
by Chris Dick
Xilinx Chief DSP Architect
Company: Xilinx
chris.dick@xilinx.com

Fred Harris
Professor
San Diego State University
fred.harris@sdsu.edu

Miroslav Pajic
Engineer
Signum Concepts
miroslav.pajic@signumconcepts.com

Dragan Vuletic
Engineer
Signum Concepts
dragan.vuletic@signumconcepts.com

Most real-world communication systems
have a mix of processing elements. For exam-
ple, application programs, human/machine
interface management, and higher network-
ing protocol stack processing are best imple-
mented on a general-purpose processor.

But for high-rate, algorithmically com-
plex data processing – often with hard real-
time deadlines – hardware resources like
FPGAs are a better match. The interface
between the two depends on the circum-
stance; the FPGA can be a pre-processor,
coprocessor, post-processor, or some com-
bination thereof. The trick is to get these
heterogeneous systems to interoperate in
an elegant fashion.

00 Xcell Journal First Quarter 2007

Implementing a Real-Time
Beamformer on an FPGA Platform
Implementing a Real-Time
Beamformer on an FPGA Platform
We designed a flexible QRD-based beamforming engine using Xilinx System Generator.We designed a flexible QRD-based beamforming engine using Xilinx System Generator.

In this article, we’ll describe the devel-
opment of a flexible, optimized, adaptive
beamforming engine that you can easily
control through software. The DSP-inten-
sive tasks run on the FPGA, while the com-
mand and control run on an external
processor. The beamforming engine is a
compact QR decomposition (QRD-based
circuit) with a novel construction. The
interface between the engine and the host
processor is implemented by the shared
memory abstraction in the Xilinx® System
Generator design flow.

MVDR Beamformer
Adaptive beamforming is the application of
adaptive filters to spatial signal processing.
Time series collected from uniformly
spaced array elements are weighted and
summed to form a signal component from
a selected direction of arrival while sup-
pressing signal components from other
directions of arrival (Figure 1). When the
directions of arrival of the undesired signal
components are unknown or vary with
time, the filter weights must be adaptively
adjusted to steer nulls to their directions.
The adaptation process is performed sub-
ject to a constraint that the steering vector
has unity gain in the signal direction. The
steady state weights of such a beamformer
form the minimum variance distortionless
response (MVDR) from the array elements.

For reasons of numerical robustness and
computational complexity, a common
method for computing the required weight
vector without directly inverting the corre-
lation matrix is based on QR decomposi-
tion; this is the approach adopted here. For
details of the procedure, consult “Adaptive
Filter Theory” by Simon Haykin.

The QRD Matrix Inversion Process
The QRD process is formed by a sequence
of two operators: the unitary rotations that
convert complex input data to real data and
associated angle-and-element combiners
that individually annihilate the selected ele-
ments of the input data set. The QRD
process is most compactly represented in
Figure 2’s signal flow diagram. This repre-
sentation is the systolic array realization of
the QRD least-squares solution processor.

First Quarter 2007 Xcell Journal 00

wM-1(n)
xM-1(n)

w0(n)

w1(n)

w2(n)
s(t,θ)Σ

x0(n)

Array Elements

Direction

of Arrival

Steering Vector
Adaptive

Algorithm

x1(n)

x2(n)

0,0 0,1 0,2 0,3

x(2)

x(1)

x(0)

x(1)

x(0)

0

x(0)

0

0

d(2)

d(1)

d(0)

Δ Δ

Δ

0

1

2

1,1

x
c

s

c

s

c

s

xin

x

xin

xii

xii

zi

pi

pi

wi
^

wi =
^

^wk
^

^

wk

xin

xout

xout cxin - sλ1/2 x

1,2

x

1,3

2,2 2,3

Linear Array

Triangular

Array

Triangular Array

Processing

Node Definitions

Linear Array Processing Node Definitions

xinif = 0 then

 c 1

 s 0

 x λ1/2 x

Otherwise

λ1/2 x

(i)

zi
(i)

zi
(k)

