slack ofWe now present an iterative algorithm to solve the dual
(r*, a*,p*), i.e., the brackets in (20), ag for the power problem. As noted earlier, this is an online algorithm de-
constraints of and asS for the semidefinite constraint. Since pending on an observed random channel sequence. Hence
the optimal primal solution is feasible for (16), it satisfie the variables are indexed by real time stédps> 0. The

s; < 0andS =< 0, and since the dual variables satisfyiterative steps of the algorithm are as follows:

v* >0 andA* = 0, we get the last inequality in (24). i) At time stepk observe current channel conditiohs,
On the othe_r hand by definition of the dual functigrin and given current dual variables, A, compute primal
(21) at the point/*, A* we have that optimizers of the Lagrangian &, using (27)-(29) as
L(r*, o, p*,v",A") > g(v*,A") = P~ (25) re = (v, Ag) (31)

where for the last equality we used the fact that*, A*) = pik = pi(Vk, Mg hy), i=1,....m,  (32)
D* by dual optimality, and>* = P* by part (a). Combining ar = a(vg, Ag; hy) (33)

(24) and (25) we conclude that all the included inequalities_ _
hold with equality. Then (25) holding with equality shows 1) Update the dual variables as
that r*, o*, p* yield an optimal value for the Lagrangian at

. .. ik = Vik i.kDi -—-@ 34

v*, A*, and verifies (b) by definition (22). O N R )]+ (34)
Interestingly this proposition states that strong duality A, ., = [Ak+€k(DO_Z i ¢(hi g, Dik)Di—71P)] &

holds despite the fact that (16) is not convex. More im- i—o

portantly, as we follow next, it suggests the possibility of (35)

developing an algorithm to find the optimal dual variables ~Where[ ], denotes the projection on the non-negative

v*, A*, and then via (b) recover the optimal primal variables ~ ©orthant and on the positive semidefinite cone in (34) and

r*,a*,p*. To prepare for the algorithm, note that the La-  (35) respectively, and, > 0 is a step size.

grangian in (20) can be equivalently written as The intuition behind the algorithm is that dual variables

are updated in (34), (35) in a direction which in expectation

is a subgradient of the dual functiop. The following
proposition establishes that the algorithm converges ¢o th

+Ep Zai(h) [vipi(h) — Tr(AD;) q(hi, pi(h))]  (26) optimal solution for the dual of the optimal scheduling and

=t power allocation problem.

By this expression finding the primal Lagrange optimizers . . o

in (21)-(22) is easy. By strict convexity and differentityi Proposition 2. Consider the optimization problem (16) and

with respect tar, the minimizerr(v, A) is unique and equals [tS dual derived in (23). Based on a sequer{ég, k > 0}
of i.i.d. random variables with distributiop on H™, let the

r(v,A) = min{ 1/2Tr(AP), rmax} (27)  algorithm described in steps (i)-(ii) be employed with step
sizes satisfying

L(r,a,p,v,A) =72 — r Tr(AP) + Tr(ADy) — v7b

m

where we enforced the implicit constrait< » < rp.x.

.Op.tllmlzmg over the functionsx(.),p(.) in (26) is also i 2 _ i": -
simplified because they are decoupled over channel states € < 0 €k = 0.
h € H™. Power minimizers at each are given by

pi(v,A;h) = argmin v;p —Tr(AD;) q(hi,p), (28)

(36)
k=0 k=0

Then almost surely with respect {@,, k¥ > 0} it holds

0SPSPmax lim (v, Ag) = (v*,A"), and lim g(vg, Ax) = D"
. . . . A k—o0 k—o0
which implies a further decoupling among sensobrs see (37)
Remark 2. Scheduling minimizers for eaghin (26) are wherev*, A* is an optimal solution of the dual problem and
obtained as D~ is the optimal value of the dual problem.
a(v, A; h) = argmin Z a; E(hi,vi, A), (29) Proof. See Appendix A. O
acAm £
© =1 Besides optimizing over dual variables, the algorithm
where can be interpreted as a communication protocol of how to
schedule sensors and allocate transmit power, adaptiigeonl|

§(hiyvis A) = og;rgﬁnax vip = Tr(ADi) q(hi,p)- - (30) 45 the observed channel conditions. Since the communicatio

protocol is designed to serve the wireless control architec
of Section Il, the following theorem establishes the predid
control performance guarantees.

By the form of A™ in (6) the minimizing scheduling is deter-
ministic. The scheduler picks with certainty the sensohwit
the lowest valu€ (h;, v;, A) (or one of them if non-unique).

