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Abstract—This paper describes the architecture, design flow
and verification process for the FPGA implementation of a real-
time beamformer. One of the challenges in realizing this class
of processing is in the implementation of the linear algebra
operations required in forming the least-squares solution to
the Normal equations. We describe the FPGA realization of
a flexible QRD-based approach to this problem in which the
system parameters (row and column dimensions) can be supplied
to the beamformer module at run-time. The design and FPGA
implementation of the beamformer architecture and verification
framework is described along with implementation considera-
tions for Xilinx VirtexTM -4 family of FPGAs. A model-based
FPGA design flow called System GeneratorTM [4], based on the
The Mathworks Simulink R©visual programming environment,
was used exclusively to generate the implementation. The use of
this tool chain for hardware verification is discussed. The FPGA
resource utilization and performance of the QRD processor is
reported.

I. INTRODUCTION

All real-world communication systems are composed of a
rich mixture processing requirements. For example, there is
typically an embedded processing component, that might, for
example perform functions such as link and network layer
processing, including support for running a TCP/IP stack. This
class of processing is naturally serviced by an instruction set
architecture (ISA) processing resource. The physical layer of
the system will contain signal processing functions in the base-
band and digital IF (intermediate frequency) subsystems that
are arithmetically complex and have hard real-time deadlines.
For high-performance systems, an ISA processing resource
is frequently not a good match for this part of the system.
With its vast array of spatial computing resources, a field
programmable gate array (FPGA) is well matched to the
baseband and digital IF processing requirements of a state-
of-the-art wireless communication system. With Power PPC
405 technology embedded as hard IP blocks in FPGAs like

the Xilinx Virtex-4 [1] class of FPGAs, these platform-class
FPGAs are heterogeneous processing platforms capable of
addressing the diverse set of processing requirements in a real
system. However, for various reasons (e.g. support for legacy
code), it is also common to employ a processor external to
the FPGA for running application code. This paper is a case
study of a beamforming application that has both a software
component running on a host processor and a DSP intensive
task executing on the FPGA. The goals of this project were
two-fold: 1) to develop a compact FPGA implementation
of a QRD circuit to be used for beamforming applications
and 2) utilize the shared memory abstraction in the Xilinx
System GeneratorTM [4] design flow to enable the interaction
of the FPGA QRD module with a host application running on
a processor external to the FPGA.

The paper is organized as follows. Section II provides
an outline of the minimum variance distortionless response
(MVDR) beamformer that was implemented using a combi-
nation of host PC and FPGA platform. In Section III a brief
review of the QR decomposition (QRD) approach to least
squares beamforming is described. Section IV describes the
architecture and FPGA implementation of the QRD processor.
Details of the System Generator tool chain that was used
exclusively for the implementation of the FPGA part of the
system are presented in Section V. Finally, conclusions are
presented in Section VI.

II. MVDR BEAMFORMER

Adaptive beamforming [2] is the application of adaptive
filters to spatial signal processing. Time series collected from
uniformly spaced array elements are weighted and summed to
form the signal component from a selected direction of arrival
while suppressing signal components from other directions of
arrival. When the directions of arrival of the undesired signal
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components are unknown or vary with time, the filter weights
must be adaptively adjusted to steer nulls to their directions.
The structure of the spatial processor for a linear array of
spatial elements is shown in Figure 1.
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Fig. 1. Adaptive beamformer structure.

The adaptive process forms a set of filter coefficients
that directs the spatial main lobe to the signal of interest
while directing nulls to the undesired interfering signals. The
adaptation process is performed subject to a constraint that
the steering vector has unity gain in the signal direction. The
steady state weights of such a beamformer form the minimum
variance distortionless response (MVDR) from the array ele-
ments [2]. The beam forming process of extracting the time
signal component from a selected direction while suppressing
signals arriving from other directions is the same as the process
performed by a tapped delay line FIR filter extracting a time
series from a selected frequency band while cancelling signal
components in other frequency bands contained in a single
time series. The adaptive beamforming problem is called a
sidelobe canceler while the tapped delay line filter is called a
line canceler.

For reasons of numerical robustness and computational
complexity, a common method for computing the required
weight vector without directly inverting the correlation matrix
is based on QR decomposition [2], and this is the approach
adopted here. Readers are directed to [2] for details of the
procedure.

