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Abstract—In this paper we address the problem of estimating
the blood oxygen concentration in children during surgery.
Currently, the oxygen content can only be measured through
invasive means such as drawing blood from the patient. In this
work, we attempt to perform estimation by only using other
non-invasive measurements (e.g., fraction of oxygen in inspired
air, volume of inspired air) collected during surgery. Although
models mapping these measurements to blood oxygen content
contain multiple parameters that vary widely across patients,
the non-invasive measurements can be used to provide binary
information about whether the oxygen concentration is rising
or dropping. This information can then be incorporated in a
context-aware filter that is used to combine regular continuous
measurements with discrete detection events in order to improve
estimation. We evaluate the filter using real-patient data collected
over the last decade at the Children’s Hospital of Philadelphia
and show that it is a promising approach for the estimation of
unobservable physiological variables.

I. INTRODUCTION

Modern operating rooms (ORs) are equipped with multiple
devices that measure various vital signs and provide clinicians
with ample information about the patient’s state. Analyzing
this data in real time, however, may be challenging when
the physician is focused on the patient, especially when
trends over time and correlations between variables must be
observed. This presents a great opportunity for developing
Medical Cyber-Physical Systems (MCPS) that aid clinicians
by estimating unobservable variables or providing detections
of critical events that might be unnoticed otherwise [9].

In this work, we address the problem of estimating the
concentration of oxygen (O2) in the blood, one of the most
closely monitored variables in ORs. The O2 concentration
(also referred to as O2 content) has to be maintained within
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safe ranges – if it is too low it may lead to organ failure
and brain damage, whereas too high values could be toxic.
Therefore, one of clinicians’ main concerns during surgery is
to keep the patient’s O2 concentration and end-organ perfusion
stable.

Currently, the O2 content cannot be measured precisely
by non-invasive means as it can only be directly measured
by drawing blood from the patient. As a result, clinicians
monitor the O2 concentration using a proxy – the hemoglobin-
oxygen saturation in the peripheral capillaries (SpO2), which
is measured non-invasively and in real time. While SpO2 is
a good measure of the concentration in the location where it
is measured (e.g., a finger tip), it is not a good indication of
the O2 content in other parts of the body as there may be
differences in perfusion (e.g., as caused by a tourniquet on a
limb). In addition, monitoring SpO2 is reactive – clinicians
take action when low SpO2 is observed, at which point the
patient may already be in a critical state.

As a proactive way of monitoring the O2 concentration,
clinicians also estimate another correlated variable, namely the
partial pressure of oxygen dissolved in arterial blood (PaO2).
As opposed to SpO2, PaO2 can be used as a predictive
measure of the concentration as PaO2 drops significantly
before major decreases in the concentration are observed.
Thus, in this work we propose to estimate both the O2 content
and PaO2 as a convenient way of observing the trends in O2

content. At the same time, similar to the O2 concentration,
PaO2 cannot be measured non-invasively and in real time.

To overcome this problem, we use other measurements
available in real time in modern ORs, namely the fractions
of O2 and carbon dioxide (CO2) in inhaled and exhaled air,
respectively, the pressure and volume of inhaled air, and the
respiratory rate. By correlating these variables with PaO2 and
by modeling O2 dynamics through the body, one can estimate
PaO2 without multiple blood draws from the patient. However,
an additional challenge with this approach is that models
describing the circulation of O2 in the blood and airways are



imprecise and contain multiple parameters that vary widely
across patients, e.g., metabolic rate, lung membrane thickness,
arterial wall thickness. While it may be possible to learn
some of these parameters given enough data, most of them
are not identifiable using non-invasive measurements only.
Thus, standard filtering techniques are not suitable for this
application.

To perform estimation in systems with imprecise models
and sensors, our previous work introduced the context-aware
filter [8]. The context-aware filter combines continuous and
discrete measurements by modeling the probability of event
detection as a function of the state. We developed recursive
Kalman-like filters for two classes of detection functions and
evaluated them in simulation of robotics scenarios. In this
work, we employ the context-aware filter by using relative
measures of the O2 concentration. In particular, we monitor
the O2 diffusion, i.e., transfer of O2 from lungs to the blood,
and raise alarms when relative changes are observed. These
alarms are then included as measurements in the context-aware
filter in order to improve estimation.

Finally, we evaluate the PaO2 estimator on real-patient data
collected at the Children’s Hospital of Philadelphia (CHOP).
We compare the context-aware filter’s estimates with blood-
gas data collected during some of these cases. We conclude
that the filter can be used to improve upon current estimation
techniques and is also a promising direction for future research
in the area of estimation of unobservable physiological vari-
ables.

