
Architecture-Centric Software Development for
Cyber-Physical Systems

Oleg Sokolsky, Miroslav Pajic, Nicola Bezzo, and Insup Lee
PRECISE Center

University of Pennsylvania
Philadelphia, PA, USA

{sokolsky, pajic, nicbezzo, lee}@seas.upenn.edu

ABSTRACT
We discuss the problem of high-assurance development of
cyber-physical systems. Specifically, we concentrate on the
interaction between the development of the control system
layer and platform-specific software engineering for system
components. We argue that an architecture-centric approach
allows us to streamline the development and increase the
level of assurance for the resulting system. The case study
of an unmanned ground vehicle illustrates the approach.

1. INTRODUCTION
Problem statement and motivation. Cyber-physical
systems (CPS) are characterized by a tight interrelation be-
tween physical aspects of the system, computational algo-
rithms that control and guide the system, and communica-
tion between independent entities within the system. This
tight relationship makes design of cyber-physical systems
a challenging problem (e.g., overviews of some modeling,
analysis and integration challenges for CPS can be found
in [16, 5]). Design decisions have to take all of these as-
pects into consideration, and system modeling and develop-
ment tools and languages, such as Ptolemy II [4] and ES-
MoL [14], support modeling, simulation and development of
such heterogenous systems. For example, Ptolemy II can
be exploited for system design using an actor oriented ap-
proach. However, to the best of our knowledge, it only allows
for the use of actors that are defined within Ptolemy. Simi-
larly, the Embedded Systems Modeling Language (ESMoL)
is a software architecture language [14] that allows for the
integration of Simulink blocks and existing C code within
Time-Triggered system architectures, while restricting com-
ponent interactions that can be specified [16].

Existing CPS development frameworks usually assume the
use of a single tool or tool-ecosystem. On the other hand, in
CPS development process, different aspects of system devel-
opment are typically handled by different groups within the
project team and require different expertise. Historically,
control engineers, embedded software developers, system in-
This research is supported in part by DARPA HACMS program under
agreement FA8750-12-2-0247 and by GRL Program, NRF of Korea, Min-
istry of Science, ICT & Future Planning (2013K1A1A2A02078326). The
views expressed are those of the authors and may not reflect the official pol-
icy or position of the sponsors.
Permission is granted to the CPSArch 2014 organizers to distribute this pa-
per to the workshop attendees by hosting it, with password protection, on
the workshop website with the understanding that all copyright associated
with this work is retained with the authors.
First Workshop on Cyber-Physical System Architectures and Design
Methodologies (CPSArch 2014) October 17, 2014, New Delhi, India
.

tegrators, etc., worked separately. Existing development
techniques, deeply entrenched in each of the communities,
reflect this separation. However, CPS development demands
closer collaboration between these groups and requires pro-
cesses that support such closer collaboration. At the same
time, tighter interaction between different aspects of the sys-
tem requires changing the interfaces between these aspects.
Control designers should be more aware of capabilities of the
embedded platform, while designers of embedded network-
ing should take chosen control strategies into account when
planning communications within the system. This makes in-
tegration of the system more challenging, since a change in
one aspect of the system renders other aspects inconsistent.
Furthermore, it highlights the need to incorporate architec-
tural modeling of the system as part of the design process,
to ensure that each system component/functionality remain
consistent with any architectural and system changes. The
importance of the architectural system modeling has led to
development of OMG SysML [9] widely used for systems en-
gineering, and Architecture Analysis and Design Language
(AADL) [6] for modeling of hardware and software architec-
tures in embedded systems.