This reveals the opportunistic nature of the channel-awafiéheorem 2. Consider the wireless control architecture of
scheduler which, based on the current channel conditiorisig. 1 with plant dynamics described by (1), and a given
dynamically assigns channel access to the sensor with fowésnction V(z) = 27 Pz, P ¢ S’ .. Consider transmission

relative valueg(h;,v;, A). variables~; ;, described by (7), (8), depending on channel



statesh;, € H™ which are i.i.d. with distributionp, schedul- 1
ing ar, € A,,, and power allocatiorp;, € [0, pmax]™. Let
Assumptions 1, 2 hold. Wy, p, adapt to the channel se-
guencehg., according to algorithm (31)-(35), with stepsizes

e, satisfying (36), then almost surely the power consumptior %8, 0 100" 150 200 280 300 350 400

Rate r(tk)

for each sensoi satisfies Time t (s)
. Fig. 3. Rate variable;, during online algorithm. The variable converges
hin sup E [ kpi [how—1] < bs, (38) t0a Lyapunov decrease rate less than 1, implying mean squiitgt
— 00
and the decrease rate 6f(x) satisfies for anyr € R =
X 800}
limsup E [V (zx41) |2k = @, hous—1] < r*V(2)+Tr(PW) £ 400l
k—o0 3
. . B (39) O
wherer* is the optimal solution of problem (16). 0 10 2 e © 0 %0 60
Proof. See Appendix B. [0  Fig. 4 Norm of system statfz(t)|| during online algorithm. The norm

remains bounded, after an initial transient phase whererheeoalgorithm
According to the theorem, the protocol converges almodgs not converged to a stabilizing communication protocol.
surely to a configuration that respects the sensors’ power

N
[y

constraints and minimizes the decrease rate of the given £

Lyapunov function. This however does not a priori imply % 19

system stability. If the algorithm converges to sonfe> 1 % 18 :
then the resulting communication protocol may lead to eithe 2 17 1l
an unstable or a stable system. This does not contradict theé 16 f
necessary and sufficient stability condition of Theorem 1 157 0 100 150 200
which states thasomeappropriate quadratic Lyapunov func- Time t (s)

tion exists. The online algorithm is based on a fixed functiorrig. 5. _ Sensors’ average power consumption during the oaligerithm.
under which stability may not be provable. If howeveér<  In the limit both satisfy the power constraibt = 20mW.
1 then indeed stability is guaranteed (cf. Theorem 1). A

necessary and sufficient condition 'f®T < 1_is that the IV. NUMERICAL SIMULATIONS
feasible set of problem (16) contains a point< 1. We )
restate this observation in the following corollary. We consider the frequently used benchmark example of

a batch reactor [2], [8]. The continuous time plant and
Corollary 1. Consider the setup of Theorem 2 and additiongontroller dynamics can be found in the referred works,
ally suppose the optimization problem (16) contains a feasjnd involve a plant with 4 states, 2 inputs and m = 2
ble solution withr < 1. Then almost surel® [v; x|ho.k—1]  outputs, and a PI controller with 2 states. Following Examnpl
for i =1,...,m converge to values such that system (1) i3 we obtain under a transmission perigd = 0.02s the
mean square stable. discrete time switched dynamics of the form (1). Then a

After some remarks on the structure of the communicatiofadratic Lyapunov function needs to be chosen. Consider
protocol, we present numerical simulations of the onlin& function that would guarantee stability if each sensors
algorithm in the following section. transmits successfull§0% of the time, e.g., satisfying

Remark 2. The online communication protocol implies a
decentralized power allocation. In step (32), as noted in
(28), the transmit powep; , for sensori, when scheduled,
depends not on the whole channel vectgr but only on The value0.98 is selected after some trials and relates to the
the channel staté; ; of the respective linki, as well as fact that the system has an eigenvalue very close to 1 (also
on the variablesy; ;, Ax. Similar separability results are documented in [2]), while the term0.001 I guarantees the
common in wireless communication networks [15]. From ateft and right hand sides are almost equal.

implementation perspective, as noted in Remark 1, channelWe model the channel gains , hs ;. as independent over
statesh, ,, can be estimated at each sensofhe variables time & and also among the two sensors, both exponentially
vi k. Ar, can be sent from the scheduler to the scheduledistributed with a normalized mean 1. The maximum trans-
sensor; at each time step. As; ,, Ay, — v, A* according mit power and the power budgets are modeletbas, =

to Prop.2, at the limit operating point each sensor can lpcal100mW andb; = 20mW respectively for both sensors. The
storev}, A* and select power according to the stored valuesinction ¢(h p) is shown in Fig. 2.