Related work in the MCPS domain can be broadly divided
in three areas: verification, detection and estimation. When
precise models are available, it is possible to use formal
methods in order to ensure that the system does not endan-
ger the patient’s safety [2], [15]. On the other hand, when
models are parameterized by patient-specific parameters, one
may use parameter-invariant detectors in order to achieve the
same detection performance regardless of the values of these
parameters [9], [22]. Finally, estimation is more challenging as
most models are unidentifiable given current measurements; in
some applications, it is possible to use invasive measurements
to learn the parameters [12] or to use machine learning
when sufficient data is available [5], [16]. Since the problem
addressed in our paper does not have rich data or frequent
invasive measurements, we generate context measurements
based on other available data.

Estimation with both continuous and discrete (context)
measurements has been addressed in the target tracking com-
munity [13] where, however, the more general models lead to
computationally expensive solutions. Other related problems
are sensor scheduling [10], [21] and filtering with intermittent
measurements [20] but these works only handle continuous
measurements. In robotic applications, techniques have been
developed to use both kinds of measurements through informa-
tion fusion [1], [4], [24] and bounded distributions [18]; how-
ever, the former works do not incorporate system dynamics
whereas the latter approach results in unwieldy distributions
that require approximations. Finally, a similar problem to

the one addressed in this paper can be solved using parti-
cle filters [3]; yet, particle filters may suffer from particle-
deprivation problems in high-dimensional spaces whereas the
context-aware filter provides exact estimates regardless of
dimensionality.

In summary, the contributions of this work are: 1) the
estimation of O2 content and partial pressure of dissolved
O2 by only using non-invasive measurements (once properly
initialized); 2) the first application of the context-aware filter to
the MCPS domain; 3) a case-study evaluation on real-patient
data from CHOP.

This paper is organized as follows. Section II describes
the current approach to monitoring the O2 concentration and
presents the PaO2 estimation problem. In Section III we
describe a minimal parameterized physiological model of the
circulation of O2 in the cardiopulmonary system and present
ways of adding additional context measurements. Section IV
introduces the context-aware filter and Section V presents the
final model, complete with context measurements. Section VI
gives the case-study evaluation of the context-aware filter and
Section VII concludes the work.

II. PROBLEM STATEMENT

In this section, we outline the current approach to monitor-
ing O2 concentration, note its drawbacks, and formulate the
problem that is addressed in this paper.

Currently, clinicians have only one available real-time mea-
surement of blood oxygen, namely the hemoglobin-oxygen
saturation in the peripheral capillaries (SpO2), measured by
a pulse oximeter at an extremity (usually a finger tip). The
saturation is a good measure of the O2 concentration in
the location it is measured because of the oxygen content
equation [23]:

CpO2 = 1 .34SpO2Hb + 0 .003PpO2, (1)

where CpO2 is O2 concentration in the peripheral capillaries,
Hb is the amount of hemoglobin in g/dL, and PpO2 is the
partial pressure of dissolved oxygen in the peripheral capillar-
ies measured in mmHg. According to (1), O2 appears in only
two forms in the blood – it is either bound to hemoglobin or
dissolved in the blood. Equation (1) shows that, for normal
values of PpO2 around 80-200 mmHg and of Hb around
12-17 g/dL [23], the majority of O2 is bound to hemoglobin.
Thus, SpO2 is a good measure of the O2 concentration in
the peripheral capillaries. By assuming that CpO2 is just a
delay of CaO2 (the O2 concentration in the arteries), SpO2

can also be used as a good proxy for CaO2. At the same
time, however, the saturation is usually constant at 100% in
healthy people. Thus, when reduced saturation is observed, the
O2 content has already decreased; hence, monitoring the O2

concentration through SpO2 is reactive in nature.
In contrast, monitoring the partial pressure of dissolved O2

is proactive. In addition to (1), dissolved O2 and hemoglobin-
bound O2 are related according to a well-studied hemoglobin
dissociation curve [17]. Figure 1 shows an example dissocia-
tion curve. While the magnitude of the curve may vary across



Fig. 1: A typical hemoglobin dissociation curve for O2.
It shows the shape of the relationship between the partial
pressure of dissolved O2 and hemoglobin saturation. The curve
is true for any physiological location, e.g., in the peripheral
capillaries the horizontal axis label would be PpO2 and the
vertical would be SpO2.

patients, the overall S-shape remains the same. Figure 1 shows
that for large values of the partial pressure, the saturation is
close to 100%; at the same time, any noticeable decrease in
saturation (and consequently the O2 concentration) can be
observed only after a large decrease in the partial pressure.
Thus, monitoring the partial pressure of dissolved O2 in
arterial blood (PaO2) provides clinicians with a proactive way
of addressing changes in O2 content before they are reflected
in changes in SpO2.

