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Abstract—This paper considers the problem of continuous state
estimation from discrete context-based measurements. Context
measurements provide binary information as obtained from the
system’s environment, e.g., a medical alarm indicating that a vital
sign is above a certain threshold. Since they provide state infor-
mation, these measurements can be used for estimation purposes,
similar to standard continuous measurements, especially when
standard sensors are biased or attacked. Context measurements
are assumed to have a known probability of occurring given
the state; in particular, we focus on the probit function to
model threshold-based measurements such as the medical-alarm
scenario. We develop a recursive context-aware filter by approx-
imating the posterior distribution with a Gaussian distribution
with the same first two moments as the true posterior. We
show that the filter’s expected uncertainty is bounded when the
probability of receiving context measurements is lower-bounded
by some positive number for all system states. Furthermore, we
provide an observability-like result – all eigenvalues of the filter’s
covariance matrix converge to 0 after repeated updates if and
only if a persistence of excitation condition holds for the context
measurements. Finally, in addition to simulation evaluations, we
applied the filter to the problem of estimating a patient’s blood
oxygen content during surgery using real-patient data.

I. INTRODUCTION

With the proliferation of sensing and computing technology,
modern autonomous systems have access to a wealth of
information when estimating their state. Given the recent
improvements in machine learning, it is now possible to obtain
high-level representations of this information. For example, if
a robot detects a known building using image processing, the
robot can conclude that it is near that building; similarly, if
a medical device raises an alarm that a vital sign is above
a certain threshold, it might be possible to conclude that the
patient is in a critical state. Consequently, these discrete-valued
context data can be viewed as measurements of (functions of)
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Fig. 1: General architecture of a system with access to context
measurements.

the system state, similar to conventional continuous sensors
such as accelerometers or GPS (this notion is illustrated in
Figure 1). Thus, context measurements can be used for state
estimation both as a single source of information and in scenar-
ios when some of the continuous sensors are noisy/biased (e.g.,
GPS in an urban environment [3] or medical sensors disrupted
by moving artifacts [4]) or in security applications when
some sensors might be attacked (e.g., the RQ-170 Sentinel
drone that was captured in Iran [5] is believed to have had
spoofed GPS [6]; if the drone had analyzed Iranian frequency
modulation radio signals using natural language processing, it
could have extracted context information that it is in Iran).

In this paper, we develop a state estimation technique for
linear systems with access to context measurements only.
Context measurements are defined as discrete-valued data that
have a known probability given the system state. Context
measurements are especially useful when they represent low-
level data that cannot be easily expressed as a function of the
state (e.g., it is challenging to functionally map raw images to
the robot’s state). Thus, by using the probability distribution of
context measurements given the state, one may use them for
estimation in a rigorous manner. The probabilistic formulation
makes sense intuitively – if a building is far from the robot
and appears small in images, it might be recognized in some
images only; if the building is nearby, we expect to recognize
it in most images, i.e., the probability of receiving a context
measurement would be high for states close to the building.

In this work, we are specifically interested in binary mea-
surements as an important subclass of context measurements,
i.e., each measurement is equal to 1 or -1 with a known
probability given the state. Binary measurements capture a rich
class of events that might occur during a system’s operation.
Examples include a medical device alarm that a vital sign
exceeds a certain threshold (e.g., if the patient’s oxygen
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saturation is below a certain threshold, then the overall oxygen
content (the state) must be below a certain threshold [2]) as
well as occupancy grid mapping where a binary measurement
is received as the robot gets close to an obstacle [7].

Estimation with context-based measurements was originally
explored in radar target tracking where measurements also
arrive irregularly and could be discrete [8] (refer to Section II
for a discussion of related work). The models considered in
this domain, however, are very general, which makes it chal-
lenging to derive exact theoretical results and instead leads to
computationally expensive approximations. Approaches exist
also for system identification with binary (but not random)
observations [9] and for estimation with quantized measure-
ments where measurements with known functional relation to
the state (e.g., linear) are mapped to discrete sets, e.g., sign
of innovations [10] or logarithmic quantizers [11].