In this paper, we consider a model-based approach to
CPS development that aims to support techniques familiar
to developers in each of the individual domains and at the
same time facilitate closer interactions between development
groups and reduce the challenge of integration of different
aspects together. The motivation for this work comes from
our experience with developing the control system for a rel-
atively simple vehicular CPS. We initially applied a model-
based approach that relied on model analysis followed by
code generation. However, we have encountered multiple
hurdles that had to be overcome through significant man-
ual effort at the integration stage. By incorporating archi-
tectural modeling into the development approach and us-
ing it to drive model analysis, we intend to alleviate these
hurdles, ensure consistency between different model analysis
and seamless integration of different system aspects.
Challenges. The primary challenge in the CPS develop-
ment is the heterogeneous nature of techniques used in the
process. As a result, abstractions used in different phases of
model-based CPS development are very different. Ideally,
there should be a common abstraction to base the devel-
opment on, or a set of compatible abstractions. However,
such a common abstraction that works equally well for all
aspects of development seems unlikely, at least in the short
run. Furthermore, prevalence of certain development tools
in some of the development phases, such as Simulink in the

domain of control systems, makes it difficult to find common
ground. This is especially highlighted for tools (including
Simulink) without clearly defined operational semantics In
particular, Simulink becomes increasingly cumbersome to
use once we move into the domain of low-level, platform-
specific modeling and code implementation, partially due to
its limitations in capturing issues such as concurrency, non-
determinism, etc. Even if it was possible to build all the
necessary techniques into a single tool and base them on
a common abstraction, we would still face resistance from
developers familiar with prevalent tools in their domains.

Because of this primary challenge, instead of searching
for a common development approach, we advocate a frame-
work that would allow us to use existing development tech-
nologies, ensuring their consistent application throughout
the development process. The use of disparate technolo-
gies, however, brings forth the integration challenge, where
components developed using different technologies and by
different teams have to be put together in a consistent way.

Integration challenges manifest themselves in multiple ways
throughout the development process and arise through dif-
ferent kinds of integration. Here, we consider only a few of
them. Horizontal integration is encountered whenever differ-
ent aspects of the system functionality are developed inde-
pendently and yield a collection of modules that operate log-
ically concurrently and need to interact with each other. The
challenges of horizontal integration are typically addressed
by using interfaces that allow interaction, while abstracting
away internal details of each module. Traditional interface
definitions, however, do not take resource constraints such as
computation time, communication bandwidth and latency,
or power consumption into account. Resource-aware inter-
faces have been an active research area for a while. A differ-
ent kind of integration challenge is vertical integration, where
different aspects of behavior within a module need to be in-
tegrated together. Examples of vertical integration include
extending functional code with fault-tolerance capabilities or
adding platform-specific wrappers to platform-independent
code generated by controller design tools.
The vision of architecture-centric CPS development.
We believe that the challenges of CPS development outlined
above can be addressed by employing an approach built
around an architectural model of the system and relying on
virtual integration to build confidence in the system design
before building it. Virtual integration [8] is a recent concept
in model-based engineering that emphasizes the use of ar-
chitectural models to ensure compatibility of independently
developed modules within the architecture. The challenge
in virtual integration is to find the right amount of detail in
the model to make a trade-off between complexity and pre-
cision of analysis. We believe that such an approach would
allow us to build an effective toolchain for CPS development,
utilizing the strong aspects of existing legacy development
tools to produce appropriate parts of the system implemen-
tation and seamlessly tie these parts together using virtual
integration techniques.

2. MOTIVATIONAL EXAMPLE
We are applying such an architecture-centric CPS devel-

opment framework to the case study of control system de-
velopment for the LandShark,1 a fully electric unmanned

1See http://www.blackirobotics.com/.

Figure 1: The LandShark vehicle while performing
an attack resilient experiment. The user interface
on the top right of the figure is used to control the
robot, attack sensors, and visualize data.

ground vehicle (UGV), shown in Figure 1 performed as part
of the DARPA HACMS program. The goal is to develop a
resilient system for remotely controlled or autonomous navi-
gation that can tolerate both cyber attacks via the teleoper-
ation interface, as well as noninvasive attacks on system sen-
sors. The effort involves multiple teams working on different
aspects of the system. For our part, we have developed a
cruise control application, consisting of a controller module
and a resilient speed estimator (RSE) [13] that provides es-
timates to the controller module as well as to other modules
within the system. The case study is affected by all of the
challenges outlined in the introduction. At the same time,
it has a moderate size and complexity, as well as relatively
relaxed constraints.