Estimating PaO2, however, is challenging because it cannot
be measured non-invasively and in real time. Instead, we focus
on other real time measurements, available in the modern
ORs, as means to infer PaO2. At CHOP, the anesthesia
machine provides several pulmonary measurements, namely
the fractions of O2 and CO2 in inspired and expired air,
the volume and pressure of inspired air, respiratory rate and
others. While it is possible to model the relationship between
these variables and PaO2 (e.g., Fick’s laws of diffusion), such
models contain multiple parameters that vary widely across
patients. Instead, in this paper we use population-average
values for these parameters and aim to incorporate the context
information provided by the pulmonary measurements in order
to improve estimation and correct inaccuracies introduced by
wrong parameter values.

Problem. The problem considered in this work is to develop
an estimator forPaO2 and CaO2 by using the noninvasive
real-time inputs (fraction ofO2 in inspired air, volume and
pressure of inspired air, respiratory rate) and pulmonary mea-
surements (partial pressure ofCO2 in exhaled air) available
to clinicians.

Remark:Our solution uses one blood-gas analysis in order
to initialize the estimator.

TABLE I: Summary of cardiopulmonary partial pressures and
blood concentrations. Partial pressures begin with the letter
“P” whereas concentrations begin with “C”.

Variable Names Physiological Location
Pi O2 Airways (inspiration)
PA O2 Alveoli

Ca O2, Pa O2 Arteries
Cp O2, Pp O2 Peripheral capillaries
Cv O2, Pv O2 Veins
Cd O2, Pd O2 Pulmonary capillaries

PeO2 Airways (expiration)

III. PHYSIOLOGICAL MODEL

In order to develop an estimator for PaO2, one needs to
first identify a model mapping the available measurements to
PaO2, as well as formalize the dynamics of the variables in the
human body. While models of varying complexity exist in the
literature, typically, as the model complexity increases, so does
the number of unknown model parameters (e.g., lung capacity,
metabolism) that vary across patients. Since these parameters
are unidentifiable with current non-invasive measurements, the
most popular approach is to use minimal models, i.e., models
with a minimal number of parameters that still capture the
first- or second-order dynamics of the system.

We develop a minimal model, building on results from the
work of Kretschmer et al. [12] on estimating PaO2 and from
our previous work [9] on detecting drops in the O2 concen-
tration. Our model is approximate in the sense that it captures
general trends and relationships among the variables in order
to reduce the number of unidentifiable parameters. We use
population average values for the few remaining parameters
and improve the fidelity of the model by incorporating binary
context measurements (explained in Section IV).

A. Overview of Physiological Variables

This section provides an overview of the physiological
variables used in this paper. For reference, all variables are
summarized in Table I and shown in Figure 2. In inspired air,
the partial pressure of O2 is denoted by Pi O2. In the lungs,
the air enters the alveoli where the partial pressure is denoted
by PA O2. In the alveoli, diffusion occurs, and the gas enters
the blood stream at the pulmonary capillaries where the partial
pressure of O2 is denoted by PdO2 and the total concentration
is CdO2. Note that, as shown in Figure 3, some of the blood is
shunted (e.g., due to blood draining directly into the cavity of
the left ventricle through the thebesian veins [23]) and does not
participate in diffusion. When the blood from the pulmonary
veins enters the heart, it is pumped in the arteries where the
partial pressure and concentration are denoted by PaO2 and
CaO2, respectively. The arteries transport the blood to the
peripheral capillaries (PpO2 and CpO2), where metabolism
occurs and converts O2 into CO2. Finally, the veins (Pv O2

and Cv O2) transport the blood back to the lungs and the
cardiovascular cycle repeats. The breathing cycle concludes
with expiration, where the partial pressure of O2 in expired



Fig. 2: A simplified schematic model of O2 variables in the
respiratory and cardiovascular systems.1

Fig. 3: An illustration of shunted (bottom) vs. non-shunted
(top) blood dynamics in the lung. O2-rich non-shunted blood
participates in diffusion and then mixes with CO2-rich
shunted blood.

air is denoted by PeO2.

B. Model Dynamics

Having introduced the variables and processes at a high
level, we now formalize the model dynamics and introduce
the related measurements. We develop a discrete-time model
for the O2 concentration and discuss how to convert from
concentrations to partial pressures in Section V.2 The rela-
tionship between the variables in the airways is governed by
the alveolar air equation [7]:

PA O2(k) = Fi O2(k)(PAT M � PH 2 O )

� PA CO2(k)(1 � Fi O2(k)[1 � RQ])
RQ

,
(2)

where Fi O2 is the fraction of O2 in inhaled air (it can be
converted to Pi O2 using the first term on the right-hand side),
PA CO2 is the partial pressure of CO2 in the alveoli, PAT M

and PH 2 O are the atmospheric and water vapor pressures (in
mmHg), respectively, and RQ is the respiratory quotient. RQ
is a measure of the ratio of O2 and CO2 used in metabolism
and varies with the type of consumed food. Note that Fi O2 is
set by clinicians, so it can be considered as input, whereas
PA CO2 is measured by end-tidal CO2 (EtCO2), i.e., the
partial pressure of CO2 at the end of the breath.3

1Note that, for better illustration, the figure shows the pulmonary veins
merging before entering the heart, whereas in healthy humans they connect
to the left atrium directly.