III. THE QRD MATRIX INVERSION PROCESS

The QRD process is formed by a sequence of two opera-
tors [2]. These are the unitary rotations that convert complex
input data to real data and an associated angle and element
combiners that annihilate the selected elements of the input
data set one by one. The QRD process is most compactly
represented in the signal flow diagram of Figure 2. This
representation is the systolic array realization of the QRD least
squares solution processor. The array contains three types of
processing cells. These are the boundary cells, internal cells,
and output cell. The boundary cells perform the “vectoring”

operation on complex input samples to nullify their imaginary
parts and form rotation angles used by the internal cells. The
internal cells perform Givens rotations [2] of the input values
by the angles passed from the boundary cells to annihilate the
non upper triangular entries of the transformed data matrix.
The output cells in the linear array process the elements
of the upper triangular array to perform the required back
substitution [2] to produce the beamformer weights.
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Fig. 2. Systolic array implementation of QRD matrix inversion for a 3× 3
array.

IV. FPGA IMPLEMENTATION OF QRD

The design emphasis on our implementation was on pro-
ducing a compact QRD FPGA implementation. The design
consists of a single boundary, internal and back substitution
cells. The systolic array in Figure 2 is folded on to this set of
processing resources. The boundary cell is required to compute
two angles. The first angle, φ = arctan(�(xin)/�(xin)), is
used to transform the complex input samples presented to the
boundary cell input port in to real-valued data. The transfor-
mation that forces the imaginary component of xin to 0 must
be applied to all elements in the same row associated with the
boundary cell, and this operation is one of the tasks performed
by the internal cells. Now that the data in the leading position
of two adjacent rows are real-valued, a second angle, θ, is
formed as θ = arctan(xine−jφ/x), and is used to annihilate
a term of the input data set, in an ordered manner that
eventually produces the upper-right triangular matrix R. The
arithmetic employed in the boundary cells could be realized in
hardware by literally implementing the equations indicated in
Figure 2. This would require hardware support for performing
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square-roots and divisions. While these circuits are commonly
implemented in FPGA hardware, we are motivated to seek
alternative methods for computing the required angles that
have a lower resource cost over that of the direct and obvious
implementation. One well known low-complexity method for
computing angles is the vectoring mode of the COordinate
Rotation Digital Computer (CORDIC) algorithm [3]. The
CORDIC algorithm is an iterative procedure that is capable of
computing a rich set of mathematical functions. The elemental
operations required in the CORDIC algorithm are addition,
subtraction, bit-shift and table lookup. All of these functions
are efficiently supported by FPGA architectures such as the
Virtex-series of devices from Xilinx, and so the vectoring
mode of the algorithm is a good candidate for the foundation
of the QRD processor boundary cells. As shown in Figure 3,
two CORDIC engines will be employed in the boundary cell,
one for computing φ and the other for computing θ.
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Fig. 3. Boundary cell architecture based on two vector-mode CORDIC
processing engines.

Figure 4 shows the signal flowgraph for the CORDIC
algorithm. After a vector of operands xi, yi and zi is presented
to the circuit, a series of butterfly-like cross-additions is em-
ployed to update the current estimate of the required function,
with each iteration refining the estimate by approximately
1-bit of precision. For a process employing an N iteration
CORDIC process, a new output will be generated every N
clock cycles and a new set of operands can be presented every
N clock cycles. To increase the throughput of the boundary
cell, the unfolded or fully parallel architecture of Figure 5
was employed in our implementation. After the initial start-
up latency of the circuit has been absorbed the initiation and
completion rate of the cell is one new input/output per clock
cycle.

Each data element xin entering an internal cell (Figure 6)
in row m must be rotated by the angle φ computed by the
boundary cell for the mth row. This task is captured in Eq. 1.
We note that the variable v introduced in the equation is a
temporary working variable. One option that has been used for
the rotation task in QRD processors is the rotation mode of
the CORDIC algorithm. An alternative is to simply implement
the rotation in the obvious manner using multiply-accumulate
(MAC) functional units, and this is the approach adopted in our
implementation. The target FPGA technology for the design
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Fig. 4. Signal flowgraph for the CORDIC algorithm

is the Virtex-4 class of FPGAs [1]. These devices have a vast
array of embedded MAC units referred to as the DSP48 [1].