One of the challenges encountered in the case study is
the need to contend with multiple tools that operate on
different models and generate code for different aspects of
the system that need to be integrated. The cruise control
algorithm was implemented using Simulink, and platform-
independent code for it was automatically generated using
Simulink coder. The core of the RSE module solves an op-
timization problem using the solver generated by CVXGEN
tool [10]. Input to the solver involves linear-algebraic manip-
ulation of the sensor readings, which was implemented also
using Simulink. The overall system is developed using ROS,
a widely used component-based middleware for robotic sys-
tem applications [15]. Each module was deployed as a ROS
node that communicates with other nodes in the system.
Thus, the platform-independent code of the controller and
RSE modules had to be complemented with ROS interface
code that performed periodic invocation of the modules and
handled publish-subscribe interactions between nodes.

The initial, rather naive development involved large amounts
of manual effort in order to compose the auto-generated part
of the code together and deploy it within ROS nodes. We
had to rethink our development strategy and retarget it from
manual post-implementation integration to automatic vir-
tual integration. To enable this new strategy, we used a new
development approach and designed several tools to support
it, which we will describe in the remainder of the paper.

3. DEVELOPMENT APPROACH
Figure 2 outlines the development process. The process

comprises of the four distinct stages discussed below.

Modeling phase. Development begins with an architec-
tural model of the system. Developers describe the architec-
ture of the system, including physical components of the sys-
tem, computing and communication infrastructure, as well
as software modules that comprise the system. Attributes of
components depend on the nature of a component. A physi-
cal component can specify its weight and dimensions, a pro-
cessor can specify its speed and operating system, a software
controller can specify the type of control algorithm, execu-
tion frequency or triggering events, and the entry point of
the software function that implements the controller. An ini-
tial model is needed to proceed to other development phases.
The model is not fixed and can evolve based on the outcomes
of subsequence phases. In particular, outcomes of the anal-
yses performed in the transformation phase described below
help refine the model and enrich the set of attributes.
Transformation and analysis phase. The architectural
model is subject to a set of transformations. The purpose
of each transformation is to extract an analysis model that
targets a specific analysis technique and has the format ex-
pected by the tool performing this analysis. One of the key
transformations for the control system design is the extrac-
tion of a mathematical representation of the control system.
In the simplest case of such transformation, the software
module in the architecture may specify that it implements
a PID controller, which allows the transformation to yield
the difference equations for a discrete-time PID controller.
Parameters of the controller depend on a model of plant
dynamics. We believe that a first-principles plant model
can also be obtained from attributes of physical components
in the architectural model. However, this aspect of model
transformation has not been explored in our case study.

The mathematical representation of the control system
allows conventional control-theoretic analysis of the control
system, which allows us to determine parameters of the con-
trol algorithm. We further transform this mathematical no-
tation into computation-oriented notation that is familiar to
control engineers. In our case study, described in Section 2,
we use notation similar to the notation used in Simulink
diagrams. The computation-oriented notation allows us to
perform model-based validation of the controllers, as well
as feasibility and performance analysis. In our case study,
we performed extensive simulations on the Simulink models.
Outcomes of the control-theoretic analysis and validation
provide feedback to the architectural modeling phase, for
example, that the computational infrastructure described in
the architecture does not provide sufficient computational
power to execute the control system with the desired perfor-
mance. In that case, developers may refine the architecture,
for example, to introduce more processors and map the RSE
module and the controller module on different processors.

Other transformations of the architectural model include
a model for the analysis of schedulability, which would de-
termine, for each software module, its worst-case response
time and output jitter; and a network-calculus model of the
system that can be used to determine end-to-end latency of
data flows through the system and buffer size requirements.
Values obtained through this analysis are recorded as addi-
tional attributes in the architectural model.
Generation phase. Model transformations eventually yield
notation that is amenable to code generation. The computation-
oriented representation for the control algorithm is used
to generate platform-independent control code (“step func-