In contrast with existing works, we develop a context-aware
filter for linear systems with access to binary measurements.
Unlike prior work, we assume no knowledge about the mea-
surements other than their probability of occurring given the
state. In particular, we focus on the probit function (i.e., the cu-
mulative distribution function of the Gaussian distribution) in
order to model the probability of getting context measurements
given the state.1 Since it resembles a step/sigmoid function,
the probit function is well suited for modeling threshold-based
context measurements – intuitively, the probability of getting a
measurement is low when the state is well below the threshold
and should rise as the state approaches/passes the threshold.

In our prior work [1], we presented the context-aware filter
for the probit model by deriving the exact posterior distribution
of the state given a context measurement. At the same time, it
is not known how to compute the posterior for multiple context
measurements since the integrals become intractable. As a
result, we proposed to approximate the posterior distribution
with a Gaussian distribution with the same first two moments
as the true posterior. The approximating Gaussian distribution
is then used as a prior for the next measurement, thus obtaining
a recursive context-aware filter.

In this paper, we present theoretical analysis of the context-
aware filter. We first show that the posterior distribution
is unimodal, so that the Gaussian approximation is indeed
justified. In addition, we show that, for a scalar system, the
expected variance of the filter’s estimates is bounded provided
that the probability of receiving both a measurement of 1 and
-1 is at least some positive number η. This result is similar to
a corresponding fact about Kalman filtering with intermittent
observations [12] in the sense that the system needs to perform
“useful” updates often enough in order to keep the uncertainty
bounded. Generalizing this result to multidimensional systems,
however, is challenging due to the fact that we aim to estimate
continuous variables using discrete measurements only; at the
same time, the same intuition could be used to prove a similar
claim in the multidimensional case as well.

To provide further intuition about the filter’s performance
in the multidimensional case, we show convergence results

1In prior work [1], we also considered a second class of probability of
detection functions, namely inverse-exponential functions. In the interest of
space, however, that discussion is not included here.

about systems with no dynamics. We show that the eigenvalues
of the filter’s covariance matrix converge to 0 if and only
if a persistence-of-excitation condition holds for the context
measurements. This result is the context equivalent to an
observability claim in a standard linear system – intuitively, if
there exist context measurements that observe all states, then
the uncertainty decreases over time. Furthermore, we show that
as the eigenvalues of the covariance matrix converge to 0, the
expressions for the moments of the Gaussian approximations
converge to a form similar to the Newton method [13],
which suggests that the estimates likely converge to the true
state, since the posterior distribution is unimodal. This result
provides a parallel with the widely used Expectation Propa-
gation [14] algorithm where similar Gaussian approximations
are employed – thus, the results presented in this paper might
be of interest to the machine learning community as well.

Finally, we evaluate the context-aware filter both in simu-
lation and on real-patient data collected from the Children’s
Hospital of Philadelphia (CHOP). We first show the evolution
of the estimates for a system with no dynamics in order
to illustrate the saw-shaped nature of the estimation curve
induced by binary measurements. In addition, we simulate
a moving system in order to illustrate a case in which the
estimator does converge for moving systems as well. Finally,
we apply the filter to the problem of estimating a patient’s
blood oxygen (O2) content during surgery. Since the O2

content cannot be measured non-invasively, we use context
measurements extracted from different medical device data to
perform estimation. The results indicate that adding context
reduces the estimation error by about 20%, on average.

The remainder of this paper is organized as follows. Sec-
tion II provides a discussion on related work in several
research communities. Section III formulates the problem
addressed in this work, and Section IV presents the context-
aware filter. The convergence analysis of the filter is shown in
Section V. We evaluate the filter’s performance in Section VI
(in simulation) and in Section VII (on real data). Finally,
Section VIII provides concluding remarks.