= zi + x* ik wk
(k)

zi
(k-1)

zi
(k-1)

λx2 + |xin|2

c
x'

x'

s
x'

x sxin + cλ1/2 x

x x'

Figure 2 – Systolic array implementation of QRD matrix inversion for a 3 x 3 array

Figure 1 – Adaptive beamformer structure

The array contains three types of pro-
cessing cells: boundary cells, internal cells,
and output cells. The boundary cells per-
form the “vectoring” operation on complex
input samples to nullify their imaginary
parts and form rotation angles used by
internal cells. The internal cells perform
Givens rotations of the input values by the
angles passed from the boundary cells to
annihilate the non-upper-triangular entries
of the transformed data matrix. The output
cells in the linear array process the elements
of the upper triangular array to perform the
required back substitution that produces
the beamformer weights.

FPGA Implementation of QRD
Our goal was to produce a compact QRD
FPGA implementation. The design com-
prises a single boundary, internal and back
substitution cells. The systolic array in
Figure 2 is folded onto this set of process-
ing resources. The boundary cell is required
to compute two angles. The first angle

Φ = arctan(ℑ(xin)/ℜ(xin))

transforms the complex input samples pre-
sented to the boundary cell input port into
real-valued data. The transformation that
forces the imaginary component of xin to 0
must be applied to all elements in the same
row associated with the boundary cell; this
operation is one of the tasks performed by
the internal cells. Now that the data in the
leading position of two adjacent rows are
real-valued, a second angle is formed as

Θ = arctan(xine -jΦ/x)

which is used to annihilate a term of the
input data set in an ordered manner that
eventually produces the upper-right trian-
gular matrix R. The arithmetic employed
in the boundary cells could be realized in
hardware by literally implementing the
equations indicated in Figure 2. This
would require hardware support for per-
forming square roots and divisions.
Although these circuits are commonly
implemented in FPGA hardware, we
sought alternative methods for computing
the required angles that had a lower
resource cost over direct and obvious
implementation.

One well-known and relatively simple
method for computing angles is the vector-
ing mode of the Coordinate Rotation
Digital Computer (CORDIC) algorithm.
The CORDIC algorithm is an iterative
procedure capable of computing a rich set
of mathematical functions. The elemental
operations required in the CORDIC algo-
rithm are addition, subtraction, bit-shift,
and table lookup. All of these functions are
efficiently supported by FPGA architectures
such as the Virtex™ series of devices from
Xilinx, so the vectoring mode of the algo-
rithm is a good candidate for the founda-
tion of QRD processor boundary cells. As

shown in Figure 3, two CORDIC engines
are in use in the boundary cell: one for com-
puting φ and the other for computing θ.

The CORDIC algorithm is iterative in
nature, with each iteration refining the
angle estimate by approximately 1 bit of
precision. For a process employing an N-
iteration CORDIC process, a new output
is generated every N clock cycles and a new
set of operands presented every N clock
cycles. To increase the throughput of the
boundary cell, we employed a fully parallel,
or unrolled, architecture for the CORDIC
(not shown here). After the initial start-up
latency of the circuit is absorbed, the initi-

00 Xcell Journal First Quarter 2007

()

Figure 4 – Systolic array internal cell architecture employing
three MAC-based Givens rotation engines

Figure 3 – Boundary cell architecture based on
two vector-mode CORDIC processing engines

First Quarter 2007 Xcell Journal 00

ation and completion rate of the cell is one
new input/output per clock cycle.

Each data element xin entering an inter-
nal cell (Figure 4) in row m must be rotat-
ed by the angle φ computed by the
boundary cell for the mth row:

One option that has been commonly
used for the rotation task in QRD proces-
sors is the rotation mode of the CORDIC
algorithm. An alternative is to simply
implement the rotation in the obvious
manner using multiply accumulate (MAC)
functional units; this is the approach
adopted in our implementation. The target
FPGA technology for the design is the
Virtex-4 FPGA. These devices have a vast

array of embedded MAC units referred to
as DSP48 slices.