2Our model is discrete-time because the available sensors (at CHOP)
have a discrete sampling rate. It does not model the partial pressures of
dissolved O2 directly because the required relationships are nonlinear and
would unnecessarily complicate the estimation task.

3Note that EtCO 2 might be smaller than PA CO2 due to dead space, i.e.,
the volume of air in the airways that is not in contact with blood. However,
dead space is about 5% of tidal volume [6], hence it is not considered in this
work.

When diffusion occurs, O2 usually diffuses completely so
that the partial pressures are the same:

PdO2(k) = PA O2(k). (3)

After diffusion, O2 is in the blood, so its concentration needs
to be computed as well. To convert from partial pressure
to concentration, one uses (1)4 in combination with the O2

dissociation curve (Figure 1) in order to compute the saturation
corresponding to that partial pressure. Let us denote the
dissociation curve by g, i.e., g is a function mapping partial
pressures of dissolved O2 to hemoglobin oxygen saturation.
Thus, the O2 concentration in the pulmonary capillaries after
diffusion can be expressed as:

CdO2(k) = 1 .34Hb g(PdO2(k)) + 0 .003PdO2(k). (4)

Note that g varies greatly between patients. In Section V we
show how to select g based on population averages.

Continuing with the cardiovascular dynamics, the concen-
tration in arterial blood, as shown in Figure 3, is the weighted
average of the concentrations in shunted and non-shunted
blood, according to the fraction f of shunted blood. Then

CaO2(k) = (1 � f )CdO2(k) + fCv O2(k), (5)

where the shunted blood has the same O2 concentration as
venous blood.

The O2 concentration in the peripheral capillaries is as-
sumed to be the same as in the arteries [23], i.e., no reactions
occur that change the gas concentrations:

CpO2(k) = CaO2(k). (6)

Finally, the concentration in the veins is equal to that in the
peripheral capillaries minus the effect of metabolism:

Cv O2(k + 1) = CpO2(k) � µ, (7)

4Note that the O2 content equation is true for any location in the body,
i.e., one can replace Cp O2 and Pp O2 with Cd O2 and Pd O2 .



where µ captures the patient-specific metabolic rate. Note that
a delay is introduced in order to model the fact that it takes
time for the blood to travel from the arteries to the veins.

The whole parameterized model can now be summarized in
a typical state-space equation:

ak+1 = (1 � f )(dk+1 ) + f (ak � µ) + v1,k

ek+1 = ek + v2,k

yk = ek + wk ,

(8)

where ak := CaO2(k), dk := CdO2(k), ek := PA CO2(k),
yk := EtCO2(k), vk := [ v1,k , v2,k ]T is white Gaussian
process noise, and w is white Gaussian measurement noise,
independent of vk . Modeling the dynamics of PA CO2(k)
more precisely is possible but introduces more parameters. A
random walk model achieves two goals: 1) a linear model
with few parameters is maintained and 2) PA CO2 is a
system state and, hence, may vary less than the noisy EtCO2

measurements.

C. Context Information

The model above captures the general trends of O2 con-
centration but does not have good predictive capacity for an
arbitrary patient, unless the parameters (f , µ, RQ, Hb, PAT M ,
PH 2 O ) are identified. However, there are other measurements
and inputs that can be used to improve the estimation.

For example when SpO2 is below 100%, this information
can be used to upper-bound the O2 concentration since the
majority of O2 is hemoglobin-bound (as shown in (1)). We
do not use SpO2 measurements directly in the model since
mapping the saturation to the concentration of dissolved O2

requires knowledge of the magnitude of the dissociation curve
g. Instead, SpO2 can be used as a context measurement which
provides alarms whenever the saturation is below 100%.

In addition, clinicians have three other ways of controlling
a patient’s oxygenation: tidal volume (the volume of air
in the lungs), respiratory rate and the pressure of inhaled
volume. Increasing either of these usually results in higher
O2 concentration; however, due to patient variability, they
have different effects in different cases. Thus, clinicians adjust
their combination in order to optimize O2 uptake. While it is
not straightforward to directly incorporate the inputs into the
model, they can be used as context information, similar to
SpO2. Specifically, alarms can be raised whenever the input
variability ought to result in higher or lower O2 concentrations.
This intuition is made precise in Section V.