II. RELATED WORK

The concept of context-aware filtering has appeared in
different forms in several research communities. As mentioned
in Section I, there exist target tracking approaches for filtering
with both discrete and continuous measurements, e.g., the
probability hypothesis density (PHD) filter [8]. Other non-
linear filters have been developed as well, such as the hybrid
density filter (HDF) [15], the set-membership filter [16], and
the assumed density filter (ADF) [17] (the context-aware filter
is a type of ADF for which we can compute the moments of
the posterior distribution). Due to their generality, however,
these filters do not provide strong theoretical guarantees about
specific classes of non-linear systems; in contrast, by focusing
on a specific class of non-linear measurements, we can derive
a closed-form filter with strong theoretical properties.

Context measurements are also similar to quantized mea-
surements in that they are discrete-valued [11], [10]. Quan-
tized measurements are different, however, because they are
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derived from standard continuous measurements whereas con-
text measurements are only related to the state through the
probability of detection. System identification with binary
measurements [9] has also been investigated although no
approaches exist for the probabilistic setting in our paper.

Context-aware filtering is also similar to Kalman filter-
ing with intermittent observations [12], [18] and unreliable
links [19], [20], [21], [22] in that measurements arrive ir-
regularly, and the frequency of measurement arrivals affects
the filter’s performance. Related to this is the area of sensor
scheduling where different sensors are used at different times
so as to minimize interference or power consumption [23],
[24], [25]. Yet another similar problem has been considered
in wireless sensor networks where sensors are deployed over a
large area such that the receipt of each sensor’s measurement
could be considered a context measurement [26], [27].

Due to their discrete nature, context measurements can also
be modeled with hybrid systems [28], where different modes
contain different models of context measurements. Such mod-
els include Markov chain switching [29], [30], deterministic
switching [31], [32] and other more general models [33].
However, due to their complexity, all of these approaches rely
on approximations in order to perform the estimation task.

Different notions of context are also used in robotics for
the purpose of localization and mapping [34] by using scene
categorization [35] and object class information [36], [37].
However, these papers do not provide theoretical guarantees
for their approaches. The work that is closest in its setup and
assumptions to our paper addresses the problem of indoor
localization by using both continuous and discrete measure-
ments [37]; however, the particle filter used to combine the two
types of measurements does not provide theoretical guarantees
for a finite set of particles and may suffer from particle
deprivation problems in high-dimensional spaces. Finally,
context-aware filtering is also related to Gaussian process
classification [38] since the objective is to learn a continuous
probability distribution from discrete data. In particular, the
EP algorithm [14] is similar to the context-aware filter in
that posteriors are approximated with Gaussian distributions
as well; however, no convergence results exist for EP.

III. PROBLEM FORMULATION

This section presents the system model used in this paper,
including the probit context measurement model. The precise
problem statement is provided at the end of the section.

A. System Model

Consider a linear discrete-time system of the form

xk+1 = Akxk + wk, (1)

where x ∈ Rn is the system state, x0 ∼ N (µ0,Σ0), wk ∼
N (0, Q) is Gaussian process noise, and Ak is a matrix of
appropriate dimensions describing the system dynamics.

Instead of the classical continuous sensors, the system
considered in this paper only has access to context sen-

Fig. 2: Most of the O2 in the blood is bound to hemoglobin.

sors.2 Context sensors provide binary information about the
system’s context; examples include detecting nearby objects
with known positions on a map or a vital sign exceeding a
certain predefined threshold. At each time k, a measurement
bk is received that is equal to 1 if a detection occurs and -1
otherwise.3 We assume that bk is equal to 1 with a known
probability given the state, denoted by pdk(bk | xk), i.e.,

bk =

{
1 w.p. pdk(bk | xk)
−1 w.p. 1− pdk(bk | xk).