and the current channel conditions. We note however that theWe run the online algorithm of (31)-(35) in Section I,
scheduling variable in (33) is centralized since, as noted which converges to a communication protocol where sensors
(29), it depends on all dual variables and the channel statés 2 transmit with probabilitiesz 0.54, 0.40 respectively,
observed by all sensors. [0 slightly deviating from the values assumed in the Lyapunov

2
Z 04ATPA; +0.2ATPAy =0.98 P —0.0011. (40)

i=1



construction (40). As shown in Fig. 3 the algorithm conbounded. Moreover, since the primal problem (16) is always
verges to a protocol that stabilizes the system according $trictly feasible, it follows easily that the optimal dual
(39), since the rate variable tends tor* =~ 0.98. Stability is  variables are finite. We establish the following fact.

also verified at the system’state plot in Flg.' 4. The resultm'gact 1. At eachk it holds that

protocol meets the sensor’s power constraints, as we see in

Fig. 5 where we plot the mean powgyN szj:l @ikPik K [|vipr — v ? + Ak — AP Jog, Ag] < Jlve — ¥

for each sensor during the algorithm. Before convergence, Ar — AF|2 2 2 *

. . — 2¢; B — 2e(D* — A 45
sensor 2 does not transmit often enough or with enoughJr 1A% 1"+ 26 e 9w, Ax)) (45)
power, explaining the large initial states in Fig. 4. where B is a bound on the stochastic subgradients

V. CONCLUDING REMARKS [Is(v,A;h)|| < B and ||S(v,A; h)|| < B for any v, A, h.

In this paper we considered the problem of schedulingr0of. First use the expression fof.,, in (34), with s;. =
power-constrained sensors in wireless control systems. Al i, Ar; by, ), to write
developed a protocol where scheduling decisions and tran o ok o
mit power allocation are selected online based on the obﬁ-[lwrl Vil = letersile—v7l < latersi—v7, (46)
served random wireless channel conditions and the obgctiwhere the last inequality holds because projecting on the
is to obtain a configuration such that the control system igositive orthant cone can only decrease the distance from a
stable. The protocol is based on a given Lyapunov functiompoint »* in the orthant cone. Squaring the norms in (46),
under which however the system might not be stabilizablexpanding the square of the right hand side, and taking
The problem of determining Lyapunov functions suitable foexpectation on both sides given, A, we get
the scheduling algorithm requires further examinatiord an
also relates to how the control operation is pre-designed. E
Future work includes as well the design of schedulers addi- + 26 (v — ) Elsy | vk, Ak, (47)
tionally adapting to plant state as in, e.g., [2], [8].

[vhss = v [, Ak] < v = v*|* + B2

where we bounded|s,||*> < B2. Similar arguments for the

APPENDIX variable Ay, lead to
A. UProof Ef Propo.SItloln 2 ; I o ]E[|‘Ak+1_A*H2 |Vk,Ak} < ||Ak _ A*H2 + eiBQ
sing the notation Introduced In the Lagrange optimizers 2. Tr((Ar — A*EIS A 48
in (27)-(29) let us define + 26 Tr((A = ADE[Sk |1, Arl)- - (48)

The statement (45) follows from summing (47) and (48) and

si(v; Ash) = i, A h)pi(v, As h) = bi, 41)  applying inequality (43) with the substitutiqe’, A/, v, A) =

S(V7A;h) :D[) — Zai(u,A; h) q(hi,pi(l/,[\; h))Dl (V 7A 7Vk,AK). D
i=0 Our goal is to use (45) to show thdt, — v*|? +
—r(v,A)P. (42) ||[Ay — A*||* — 0 almost surely. The proof relies on a

This way the terms in the parentheses of steps (34), (3§§Jperma_rt|nga!e convergence argument frequently used in
. ' ‘“Stochastic optimization. First note that at any, A the
can be expressed via the vect@ry,, Ay; hy) and the matrix

S(vk, Ay hy) respectively dual function is lower than the optimal value (cf. (23)), so
First we note that the vectos(v,A; k) and the matrix D" = g(v, A) = 0. Hence (45) can be simplified to
S(v,A; h) are stochastic subgradients for the dual functiong, [||VkJrl —U*))2 A+ [ Akgr — A2 |, Ak] < vk — v*|?
g in (21) at the point, A, i.e., 4l Ag — A*|? + 22 B2, (49)
g(l/aA/) _g(VaA) S(V/ - V)TEhS(VaA; h)
+Tr((A — AT EpS(v,A;h) (43)