tion”) using, in our case study, the Simulink Coder tool.
Similarly, platform-specific wrappers for control code is gen-
erated from the architectural model. Note that both platform-
independent and platform-dependent code generation for dif-
ferent system modules is performed independently, exploit-
ing the natural modularity delineated by the architectural
model. In addition, the architectural model can include at-
tributes that specify constraints on module operation and
data flows through the system. These constraints can be
used to generate monitors that check compliance with these
constraints at run time.
Integration phase. The approach supports virtual inte-
gration, that is, the ability to assess feasibility of the inte-
grated system before components are built. Virtual integra-
tion is also facilitated by the architectural model. Attributes
of the model are used for both vertical and horizontal inte-
gration. Vertical relations specify which functional code is
running within the platform-specific wrapper in a module
and allow us to verify that functional code is correctly in-
terfaced with the platform. Horizontal integration is mostly
concerned with sharing of resources between different nodes
in the architecture, ensuring that there is sufficient capacity
in the computing platform to run all the software modules,
enough bandwidth in the communication platform to ensure
timely communication between the modules, etc. In the case
study, virtual integration was mostly concerned with check-
ing that end-to-end delay from sensor readings to control
actuation is within acceptable bounds. If the virtual in-
tegration, which happens in the model analysis phase, has
been done right, actual integration of code modules can be
expected to become a straightforward exercise. Our experi-
ence with the case study bears this hypothesis out.
Framework instantiation. The approach described above
is general and is not tied to specific modeling tools or deploy-
ment platforms. In order to apply the approach, the frame-
work needs to be instantiated. Depending on the needs of
a given application and expertise of the development team,
we need to choose an architectural modeling language, a tool
for computational modeling and simulation of control algo-
rithms, and a deployment platform. Below, we describe a
particular instantiation that we used in the LandShark case
study. Other languages and tools can be used in instantia-
tions just as easily.

4. ARCHITECTURE MODELING: ROSLAB
ROSLab [3] is a modular programming environment for

robotic applications. It has been initially developed to sup-
port development based on ROS. ROSLab enables users
to model an architecture of an application that consists
of a set of computational nodes and communication chan-
nels between them. The interfaces of some commonly used
nodes such as sensor and actuator nodes are pre-defined in
ROSLab. Users can define a new node and its interface by
selecting the channels to add to the interface of the node.
While ROS was the initial target platform for ROSLab, the
back-end code generation can easily be adapted for other
platforms. Figure 3 shows an example of the implementa-
tion of ROSLab for the creation of a ROS node that receives
a joystick input and sends throttle outputs to a ground vehi-
cle like the LandShark in Figure 1. Each block dragged and
dropped in the ROSLab workspace is characterized by spe-
cific interfaces that contain information such as frequency
of operation, measurements variance, and jitter. This infor-

Figure 2: Outline of the development process

mation is propagated to the mathematical control system
representation block in Figure 2 to create an appropriate
model for the system.

Figure 3: ROSLab environment: architecture of a
remotely controlled ground vehicle

Generation of hardware components. ROSLab was
extended to provide a design environment for creating me-
chanical components of robots [12]. A component library of
predesigned parametrized robotic building blocks are incor-
porated into ROSLab. Desired blocks can be dragged into
a workspace, and parameters can be set by the user based
on target specifications. Exposed interfaces on each robot
component are represented by ports on the ROSLab block;
these ports can be wired together to specify electromechan-
ical connections. Assemblies of these blocks can be saved
as components in the library to be used in future higher or-
der designs. In this way, a full robot can be hierarchically
composed from its constituent blocks. Once a robot has
been designed, it can be compiled to generate manufactur-
ing specifications.

Our vision is to be able to extract a dynamical and kine-
matical model from the mechanical model developed though
ROSLab. Physical parameters such as the dimension, weight,
and moment of inertia, could be extracted from the designed
system and then passed to the mathematical control system

representation block in Figure 2 to create a more accurate
model of the plant. This is subject of on-going research.
Generation of platform-dependent software. A ROS-
based system usually consists of multiple communicating
ROS nodes that can be deployed on the same processor or
on different processors connected by a network. ROS nodes
can be scheduled to run periodically or in response to in-
coming events, and communicate using a publish-subscribe
mechanism. Nodes exchange messages organized into a set
of topics. Platform-independent functional code, such as
produced by control-code generation tools, needs to be con-
nected to ROS services using glue code, to which we refer as
a ROS wrapper. ROS provides an API to publish messages
on selected topics, subscribe to topics of interest, schedule
execution of the node, etc. Access to messages on the sub-
scribed topics requires setting up callback functions that give
access to topic buffers. Constructing a ROS wrapper man-
ually is an error-prone process that requires detailed under-
standing of callback operation, relationship between callback
invocation and node scheduling, data types of messages on
the subscribed topics, and so on.