(2)

As noted in Section I, pdk is close to 1 when the system is
in a state that is highly correlated with receiving a context
measurement (e.g., a robot is close to a building). Note that
pdk is time-varying, i.e., different binary measurements may be
received at different times. It is assumed that, conditioned on
the state, context measurements are mutually independent.

B. Context Measurement Model

As argued in Section I, we use the probit function to model
the probability of detection of context measurements [39]:

pdk(bk | xk) = Φ((vTk xk + ak)bk), (3)

where Φ is the cumulative distribution function (cdf) of the
standard Normal distribution, vk ∈ Rn is a vector of known
parameters, and ak ∈ R is a known parameter offset. Note that
pdk(bk = 1 | xk) = 1− pdk(bk = −1 | xk) due to the rotational
symmetry of Φ, i.e., Φ(−x) = 1 − Φ(x). We assume there
is a finite set of size C of context weights and offsets V =
{(v1, a1), . . . , (vC , aC)}.

Due to its step-like shape, the probit function is well suited
for modeling threshold-based events such as medical alarms.
Consider the problem of estimating the patient’s O2 content
(CaO2); as shown in Figure 2, most of the O2 is bound to
hemoglobin. Although the precise mapping from hemoglobin-
oxygen saturation (SpO2) to CaO2 is unknown (and varies

2All results in this paper also hold in the addition of classical measurements
of the form yk = Cxk (plus Gaussian noise). To keep the presentation simple,
however, we focus on the case with context measurements only.

3Our framework can handle more than one binary measurement by repeated
updates. We make the one-measurement assumption to simplify notation.
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across patients), if CaO2 is below a threshold ts, then one
also expects to see a measurement of SpO2 below a threshold
tm. Thus, we can introduce a context measurement bk that is
equal to 1 if SpO2 > tm and -1, otherwise.

To relate bk to the state (CaO2), note that as CaO2 becomes
much smaller than ts, it becomes more likely for bk to be -
1; conversely, if CaO2 is greater than ts, it is very unlikely
for bk to be -1. The probit function is ideal for capturing
such a scenario: the probability of bk = 1 is close to 0 for
low values of CaO2 and approaches 1 as CaO2 rises above
ts. The parameters in the probit function should be chosen
based on the following considerations: since vk determines
the slope of the step-like response in the probit function,
vk should be large if the relationship between ts and tm is
precise (e.g., if SpO2 < tm, then necessarily CaO2 < ts) and
should be smaller if some false positives are expected; since
ak determines the threshold where the step response begins, ak
should be set to −vkts (in the one-dimensional case) to ensure
the probability rises quickly as the threshold is crossed.

C. Problem Statement

Problem: Given the system defined in (1)-(3) and a prior
probability density function (pdf) pk|k(x) = p(x | b0:k) the
goal is to compute (and analyze) the posterior density

pk+1|k+1(x) := p(x | b0:k+1).

IV. CONTEXT-AWARE FILTER

The problem formulation in Section III naturally leads to a
Bayesian filter of the form:

Predict: pk+1|k(x) =

∫
pfk+1|k(x | z)pk|k(z)dz, (4)

Update: pk+1|k+1(x) = ξk+1p
d
k(bk+1 | x)pk+1|k(x),

where pfk+1|k(xk+1 | xk) is the conditional pdf of the state at
time k+1 given the state at time k and ξk+1 is a constant [40].

Equation (4) is impossible to derive in closed form for
arbitrary dynamics and observation models (with the exception
of the linear Gaussian case, which leads to the Kalman filter).
As discussed in Section II, multiple approximation approaches
with different assumptions exist, such as the ADF, PHD filter,
and the HDF. Due to their generality, all of these approaches
rely on approximations when computing their estimates.