for all ' € R” and A’ € S7. The expectations in this  ar = [v —v* [+ |Ax — A"|* + ) _2¢7B%,  (50)
expression are with respect to the distributiorof h. To t=k
show (43) observe that for any’, A’ we have by the which depends on the sequence (filtratiod, =
definition of the dual function in (21) and the Lagrange{v.;, Ap..}. Note thata, is bounded (hence integrable)
minimizers in (22) that because/,, A;, generated by (34), (35) are bounded at every
IoAl IoAl k and also the stepsizes are square summable. By the relation
g, A") < L({r,a,p}(v,A), v, A') (44) (49) it easily follows thata, satisfiesE[ax+1 | Fi] < ay.
Subtracting from each side of this inequality the ternBuch a stochastic process is called a supermartingale [16,
g(v,A\) = L({r,a,p}(v,A),v,A) and expanding the terms Ch. 5]. Moreover, a non-negative supermartingale congerge
of the Lagrangian as in (20) we get exactly (43). almost surely to some limit random variable [16, Th. 5.2.9].
Hence steps (34), (35) of the algorithm follow randonObserve that the second summahd,”, 2¢25? of ay in
subgradient directions. Note also that subgradients w@yal (50) is deterministic and converges to 0 because of square
bounded in our problem since all terms in (41), (42) arsummability of the stepsizes. Hence the random variable

Then consider the non-negative random variable



|k — v*||? + || Ax — A*||? converges almost surely (to someE,, s(vk, Ay; hy) andEy, S(vk, Ax; hy) are subgradients at

random variable).

v*, A* [17, Prop. 4.2.3].

To arrive at a contradiction suppose the limit random Thus for (53) and (54) we need to show that all subgra-
random variable is not identically zero.Equivalently, lwit dients ofg at v*, A* are non-positive. It can be shown that

probability § > 0 we have||vy, — v*||? + |[Ax — A*[]? > €

for somee > 0 for all sufficiently largek. This implies that

vk, A, are bounded away from the optimal, hence

under Assumption 2 the subgradient takes a unique value.
This fact is omitted due to space limitations but can be
found in [11, Lemma 1]. Then by Prop.1(b) the value of the
subgradient of; at v*, A* can be computed as the constraint

EY " 26x(D* = g(vi, Ar)) = +00. (51)
k=0

Note however that taking expectation in (45) and iterating
fork=0,...,N —1 we get

E [llow — v " + [An = A ] < o — v7[I* + [ Ao — A*1?

(1]

N-1 N-1 [2]
+ Z 2¢:B* - E Z 2e(D* — g(vg, Ak)). (52)
k=0 k=0

The left hand side is non-negative, but (51) implies thatl3l
in the limit as N — oo the right hand side becomes
negative. This is a contradiction. Therefore it must be thats]
|k — v*||% + || Ax. — A*||* converges to zero with probability

1. By continuity of the (concave) dual functigi{v, A) we

also have thay (v, Ax) converges tgy(v*,A*) = D* a.s. [5]

B. Proof of Theorem 2

We will show (38) and (39) by relating them to the
online optimization of problem (16) and its dual. Note that
the algorithm in (31)-(33) selects;, px, o as functions of
Vi, A, b, where v, Ay, further depend on the observed
history hg.;,—1. Using the notation introduced in (41), (38) [8]
can be equivalently be written as

(6]

(7]

limsup Eyp,, s(vg, Ag; hi) <0, ]

k— o0

(53)

where we suppressed the dependence on the history;

in (38) by the variables/;, A,. The expectation in (53) is [10]

only with respect toh,, not the past (random) history.
Equation (39) can be transformed in a similar way. Since

(39) needs to hold for any vectar we may use the [11]

semidefinite notation, as we did in converting (15) to (18),

to rewrite (39) equivalently as

limsup {Ep, S(vk, Ag; hi) + (r(vi, Ax) — r*)P} <0,
k—o0 [12]

(54)

where we made use of the notation introduced in (42).

By Prop. 2, A, — v*,A* a.s., hence by continuity
of the functionr(v, A) in (27) we have that (v, Ax) —
r(v*,A*) a.s. We also note that* = r(v*, A*) as follows
from Prop.1(b) and the uniqueness of the Lagrangian min[i15]
mizer r (cf.(26), (27). Hence (v, Ax) — r* a.s. The rest
of the proof shows thaE,, s(vk, Ax; i), En, S(vk, Ax; hi)
become non-positive in the limit almost surely, so that (53
and (54) hold true. [17]

As we argued in the proof of Prop. 2 the vector
Ep, s(vg, Ag; hy) and matrixEp, S (v, Ag; hy) are subgra-
dients of the dual functiog(vy, Ax) with respect to, and
Ay, respectively (cf.(43)). Since is concave andy, Ay —
v*, A*, all limit points of the sequence of subgradients

[13]
[14]

6]

slack of the the optimal primal variable$, o*, p*, which is
non-positive because the optimal point is primal feasible.
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