ROSLab architectural models contain all the information
necessary to configure a ROS wrapper. Connections of a
node specify subscribed and published topics along with
references to message types and buffer sizes for subscribed
topics. Attributes of a node specify execution rates and
the interface of the step function. We have implemented a
wrapper generator using the Coq proof assistant [11]. In ad-
dition to eliminating the manual effort needed to construct
the wrapper, wrapper generation allows us to automatically
construct a proof that the wrapper is correctly generated
with respect to the specification in the ROSLab model.

5. FROM ARCHITECTURAL MODELING
TO CONTROL SYSTEM DESIGN

Architectural modeling also facilitates control system de-
sign. The model captures the use of different control mod-
ules (blocks) and their interaction. Furthermore, informa-
tion from the rest of the architectural model is utilized to
populate some aspects of the system representation. For

example, a significant number of control laws are based on
a discrete-time model of the controlled plant (e.g., model
predictive control algorithms). Our vision is that architec-
tural modeling of the physical part of the system (i.e., con-
trolled plant) would allow for the automatic extraction of the
plant’s model. In addition, schedulability and latency anal-
yses provide implementation guarantees such as sampling
times and jitter, which are used to obtain a discrete-time
plant model. This enables initialization of the controller pa-
rameters, effectively resulting in a complete mathematical
representation of the controller.

The complete mathematical representation of the con-
trol system provides a basis for control theoretic analyses
supported by the design process (e.g., robustness analysis
from [13] in our case study), and in simple cases could be
used for direct generation of the controller code. However,
in general, we want to rely on established tools for simula-
tion and code generation. We have designed the ACMG tool
for automatic generation of Simulink control models, start-
ing from the control system’s complete mathematical rep-
resentation. The resulting Simulink model enables closed-
loop system simulation to evaluate closed-loop system per-
formance. Violation of performance requirements would sig-
nal the designer to make changes in the architectural model
to ensure satisfiable control performance. Finally, compu-
tational models used for simulation should provide a basis
for code generation. In our development process, we uti-
lize Simulink Coder to generate platform independent code
(i.e., step function) from the (computational) Simulink
model of the controller.

Furthermore, the developed tool exploits the system’s math-
ematical representation to provide suitable annotation of the
generated Simulink blocks and thus, the code generated by
Simulink Coder. These annotations present invariants that
the code has to satisfy, and are used as a basis to obtain
correctness proofs for generated code.

5.1 Mathematical Representation of Systems
To capture mathematical representation of a control sys-

tem we use a representation similar to the one used in [1].
We describe a system as a tuple C = (V,B,E, S) with:

• A finite set of variables V = Vin∪Vout∪Vl that can be
partitioned into subsets containing input, output, and
local variables.

• A finite set of system blocks B. Each block b ∈ B has
sets of input, output and local variables V b

in, V b
out, and

V b
l , and we define sets V B

in = ∪b∈BV
b
in and V B

out =
∪b∈BV

b
out containing input and output variables of all

blocks. In addition, each block b is associated with
functional description fb and realization rb (we will
describe block’s functional description and realization
in the rest of the section). Finally, a system block can
itself be a separately described system C′.

• A relation E ⊆ V B
out ∪ Vin × V B

in ∪ Vout representing
connections between system blocks – i.e., a connection

e = (vbi , v
b′
j) ∈ E connects an output vbi of block b

to an input vb
′

j of block b′, while e1 = (vi, v
b′
j) and

e2 = (vbi , vj) ∈ E respectively connect system input

vi ∈ Vin to input vb
′

j of block b′ and output vbi of block
b to system output vj ∈ Vout.