That is why, in this paper we focus on a specific observation
model (i.e., the probit model defined in (3)) and derive the
exact posterior distribution after the update with a binary
measurement. At the same time, developing a closed-form
recursive filter is not straightforward, since the posterior dis-
tribution is no longer Gaussian. As we argue below, however,
a Gaussian distribution with the same mean and covariance
matrix is a good approximation for the resulting posterior
distribution since the true posterior is unimodal as well.

The next subsections present the recursive context-aware
filter, assuming the prior pk−1|k−1 is a Gaussian distribution
with mean µk−1|k−1 and covariance matrix Σk−1|k−1.

A. Predict

The predict phase is the classical Kalman filter prediction:

pk|k−1(x) =

∫
φ(x;Ak−1z,Q)φ(z;µk−1|k−1,Σk−1|k−1)dz

= φ(x;Ak−1µk−1|k−1, Ak−1Σk−1|k−1A
T
k−1 +Q)

= φ(x;µk|k−1,Σk|k−1),

where φ(x;µ,Σ) denotes the pdf of a Gaussian distribution
with mean µ and covariance matrix Σ.

B. Update

The posterior distribution after the receipt of a binary
measurement bk is shown in Proposition 1 below (all proofs
are given in the Appendix).

Proposition 1: Upon receipt of a discrete measurement bk ∈
{−1, 1}, the discrete update is as follows:

pk|k(x) =
Φ((vTk x+ ak)bk)φ(x;µk|k−1,Σk|k−1)

Zk
, (5)

where

Zk = Φ

 (vTk µk|k−1 + ak)bk√
vTk Σk|k−1vk + 1

 .

Approximation: We approximate the posterior distribution
in (5) with a Gaussian distribution with the same mean and
covariance matrix.

The posterior distribution in (5) is no longer Gaussian. In
fact, related work [41], [42] has shown that the posterior is not
Gaussian in multiple truncation scenarios, e.g., with infrequent
measurement transmissions. In such cases, it might be possible
to develop filters for skewed normal distributions. However, a
Gaussian still seems to be a good approximation for (5). In par-
ticular, as shown in Proposition 2 below, the distribution in (5)
is log-concave; log-concavity, in turn, implies unimodality, as
discussed in Corollaries 1 and 2.

In addition, despite the filter’s discrete nature, the posterior
distribution in (5) is not the result of a truncation process
but is actually smooth (infinitely differentiable, in fact). This
suggests that no individual measurement can introduce large
skewness to either side. Finally, the pdf in (5) is computed
numerically in Section VI-C (for multiple updates); the re-
sults provide strong evidence that the posterior is sufficiently
symmetric so that a Gaussian approximation is justified. Thus,
we approximate the posterior in (5) with a Gaussian with the
same mean and covariance matrix as the distribution in (5) –
these quantities are computed in Proposition 3 below.

Proposition 2: The distribution in (5) is log-concave, i.e.,
the function g(x) = ln(pk|k(x)) is concave.

Corollary 1 ([43]): In one dimension, the distribution in (5)
is unimodal, i.e., there exists a point x∗ such that pk|k(x) is
increasing for x ≤ x∗ and pk|k(x) is decreasing for x ≥ x∗.

Corollary 2 ([43]): In many dimensions, the distribution
in (5) is star-unimodal (a random variable X ∈ Rn is said
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to have a star-unimodal distribution if for every bounded non-
negative Borel measurable function f on Rn, tnE[f(tX)] is
non-decreasing for t ∈ [0,∞)).4

Proposition 3: The mean of the distribution in (5) is:

µk|k = µk|k−1 + Σk|k−1vk(vTk Σk|k−1vk + χk)−1bk, (6)

where

χk =

√
vTk Σk|k−1vk + 1− vTk Σk|k−1vkα(Mk)

α(Mk)
(7)

α(x) = φ(x; 0, 1)/Φ(x) (8)

Mk =
(vTk µk|k−1 + ak)bk√
vTk Σk|k−1vk + 1

. (9)

The covariance matrix of the distribution in (5) is:

Σk|k = Σk|k−1 − Σk|k−1vk(vTk Σk|k−1vk + γk)−1vTk Σk|k−1
(10)

where

γk =
(1− h(Mk)) vTk Σk|k−1vk + 1

h(Mk)
(11)

h(x) = α(x)(x+ α(x)). (12)

Remark: The context-aware filter is similar to Kalman fil-
tering with intermittent observations [12] in that measurements
arrive in a stochastic manner. Thus (10) resembles a standard
Riccati equation (update), where the non-linear term γk could
be considered as the equivalent of measurement noise.