Context alarms can be incorporated in the estimation pro-
cess by using a context-aware filter, as explained in the next
section.

IV. CONTEXT-AWARE FILTER

This section presents the context-aware filter, as developed
in our previous work [8]. At a high-level, the context-aware
filter performs state estimation by incorporating regular con-
tinuous state measurements (e.g., EtCO2) as well as discrete
alarm events (e.g., a certain signal is above a given threshold).
The filter was shown to work well in automotive scenarios

where detections of nearby buildings were used to improve
localization.

Formally, the context-aware filter assumes the system has
known linear dynamics of the form:

xk+1 = Ak xk + Bk uk + wk , (9)

where x 2 Rn is the system state, u 2 Rp is the applied
input, w ⇠ N (0, Q) is Gaussian process noise, and A and B
are matrices of appropriate dimensions.

Additionally, there are two types of available measurements:
continuous state measurements as well as discrete context
measurements. State measurements have the usual linear ob-
servation model:

yk = Ck xk + vk , (10)

where we denote state sensors’ measurements by yk 2 Rm ,
vk ⇠ N (0, R) is Gaussian measurement noise, and matrix C
has appropriate dimensions.

Context measurements provide information about the sys-
tem’s context. Context is formally defined as a finite set
C = {c1, . . . , cN }, where each ci is a context element that
can only be detected by a context sensor from certain states;
example context elements include a physiological signal (e.g.,
SpO2) that crosses a threshold and raises an alarm or a
building that is recognized using image processing. For each
context element, a measurement bi

k is received such that is
bi

k = 1 if ci is detected and bi
k = �1 otherwise. Each context

element has a probability of being detected given the current
state; we denote this probability with pd(ci | x), i.e.,

bi
k =

!
1 w.p. pd(ci | x)
�1 w.p. 1� pd(ci | x),

(11)

where pd is a function of the system state. Thus, the set of
context measurements is bk 2 {�1, 1}N .

Given this system, the problem that the context-aware
filter needs to address is the usual filtering problem, i.e.,
if we are given a prior probability density function on the
state pk |k (x) := p(x | u0:k ! 1, y0:k , b0:k ), can we compute the
posterior density

pk+1 |k+1 (x) := p(x | u0:k , y0:k+1 , b0:k+1 ),

describing the system’s state given all available measurements
and inputs.

In our previous work, we focused on two classes of
probability of detection functions that model a wide variety
of applications and that lead to closed-form filters. In this
section, we briefly describe the one that is relevant to the
problem of estimating the O2 concentration before presenting
the corresponding filter equations.

Assumption. Suppose the probability of context detection
functions are sigmoid functions that are deÞned as the probit
logistic function [14]:

pd(ci | xk ) = !( vT
i xk + ai ), (12)



where! is the cumulative distribution function of the standard
Normal distribution,vi 2 Rn is a vector of known parameters,
and ai 2 R is a known parameter offset.

Note that (in the one-dimensional case) this function has a
similar shape to the classical sigmoid function: f (x) = 1 /(1+
e! x ). It is suitable for modeling threshold detection events
such as a physiological signal crossing a certain threshold
because the function is close to 0 for states that are far from
the threshold but rises quickly when the threshold is reached
and approaches 1 when it is crossed. The intuition is that once
a state has crossed a certain threshold by some margin, even
very imprecise sensors will detect the fact that it has crossed
and will raise an alarm with high probability.

Given the probability of detection defined in (12), we can
now present the resulting context-aware filter. For simplicity,
only the final formulas are presented here; the entire derivation
can be found in our previous work [8]. Similar to a Kalman
filter, the context-aware filter has an update and a predict
stage; the former, however, is split into continuous update and
discrete update, depending on which measurement is received.
The following three subsections present the stages of the filter,
assuming that the prior pk |k has a Gaussian distribution with
mean µ and covariance matrix " .

A. Predict

The predict stage is the classical Kalman filter prediction:

pk+1 |k (x) =
"

! (x; Ak z + Bk uk , Q)! (z; µ, ") dz

= ! (x; Ak µ + Bk uk , Ak " AT
k + Q)

= ! (x; µp, " p),

where ! (x; µ, ") denotes the Gaussian density with mean µ
and covariance matrix " .

B. Continuous Update

The continuous update is also the same as in the Kalman
filter:

pc
k+1 |k+1 (x) =

p(yk+1 | x)pk+1 |k (x)
#

p(yk+1 | z)pk+1 |k (z)dz

=
! (yk+1 ; Ck x, R)! (x; µp, " p)#
! (yk+1 ; Ck z, R)! (z; µp, " p)dz

= ! (x; µc, " c),

where

µc := µp + Kc(yk+1 � Ck µp)

" c := ( I � KcCk )" p

Kc := " pCT
k (Ck " pCT

k + R)! 1.