• A scope function S : C → {0, 1} specifying whether
a unique variable should be associated with the link
during code generation. Since our goal is to obtain
code annotated with invariants that are predicates over
some of the control system variables, it is necessary to
ensure that automatic model generation followed by
code generation would not remove the variables as part
of code optimization.

A functional representation fb of each block b captures
behavior of the block, and can be specified as a mapping

fb : V b
in × V b

l → V b
out × V b

l .

This allows us to describe behaviors of both standard static
and dynamic control algorithms, and finite state machines,
along with more complex hierarchical/hybrid controllers.

Finally, realization parameter rb specifies how will the
functional representation fb be implemented in the gener-
ated code. We consider the following three cases. 1) A block
may correspond directly to an existing component (for ex-
ample, a PID controller) in the library of some modeling
tool. Currently, we support references to Simulink blocks.
2) When there is no pre-built component to implement the
block, the ACMG tool we developed parses fb and creates a
Simulink diagram that is used in simulation and code gen-
eration. 3) rb can also refer to existing code that will be
linked in with the generated code. This supports interfacing
with legacy code and other tools.

5.2 Mathematical Representation of
Attack-Resilient Cruise Controller

The attack-resilient controller used in our case study presents
a composition of the RSE and a standard PID controller,
whose input is speed estimation obtained by the RSE. The
controller has three inputs, sensor measurement vector y,
the last applied engine input ulast, and the desired speed r.
The RSE block is represented by

V RSE
in = {y,u} V RSE

out = {x}

V RSE
l = {y0, ...,yN−1,u0, ...,uN−1,Y,U}.

In addition, functional description fRSE is specified as the
following optimization problem:2

x = arg min
x∈Rn

‖Y − Φx‖l1/l2 (1)

Φx =
[
Cx|CAx| . . . |CAN−1x

]
(2)

Y = [ỹ0|ỹ1| . . . |ỹN−1] , (3)

ỹk = yk −
k−1∑
i=0

CAiBuk−1−i (4)

y0 = y, yk = yk−1, k = 1, ..., N − 1 (5)

u0 = u, uk = uk−1, k = 1, ..., N − 1. (6)

It is worth noting here that matrices A,B and C, which
effectively specify a linear model of the vehicle, are obtained
in the modeling/transformation phase from the architectural
system model that includes a model of the controlled physi-
cal process and some of hardware characteristics (e.g., sam-
pling rates).

2For a matrix Q ∈ Rp×N , ‖Q‖l1/l2 denotes the sum of l2
norms of the matrix rows.

On the other hand, the PID controller’ inputs (desired
input speed r and speed estimate x) and state xPID are
processed to produce engine control signal uout. Finally, we
rely on Simulink for realization of the PID controller, and
algebraic manipulations from Eq. (2)-(6) in the optimization
problem, while to solve the optimization problem (1) we use
code generated by CVXGEN.

5.3 Automatic Control Model Generation
We have developed the ACMG tool that transforms the

aforementioned mathematical controller representation into
a Simulink diagram, using the description of Simulink dia-
grams from [1]. The tool also automatically integrates exist-
ing (non-Matlab) code into Simulink, without the need for
manual intervention. To achieve this, we exploit Simulink’s
s-functions to include externally generated non-Matlab func-
tions. By using s-function API, automatically generated
models utilize Matlab Executable (MEX) files (obtained by
precompiling existing code) for simulation, while directly in-
corporating the initial code into Simulink Coder-generated
code. This allows for the use of a single Simulink diagram
for both simulation and code generation.

Finally, the ACMG uses the initial function representation
of the system to annotate the obtained Simulink blocks, and
thus generated code, with a set of invariants that specify re-
lations between blocks’ inputs, outputs and local variables.
In our case study, we are exploring the use of Coq-based Ver-
ified Software Toolchain (VST) [2] to show that generated
code correctly implements specified functionalities, starting
from linear operations specified by Eq. (2)-(6).