Note also that the functions α and h defined in (8) and (12),
respectively, have been studied extensively in the statistics
community. The ratio α is known as the inverse Mills ratio;
some properties of the inverse Mills ratio that are used
throughout this paper are summarized below.

Definition: The inverse Mills ratio is defined as the ratio of
the pdf and cdf of a standard Normal distribution, respectively:

α(x) = φ(x; 0, 1)/Φ(x).

Proposition 4 ([44]): The following statements are true
about the inverse Mills ratio:

1) h(x) := −α′(x) = α(x)(x+ α(x))
2) 0 < h(x) < 1,∀x ∈ R
3) h′(x) < 0,∀x ∈ R.
Remark: Since 0 < h(x) < 1, we can conclude that γk > 1.

V. CONVERGENCE PROPERTIES

In this section we analyze the convergence properties of
the context-aware filter. Since the task is to estimate a con-
tinuous variable using only discrete measurements, proving
convergence is hard in general, especially given the random
and time-varying nature of the filter. Ideally, one could hope
to prove that the expected covariance matrix is bounded under
some conditions on the initial condition and the probability
of measurement arrivals (similar to Kalman filtering with

4While there is a standard definition of unimodality in one dimension, many
definitions exist in multiple dimensions [43].

intermittent observations [12]). However, the random non-
linear term γk in the covariance matrix update in (10) makes
it challenging to analyze the system when dynamics are also
considered since γk cannot be upper-bounded in general (as
shown in Proposition 4, the function h can be arbitrarily close
to 0). Such an upper bound can be derived in the special case
of a scalar system as shown in the next subsection.

To provide further intuition about the filter’s convergence,
we also show results for a non-moving system. In particular,
in Subsections V-B and V-C we provide an observability-
like claim for the filter, i.e., the eigenvalues of the covari-
ance matrix converge to 0 if and only if a persistence-of-
excitation condition is true for the weight vectors vk over
time. Furthermore, we show that, as the eigenvalues of the
covariance matrix converge to 0, the discrete update of the
filter converges to a Newton-Method-like step, which is an
intuitive result given that the filter approximation matches the
first two moments of the true posterior distribution.

A. Bounded Variance for a Scalar System

In this section we analyze conditions that result in a bounded
variance of the context-aware filter given a scalar system:

xk+1 = axk + wk, (13)

where xk, a ∈ R, and wk ∼ N (0, q).
First note that the update in (10) looks like a standard

Riccati equation, except for the non-linear term γk. Thus,
one way to show that the context-aware filter’s variance is
bounded is by providing an upper bound on γk such that (10)
is bounded (with some positive probability) by a standard
Riccati equation. In such a case, our problem can be reduced
to Kalman filtering with intermittent observations [12], and we
can use some of the known facts for that scenario.

One case in which γk can be bounded (with positive proba-
bility) is when the probability of receiving both a measurement
of 1 or -1 is at least some positive number η. In such a
case, γk can be upper-bounded (with probability at least η) by
((1−h(0))vkσkvk + 1)/h(0) by using the fact that h′(x) < 0
for all x. This condition leads to the following result, similar to
a result from Kalman filtering with intermittent observations.

Theorem 1: Consider the system in (13) and suppose that,
for all xk, pdk(bk | xk) ≥ η for bk = ±1. Then there exists
some ηc ∈ [0, 1) such that

∀σ0,E[σk] ≤Mσ0
, for ηc < η ≤ 1,

where Mσ0
is a constant that depends on the initial condition.