[ � (v)
� (v)

]
=

[
cos(φ) − sin(φ)
cos(φ) sin(φ)

] [ � (xin)
� (xin)

]
(1)

The DSP48 embedded tile supports a rich set of opcodes,
capable of being updated on a per clock cycle basis, that define
the arithmetic operation computed by the tile during a given
clock cycle. The four multiplications implied in Eq. 1 are
folded on to a pair of DSP48s, with each DSP48 computing
one of the two output terms � (v) and � (v). Two clock
cycles are required to compute the two output terms. Each
DSP is supplied with a unique opcode for each clock period.
Consider computing the term � (v). During the first clock
period the product cos(φ) × � (xin) is computed and stored
in the DSP48 product or p register. During the second clock
cycle sin(φ)×� (xin) is formed and subtracted from the value
in the p register to generate the final output term. A similar
sequence of computations is performed to produce � (v).
Using the DSP48 embedded blocks rather than a CORDIC-
based approach for the internal cell reduces the latency of
this phase of the computation and also minimizes the amount
of FPGA logic fabric (lookup tables and registers) required
for the implementation. Table I provides a breakdown of the
area for the major functional units in the QRD implementation
along with the total area of the design. The boundary cell
occupies 2145 4-input LUTs [1], with the majority of this
area being associated with the two 16-iteration 18-bit precision
CORDIC vectoring units in the cell. The internal cell, while
being more complex than the boundary cell occupies only
256 LUTs. CORDIC-based processing would have required
three CORDIC rotation engines and occupy an area that would
certainly be greater than the 2145 LUTs of the boundary
cell. While we have exchanged LUTs for DSP48’s in this
case, the tradeoff is a reasonable one. The medium to high
density devices in the Virtex-4 product portfolio are equipped
with several hundred DSP48 embedded tiles, and using these
resources to form the three rotations associated with the
internal cell is a natural choice for resourcing this element
of the processing.

The cos(φ), sin(φ), cos(θ) and sin(θ) terms required by the
internal cells are computed using a simple lookup table that
maps the angles φ and θ computed by the vectoring units in the
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Functional Unit LUTs FFs DSP48 BRAM Slices
Boundary Cell 2145 2057 3 1 1266
Inner Cell 216 329 6 0 176
Back Substitution 2862 3286 4 1 1932
QRD Total 5411 5916 13 6 3530

TABLE I
FPGA RESOURCE UTILIZATION FOR FOLDED QRD AND BACK

SUBSTITUTION ARRAY.

boundary cell to their corresponding sine and cosine. Linear
interpolation is applied to the output samples of the lookup
table to increase the accuracy of the mapping from angle to
amplitude while keeping the lookup table itself constrained to
a single block RAM (BRAM) [1].
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Fig. 6. Systolic array internal cell architecture employing three MAC-based
Given’s rotation engines.

The row and column dimensions of the input array for the
QRD processor can be dynamically adjusted at run-time by
simply writing the new dimensions to control registers that
are part of the FPGA control plane.

Table II provides timing information for several configura-
tions of the input data set.

M N Cycles for Cycles for Total Time (μs) for
Triangularization Back substitution Cycles 250 MHz Clock

3 3 792 147 939 3.76
8 3 2112 147 2259 9.04
5 5 2540 255 2795 11.18
9 5 4572 255 4827 19.31
7 7 5656 371 6027 24.11
10 7 8080 371 8451 33.80
9 9 10476 495 10971 43.88
11 9 12804 495 13299 53.20
10 10 1360 560 14190 56.76

TABLE II
EXECUTION TIME FOR THE TRIANGULARIZATION AND BACK

SUBSTITUTION PHASES OF THE FPGA QRD IMPLEMENTATION FOR AN

M × N MATRIX.

V. DESIGN FLOW

The QRD implementation was realized using the Xilinx
System Generator [4] for DSP model-based design flow. This
is a tool chain that extends the Mathworks Simulink frame-
work with FPGA hardware generation capabilities. System
Generator is a visual design environment that allows the
system developer to work at a suitable level of abstraction
from the target hardware, and use the same computation graph
not only for simulation and verification, but for FPGA hard-
ware implementation. System Generator blocks are bit- and
cycle-true behavioral models of FPGA intellectual property
components, or library elements. The library based approach
results in design cycle compression in addition to generating
area efficient high-performance circuits.