6. DISCUSSION AND CONCLUSIONS
We have presented an architecture-centric model-based

approach for the CPS development. The approach is moti-
vated by a case study of a control system for an autonomous
vehicle. While the case study used ROS as the deployment
platform, modeling is not specific to ROS and generation
tools can be easily adapted to other platforms. Control
model transformations implemented by the ACMG tool are
currently limited to Simulink. However, other computa-
tional representations can be supported. Some aspects of
the described approach are subject of on-going research and
implementation. In particular, ROSLab is being extended
to support more transformations to analysis models, and
specification of physical aspects of the system and extrac-
tion of plant models is on-going work. Generation of code
invariants from the mathematical representation of a con-
trol system is an active research area [17, 7]. A full realiza-
tion of architecture-centric development paradigm vision is
a complex problem that can be achieved only by coordinated
efforts of the CPS research community.

7. REFERENCES
[1] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar.

Symbolic analysis for improving simulation coverage of
simulink/stateflow models. In Proceedings of the 8th
ACM International Conference on Embedded Software,
EMSOFT ’08, pages 89–98, 2008.

[2] A. W. Appel. Verified software toolchain. In
Programming Languages and Systems, pages 1–17.
Springer, 2011.

[3] N. Bezzo, J. Park, A. King, P. Geghard, R. Ivanov,
and I. Lee. Demo abstract: Roslab – a modular
programming environment for robotic applications. In
ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS), page 214, 2014.

[4] C. Brooks, E. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
and H. Z. (eds.). Ptolemy II - heterogeneous
concurrent modeling and design in java. Technical
report, University of California, Berkeley, 2005.

[5] P. Derler, E. Lee, and A.-S. Vincentelli. Modeling
cyber-physical systems. Proceedings of the IEEE,
100(1):13–28, 2012.

[6] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The
architecture analysis & design language (aadl): An
introduction. Technical report, DTIC Document, 2006.

[7] E. Feron. From control systems to control software.
Control Systems, IEEE, 30(6):50–71, 2010.

[8] P. H.Feiler, J. Hansson, D. de Niz, and L. Wrage.
System architecture virtual integration: An industrial
case study. Technical Report CMU/SEI-2009-TR-017,
CMU, 2009.

[9] J. Holt and S. Perry. SysML for Systems Engineering.
IET, 2008.

[10] J. Mattingley and S. Boyd. CVXGEN: A code
generator for embedded convex optimization.
Optimization and Engineering, 13(1), 2012.

[11] The Coq development team. The Coq proof assistant
reference manual. LogiCal Project, 2004. Version 8.0.

[12] A. Mehta, N. Bezzo, P. Gebhard, B. An, V. Kumar,
I. Lee, and D. Rus. A Design Environment for the
Rapid Specification and Fabrication of Printable
Robots. In nternational Symposium on Experimental
Robotics (ISER), Marrakech, Morocco, June 2014.

[13] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada,
O. Sokolsky, I. Lee, and G. Pappas. Robustness of
attack-resilient state estimators. In Cyber-Physical
Systems (ICCPS), 2014 ACM/IEEE International
Conference on, pages 163–174, 2014.

[14] J. Porter, G. Karsai, P. Völgyesi, H. Nine, P. Humke,
G. Hemingway, R. Thibodeaux, and J. Sztipanovits.
Towards model-based integration of tools and
techniques for embedded control system design,
verification, and implementation. In Models in
Software Engineering, pages 20–34. Springer, 2009.

[15] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Y. Ng. ROS:
an open-source robot operating system. In Proceedings
of the Open-Source Software workshop at the
International Conference on Robotics and Automation
(ICRA), 2009.

[16] J. Sztipanovits, X. Koutsoukos, G. Karsai,
N. Kottenstette, P. Antsaklis, V. Gupta,
B. Goodwine, J. Baras, and S. Wang. Toward a
science of cyber-physical system integration.
Proceedings of the IEEE, 100(1):29–44, 2012.

[17] T. Wang, R. Jobredeaux, H. Herencia, P.-L. Garoche,
A. Dieumegard, E. Feron, and M. Pantel. From design
to implementation: an automated, credible autocoding
chain for control systems. Preprint arXiv:1307.2641,
2013.