C. Discrete Update

To simplify notation, we assume a single context measure-
ment, bk , with corresponding parameters v and a; the approach
can be straightforwardly extended to multiple measurements
through repeated updates.

Proposition 1 ([9]). The discrete update of the context-aware
Þlter is as follows:

pk+1 |k+1 (x) =
!( bk (vT x + a)) ! (x; µc, " c)

Z
, (13)

where

Z = !
$

bk (vT µc + a)p
vT " cv + 1

%
.

As discussed in our previous work, the posterior in (13) is
no longer Gaussian, yet a Gaussian with the same first two
moments is a reasonable approximation.

Approximation. We approximate the posterior distribution
in (13) with a Gaussian distribution with the same mean and
covariance matrix.

The next proposition describes the first two moments, which
completes the filter equations.

Proposition 2 ([9]). The mean of the distribution in(13) is:

µd = µc + bk " cv

!
$

bk (vT µ c + a)p
vT ! c v+1

; 0, 1
%

Z
p

vT " cv + 1
. (14)

The covariance matrix of the distribution in(13) is:

" d = " c + µ1(µc)T + µcµT
1 � µc(µc)T

� bk " cvvT " c
!

$
bk (vT µ c + a)p

vT ! c v+1
; 0, 1

%
(vT µc + a)

Z(vT " cv + 1) 3/ 2
� µ1µT

1 .

In summary, this section presents the context-aware filter
that incorporates continuous state measurements and discrete
context measurements. The following section presents the
context-aware model for estimating the blood oxygen concen-
tration.

V. CONTEXT-AWARE MODEL

Having described the parameterized model and the context-
aware filter in the previous two sections, in this section
we develop the full model, including both state and context
measurements.

A. System Dynamics

We begin by noting that the model in (8) is close to
linear in the ranges we are interested in. To see this, note
that Fi O2(k), i.e., the fraction of O2 in inhaled air, is 21%
in breathing air and usually much higher during mechanical
ventilation. This means that PA O2(k), as computed in (2), is
also very high (in the extreme case when Fi O2(k) = 100%,
PA O2(k) = 713mmHg, when we plug in normal values for
PAT M = 760mmHg, PH 2 O = 43mmHg). This in turn means
that PdO2(k) is also high, i.e., in the top right corner of the
dissociation curve in Figure 1. Therefore, g(PdO2(k)) ⇡ 1,
i.e., (4) simplifies to:

CdO2(k) = 1 .34Hb + 0 .003PdO2(k). (15)



Using (15) in (8), the new model becomes

ak+1 = (1 � f )(1.34Hb + 0 .003(c1uk + c2,k ek ))

+ f (ak � µ) + v1,k

ek+1 = ek + v2,k

yk = ek + wk ,

(16)

where c1 = ( PAT M � PH 2 O ), uk = Fi O2(k) and c2,k =
(1 � uk [1� RQ])/RQ.

Thus, the above model is a linear time-varying system (note
that the input uk , which also appears in c2,k , is multiplied
by one of the states, ek , but this does not introduce non-
linearities because in this paper we are only considering the
estimation problem and not the control problem). There are
several parameters in the model; as argued above, these cannot
be learned due to unobservability. Thus, we select population
average values for the parameters (except for f ) and argue that
context measurements will correct model inaccuracies. More
specifically, based on medical literature [23], these values were
selected as: Hb = 12 g/dL, PAT M = 760 mmHg, PH 2 O =
47 mmHg, µ = 5 mL/dL, RQ = 0 .8.

The parameter f , which represents the fraction of shunted
blood, does not have typical ranges and can vary widely
depending on the patient’s condition (e.g., a pulmonary shunt
leads to 50% shunted blood). Thus, we adopt an approach
used in prior work [12] for the estimation of f . This re-
quires an initializing measurement of PaO2 through blood-
gas analysis. By obtaining this measurement, one can estimate
CaO2 through (4), where a functional form for g is also
assumed, as developed in [11]. Then, using (8) and assuming
that ak+1 = ak = a, one obtains the equation:

a = (1 � f )d + f (a � µ), (17)

where d is computed from (4). This equation can now be
solved for f in order to obtain the fraction of shunted blood.

B. State Measurements

Note that we have only one state measurement, namely yk ,
which directly measures state ek , i.e., we have a linear state
observation model.

C. Context Measurements

For the context observation model, we use other available
measurements as described in Section III-C. We develop two
classes of context measurement – one class based on the
hemoglobin-oxygen saturation (SpO2) and one class based on
the other inputs.