In addition to providing a natural development environment
for developing FPGA signal processing implementations, Sys-
tem Generator has a rich set of features that support the devel-
opment of heterogeneous applications comprising of not only
the FPGA element, but a processor. The processor could be the
FPGA embedded Power PC 405 (PPC405) hard IP (intellectual
property) block [1], the Microblaze soft processor [5] or a
processor external to the FPGA. The beamformer developed
for this project was partitioned between the host PC and the
FPGA platform. In our implementation the host application
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running on the PC might be considered more an element of the
beamformer verification process (test bench), but it should be
recognized that the host application could be as arbitrary and
as complex as required by the task at hand. The beamformer
host application is a Matlab R©script (m-code) that is simulating
the sensor array for the beamforming network. The script
simulates a dynamic target, and generates the samples of the
far-field radiation pattern for the moving target. The samples
of the electric field at each sensor are generated in Matlab
and forwarded to the FPGA QRD processor where a new
estimate of the beamformer weight vector is produced and
returned to the Matlab environment for further processing.
In this case the additional processing involves plotting the
polar radiation pattern for the updated complex valued weight
vector. An additional point of note is that the host application
does not necessarily have to be associated with the Matlab
environment, and that the application could be, for example,
a program written in C.

An interesting element of the beamformer application is
the management of the interface between the host application,
running on the PC in this case, and the QRD process executing
on the FPGA platform. System Generator provides a suite
of shared memory library objects (ROM, RAM, FIFO etc)
that abstracts virtually all of the details of the processor-
FPGA interface, and enables the host software and FPGA
hardware to be somewhat insulated from each other as shown
in Figure 7. For the example at hand, each new update of the
beamformer is essentially a 3-step procedure: 1) new input
samples from each antenna elements, as generated by the
Matlab host application, need to be forwarded to the QRD
engine in situ on the FPGA, 2) the QRD process is triggered,
3) the new weight vector is returned from the FPGA to the
host. The shared memory library modules, and associated
API (application programmer interface), transform the transfer
of data between the FPGA and the host PC into to simple
assignment statements based on name-space references in
Matlab (or C). For example, the new weight vector w, resident
in the Matlab workspace, is updated with the new beamformer
coefficients, FPGAWeights, as computed by the FPGA QRD
process, using the simple assignment w = FPGAWeights.
FPGAWeights is the name assigned to a shared-memory
buffer in the System Generator description of the QRD engine.
The management of this type of host processor/FPGA interac-
tion by the System Generator framework makes the process of
developing heterogeneous applications straightforward, rapid,
less error-prone, and enables an FPGA accelerator engine, like
the QRD module in this case, to be easily ported between
different hardware platforms without a need to modify the
FPGA source code, that is, the System Generator model itself.

The interface abstraction supports transactions between the
host application and the System Generator source model, as
well as the host application and the final design running on the
FPGA platform. This later element significantly contributes to
the validation process of the software and hardware (FPGA)
dimensions of the system as both components can be brought
online in rapidly using the shared memory abstraction.
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Fig. 7. Hardware/software abstraction enabled by the System Generator
shared memory library elements. The host application performs transactions
with the FPGA storage elements using simple name-space references - in this
case to the memories named ’foo’ and ’bar’.

VI. CONCLUSION

The FPGA implementation of a flexible QRD processor that
enables the run-time definition of the input matrix dimen-
sions has been described. The design employs a mixture of
CORDIC-based processing (array boundary cell) and MAC-
based (array internal cell) arithmetic that is well matched
to the computational resources of an FPGA like the Xilinx
Virtex-4 [1] family. All of the boundary cell processing
and internal cell processing were projected on to a single
boundary cell functional unit and internal cell functional unit,
however, it should be noted that the abundant resources of
FPGA platforms support the realization of a fully parallel
systolic array should the throughput requirements of the target
application demand extremely high-performance. In addition
to the hardware architecture element of the paper, emphasis
was also placed on the model-based design flow used to realize
the implementation. In particular, the shared memory object
capability was utilized extensively to produce a beamformer
system with components running on a host PC and the DSP
heavy-lifting supported by the FPGA. This facet of the System
Generator programming environment enables the rapid devel-
opment of heterogeneous systems (processors and FPGAs)
while insulating the programmer from the frequently complex
and error prone programming that is associated with hardware-
software partitions.
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