The DSP48 slice supports a rich set of
opcodes – capable of being updated on a
per-clock-cycle basis – that define the arith-
metic operation computed by the tile dur-
ing a given clock cycle. The four
multiplications implied in the preceding
equation are folded onto a pair of DSP48
slices, with each DSP48 slice computing
one of the two output terms ℜ(υ) and
ℑ(υ). Two clock cycles are required to com-
pute the two output terms. Each DSP is
supplied with a unique opcode for each
clock period. Consider computing the term
ℜ(υ). During the first clock period, the
product cos(Φ) x ℜ(xin) is computed and
stored in the DSP48 product or p register.

During the second clock cycle sin(Φ) x
ℑ(xin) is formed and subtracted from the

value in the p register to generate the final
output term. A similar sequence of compu-
tations is performed to produce ℑ(υ). Using
the DSP48 embedded blocks rather than a
CORDIC-based approach for the internal
cell reduces the latency of this phase of the
computation and also minimizes the
amount of FPGA logic fabric (look-up
tables [LUTs] and registers) required for the
implementation. Table 1 provides a break-
down of the area for the major functional
units in the QRD implementation, along
with the total area of the design.

The cos(Φ), sin(Φ), cos(Θ), and sin(Θ)
terms required by the internal cells are
computed using a simple LUT that maps
the angles Φ and Θ computed by the vec-
toring units in the boundary cell to their
corresponding sine and cosine. Linear
interpolation is applied to the output sam-
ples of the LUT to increase the accuracy of
the mapping from angle to amplitude,
while keeping the LUT itself constrained to
a single block RAM.

The row and column dimensions of the
input array for the QRD processor can be
dynamically adjusted at runtime by writing
the new dimensions to control registers
that are part of the FPGA control plane.

Table 2 provides timing information for
several configurations of the input data set.

Design Flow
Our QRD implementation uses the
Xilinx System Generator for DSP model-
based design flow. In addition to provid-
ing a natural development environment
for developing FPGA signal-processing
implementations, System Generator has a
rich set of features that support the devel-
opment of heterogeneous applications
comprising not just the FPGA element
but a processor. The processor could be
the embedded PowerPC™ 405 hard IP
block, the MicroBlaze™ soft-processor
core, or a processor external to the FPGA.

The beamformer developed for this
project was partitioned between the host
PC and the FPGA platform. In our imple-
mentation the host application running on
the PC might be considered more of an ele-
ment of the beamformer verification
process (test bench), but the host applica-

Functional Unit LUTs FFs DSP48 Slices Block RAM Slices

Boundary Cell 2,145 2,057 3 1 1,266

Inner Cell 216 329 6 0 176

Back Substitution 2,862 3,286 4 1 1,932

QRD Total 5,411 5,916 13 6 3,530

M N Cycles for Cycles for Total Cycles Time (μs) for
Triangularization Back Substitution 250-MHz Clock

3 3 792 147 939 3.76

8 3 2,112 147 2,259 9.04

5 5 2,540 255 2,795 11.18

9 5 4,572 255 4,827 19.31

7 7 5,656 371 6,027 24.11

10 7 8,080 371 8,451 33.80

9 9 10,476 495 10,971 43.88

11 9 12,804 495 13,299 53.20

10 10 13,630 560 14,190 56.76

()
()

() ()
() ()

()
()⎥⎦

⎤
⎢
⎣

⎡

ℑ

ℜ
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡

ℑ

ℜ

in

in

x

x

θφ

θφ
υ

υ

sincos

sincos

Table 2 – Execution time for the triangularization and back substitution phases
of the FPGA QRD implementation for an M x N matrix.

Table 1 – FPGA resource utilization for folded QRD and back substitution array

tion could be as arbitrary and complex as
required by the task at hand.