The alarm related to SpO2 measurements is raised when
SpO2(k) drops below 99%. Since SpO2 represents the vast
majority of O2 content, according to (1), one can reasonably
conclude that if SpO2 < 99%, then CaO2 < (1.34⇤0.99)Hb.
This naturally leads to a threshold alarm based on SpO2; the
parameters of (12) can be set to vi = [1 0]T , ai = �(1.34⇤
0.99)Hb.

The second class of alarms consists of several alarms due
to the more complicated nature of the signal. This class of

alarms aims to use the three other inputs available to clinicians:
tidal volume (Vt ), respiratory rate (RR) and peak inspiratory
pressure (P IP ). Each of these inputs affects diffusion through
Fick’s law of diffusion, which can be stated as follows, adapted
to this application [23]:

údk / cA(PA O2(k) � PdO2(k)) , (18)

where dk = CdO2(k) as before, c is a constant that captures
the O2 diffusive capacity and lung thickness, and A is the
lung surface area. Equation (18) states that the number of
diffused moles is directly proportional to the surface area and
to the difference between the pressures in the lung and in the
blood. Note that (18) cannot be solved because of the unknown
initial condition and unknown parameters. However, one can
compute the signal on the right hand side at each point in
time; since it is proportional to O2 diffusion, when the signal
is higher, one would expect the O2 concentration to increase
as well.

To construct this signal, note that if we make the usual
assumption that a lung is a sphere, then A / V 2/ 3

t . In
addition, since a patient can take several breaths in between
two measurements, the respiratory rate can be used as well in
order to compute a “cumulative tidal volume” since the last
measurement, i.e.,

øV (k) =
tS

60
RR(k)Vt (k), (19)

where tS is the sampling time in seconds. Thus A / øV 2/ 3.
Furthermore, note that P IP is directly proportional to

PA O2. Thus, one can adapt (2) to include P IP as effectively
increasing atmospheric pressure:

PA O2(k) = Fi O2(k)(PAT M � PH 2 O + P IP (k))

� PA CO2(k)(1 � Fi O2(k)[1 � RQ])
RQ

.
(20)

The final piece of the “diffusion” signal is the initial value
of PdO2(k). Since the initial value is equal to the venous
Pv O2(k), PdO2(k) is directly proportional to PaO2(k � 1);
therefore, we use the expected value of ak ! 1 to obtain an
“expected” PaO2(k). To obtain a rough estimate of the partial
pressure, one needs to invert (1) and solve the following
nonlinear equation (e.g., by using simplex methods):

E[ak ! 1] = 1 .34Hb g(E[PaO2(k � 1)])

+ 0 .003E[PaO2(k � 1)],
(21)

where E denotes the expectation operator; note that a func-
tional form of g must be assumed, e.g., as in [11]. Thus, the
final constructed signal is:

sk = øV (k)2/ 3 ⇤ (PA O2(k) � E[PaO2(k � 1)]). (22)

In order to use s as a context measurement, one needs to
identify changes in its baseline and raise alarms. To do this, an
initial baseline of the signal is selected, and alarms are raised
if the signal is too high or too low with respect to that baseline.
In particular, suppose the first blood-gas measurement of PaO2

is received at time step q; then the value of sq is selected as a
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Fig. 4: Absolute errors for each of the two compared PaO2
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tor. Red dashed line shows the average error of the context-
aware filter, whereas blue dashed line indicates the average
error of the Fi O2-based estimator.

baseline and alarms are raised at a later step k if sk is lower
than 0.5sq or 0.8sq or if it is higher than sq, 1.2sq, or 1.5sq.

To select the respective CaO2 thresholds, we note that since
sk is directly proportional to CaO2, a relative change in sk

should result in a similar relative change in CaO2(k). Thus,
we identify the baseline CaO2(q) and set the thresholds ac-
cordingly. For example, if sk < 0.8sq, then an alarm is raised
and the corresponding sigmoid parameters are vi = [1 0]T ,
ai = �0.8CaO2(q). The other thresholds are derived similarly.

This fully specifies the context observation model and com-
pletes the full system model. The following Section presents
the case-study evaluation of this model and of the resulting
context-aware filter.

VI. CASE STUDY

This section presents a case-study evaluation of the PaO2

estimator developed in this work. We use real-patient data col-
lected during lung lobectomy surgeries on children performed
at CHOP. A lung lobectomy is the surgical removal of a lung
lobe, often due to disease such as cancer or a cystic lung
lesion; lobectomies often require one-lung ventilation (i.e.,
the endotracheal tube is inserted down a mainstem bronchus,
so the patient breathes with one lung only) in order to keep
the perioperative lung still. In children, one lung is often not
enough to provide sufficient O2 to the body, hence the O2

concentration tends to decrease.
For evaluation purposes, we use the blood-gas samples taken

during these cases and compare them with our estimates.
As mentioned earlier, clinicians do not usually draw blood
unless they suspect a problem, hence there are at most several
measurements per case, while most cases do not have any.
After removing all cases with less than two measurements
(recall that one is necessary for the algorithm initialization),

we retain 51 cases overall. In each case, we initialize the
context-aware filter with the first blood-gas measurement and
evaluate it on the remaining ones. In addition, as described
in the previous section, the diffusion signal baseline (used
to define context measurement thresholds) is also computed
at the time of the first blood-gas measurement. Finally, note
that the available blood-gas measurements only contain PaO2

measurements, hence only PaO2 estimates are evaluated.
Figure 4 presents the absolute errors of the context-aware

filter, with all measurements from all patients stacked together.
For better evaluation, we compare the filter with a PaO2

estimation algorithm developed in previous work that uses
a similar model and also requires one blood-gas measure-
ment for initialization [12]; this algorithm is named here
“Fi O2-based estimator”. As can be seen in the Figure, the
context-aware filter eliminates all of the Fi O2-based estimator
outliers except for one (discussed below). In addition, the
context-aware filter achieves a lower average error overall,
51.7 mmHg, than the Fi O2-based estimator’s average error,
63.3 mmHg. To put the error in perspective, note that PaO2

measurements are usually in the 200-400 mmHg range (due
to Fi O2 being usually close to 100%), with the exception of a
few cases with infants where it is in the 100-200 mmHg range.
With this in mind, errors of 100 mmHg are still significant; yet,
the reasonably uniform distribution of the errors suggests that
the context-aware filter is not greatly affected by inter-patient
variability and is thus a reasonable choice of estimator, once a
more accurate model and more precise context measurements
are obtained.

To further analyze the performance of the context-aware
filter, we analyze two cases, one with very good performance
and one with bad performance. Figure 5a presents an example
case where context measurements bring a significant improve-
ment.5 It shows the estimates of each of the two estimators,
together with the blood-gas samples, as well as all other
measurements and inputs used in the filters. Note that after
the initializing blood-gas measurement, clinicians reduce Fi O2

(around time step 800), probably content with the patient’s
current condition. Yet, other inputs (Vt , RR, P IP ) do not
change greatly, indicating that the patient’s O2 concentration
should not decrease significantly. This is confirmed by the
diffusion signal, which only decreases by about 20%; thus the
0.8sq alarm is raised but the 0.5sq alarm remains silent, which
causes the filter to set the estimate somewhere in between. In
contrast, the Fi O2-based estimator is greatly affected by the
reduced Fi O2.

As an example bad-performance case, we consider the
outlier in Figure 4 for the context-aware filter. Note that, once
again, the context-aware filter is not greatly affected by the
decreased Fi O2. In this case, the problem is that the diffusion
signal is actually too low at the initialization stage (around
step 580), so high-signal alarms are raised later. A possible
explanation for the bad performance of the filter in this case

5Note that the estimates prior to the first blood-gas sample are not used for
evaluation but are included for completeness.
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(a) Example case with good estimation by the context-aware filter.
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(b) Example case with bad estimation by the context-aware filter.

Fig. 5: Example cases for different scenarios. Red SpO2 data points indicate low-SpO2 alarms; blue SpO2 data points indicate
no SpO2 alarms. Diffusion signal: red data points indicate 0.5sq alarms; yellow data points indicate 0.8sq alarms; green data
points indicate no alarms; blue data points indicate 1.2sq alarms; magenta data points indicate 1.5sq alarms (recall sq is the
diffusion signal at the initialization point, i.e., first blood-gas analysis).

is a wrong timestamp of the first blood-gas sample; these
timestamps are entered manually and are prone to significant
errors, as explored in prior work [19]. In particular, note that
tidal volume and respiratory rate are steadily decreasing from
around step 420 onwards; thus it is not unlikely that the blood-
gas sample was obtained at that time as well. As is apparent
from the diffusion signal, if the baseline is set around step 420,
no high-signal alarms would be raised later. Finally, note that
estimation is made harder by the lack of low-SpO2 alarms.

Based on these results, we conclude that the context-aware
filter is a promising direction for future research in the MCPS
area. By incorporating auxiliary information, it is able to
correct some of the deficiencies of imprecise models and
results in better estimation overall, even when the variables
in question are unobservable.

VII. CONCLUSION

In this work we addressed the problem of estimating the
blood oxygen content given only non-invasive measurements.
In addition to regular continuous state measurements, we
incorporated context measurements as derived from auxiliary
input signals that are not used in the system model. We
included these measurements in a context-aware filter and
evaluated the resulting estimator on real-patient data collected
at CHOP. We concluded that the context-aware filter is a
promising direction for research in MCPS, especially in the

presence of imprecise models and sensors. As part of future
work, we will investigate other context measurements that will
further alleviate the model’s uncertainty.
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