Our beamformer host application is a
MATLAB script (m-code) that simulates
the sensor array for the beamforming net-
work. The script simulates a dynamic target
and generates the samples of the far-field
radiation pattern for the moving target. The
samples of the electric field at each sensor
are generated in MATLAB and forwarded
to the FPGA QRD processor. A new esti-
mate of the beamformer weight vector is
produced and returned to the MATLAB
environment for further processing.

In this case, the additional processing
involves plotting the polar radiation pat-
tern for the updated complex valued
weight vector. Note that the host applica-
tion does not necessarily have to be associ-
ated with the MATLAB environment; the
application could be a program written in
C, for example.

An interesting element of the beam-
former application is the management of
the interface between the host application,
running on a PC in this case, and the QRD
process executing on the FPGA platform.
System Generator provides a suite of shared
memory library objects (ROM, RAM,
FIFO) that abstracts virtually all of the
details of the processor/FPGA interface

and enables the host software and FPGA
hardware to be somewhat insulated from
each other (Figure 5).

Each new update of the beamformer is
essentially a three-step procedure:

1. New input samples from each antenna
element, as generated by the MATLAB
host application, are forwarded to the
QRD engine in situ on the FPGA.

2. The QRD process is triggered.

3. The new weight vector is returned
from the FPGA to the host.

The shared memory library modules
and associated application programmer
interface transform the transfer of data
between the FPGA and the host PC into
simple assignment statements based on
name/space references in MATLAB (or C).
For example, the new weight vector w, res-
ident in the MATLAB workspace, is updat-
ed with the new beamformer coefficients,
FPGAWeights, as computed by the FPGA
QRD process using the simple assignment
w = FPGAWeights. (FPGAWeights is the
name assigned to a shared-memory buffer
in the System Generator description of the
QRD engine.)

The management of this type of host
processor/FPGA interaction by the System

Generator framework makes the develop-
ment of heterogeneous applications
straightforward, rapid, less error-prone, and
enables an FPGA accelerator engine (like
the QRD module in this case) to be easily
ported between different hardware plat-
forms without needing to modify the
FPGA source code – the System Generator
model itself.

The interface abstraction supports
transactions between the host application
and the System Generator source model, as
well as the host application and the final
design running on the FPGA platform.
This latter element significantly contributes
to the validation process of the software
and hardware (FPGA) dimensions of the
system, as both components can be
brought online rapidly using the shared
memory abstraction.

Conclusion
In this article, we’ve described the FPGA
implementation of a flexible QRD proces-
sor that enables the run-time definition of
the input matrix dimensions. The design
employs a mixture of CORDIC-based pro-
cessing (array boundary cell) and MAC-
based (array internal cell) arithmetic that is
well matched to the computational
resources of an FPGA like the Xilinx
Virtex-4 family.

All of the boundary- and internal-cell
processing were projected onto a single
boundary cell functional unit and internal
cell functional unit; however, it should be
noted that the abundant resources of FPGA
platforms support the realization of a fully
parallel systolic array, should the through-
put requirements of the target application
demand extremely high performance.

The System Generator programming
environment enables the rapid develop-
ment of heterogeneous systems (processors
and FPGAs) while insulating programmers
from the frequently complex and error-
prone programming associated with hard-
ware/software partitions.

This work was performed by the Xilinx Advanced
Systems Technology Group (ASTG), the R&D
organization within the Xilinx DSP Division,
together with our partner organizations Signum
Concepts and San Diego State University.

00 Xcell Journal First Quarter 2007

Matlab or C Application

Matlab or C API

Input

Memory

Buffer

'foo'

System

Generator

design flow

insulates

the host

program from

the details of the

FPGA platform

FPGA

Processing

Kernel

Shared

Memory

Object

Output

Memory

Buffer

'bar'

API is auto-

generated by

System

Generator

Figure 5 – Hardware/software abstraction enabled by the System Generator shared memory
library elements. The host application performs transactions with the FPGA storage elements

using simple name/space references – in this case to the memories named “foo” and “bar.”