Theorem 1 says that the filter’s expected uncertainty is
bounded if the probability of receiving “useful” measurements
is sufficiently high (by “useful” we mean that a measurement
can be both 1 or -1 with probability at least η such that re-
ceiving the measurement does provide significant information).
This result makes sense intuitively – if the system is moving
away from all available context measurements (i.e., if vTx+a
is very large in absolute value for all (v, a) ∈ V), we cannot
expect to be able to estimate the state; conversely, if context
measurements are available throughout the system’s execution,
then the filter’s uncertainty should be low.
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The proof of Theorem 1 does not generalize immediately
to the multidimensional case, as the bound on γk does not
lead to a standard-Riccati-equation bound on the expected
covariance matrix. The multidimensional modified Riccati
equation effectively has a time-varying covariance matrix that
is difficult to bound; establishing the convergence of such a
filter is an open problem in control theory and is part of future
work. At the same time, we believe the same intuition holds
for the multidimensional case as well.

B. Covariance Matrix Convergence for Non-Moving System

While we cannot bound the filter’s expected uncertainty in
the multidimensional case, we provide such a result in the
special case of a non-moving system. Estimation for non-
moving systems has interesting applications as well, e.g.,
the robotics mapping problem where a robot with a known
position attempts to locate all (non-moving) obstacles on
the map by receiving binary measurements when objects are
detected. We show that for a system with no dynamics, the
eigenvalues of the covariance matrix converge to 0 if and only
if a persistence-of-excitation condition (formalized below) is
true for the weight vectors vk over time.

To simplify notation and since no dynamics predictions are
performed in this section, we drop the prediction notation in
the rest of this section (i.e., we write Σk instead of Σk|k =
Σk+1|k). Before presenting the main result of this subsection,
we first describe the behavior of the covariance matrix after
multiple binary updates, as presented in the following lemma.

Lemma 1: After applying N updates at time k, the covari-
ance matrix update from (10) can be written as:

Σk+N = Σk − ΣkV
T
k (VkΣkV

T
k + Γk)−1VkΣk, (14)

where Vk = [vk+1, . . . , vk+N ]T , [Γk](i,j) = γk+i if i = j and
[Γk](i,j) = 0 otherwise.

The update in Lemma 1 is similar to a standard Riccati
equation (without the dynamics elements). Thus, it is not
surprising that convergence of the covariance matrix depends
on similar conditions on the matrix Vk as for a Ck matrix in a
standard linear system. One such property is the widely used
persistence of excitation [45].

Definition (Persistence of Excitation): The sequence of
context weights and offsets, (vk, ak), is persistently exciting
if there exist n linearly independent weight vectors with cor-
responding offsets P = {(v1, a1), . . . , (vn, an)} that appear
infinitely often, i.e., for every k, there exists lk ∈ N such that

∀(vi, ai) ∈ P,∃t ∈ {k, . . . , k + lk} s.t. (vt, at) = (vi, ai).

Persistence of excitation is a standard assumption in estimation
and system identification [45].5 Intuitively, it means that there
exists a set of context measurements that are received infinitely
often such that their corresponding weights span Rn.6 The
offsets are also important because even if the same weights

5The definition used in our paper is a special case of standard definitions
since we have a finite set of context weights.

6Persistence of excitation does not require the received context measure-
ments to take on a specific value, i.e., they can be either -1 or 1. Intuitively,
the definition only requires the same classifiers to run infinitely often.

repeat over time, the change of offsets might still affect the
probability of receiving new context measurements.

Theorem 2: Suppose the system has no dynamics (i.e.,
Ak = I , the identity matrix, and Q = 0). Let λjk > 0 be
the eigenvalues of Σk. Then λjk

a.s.−−−→ 0 as k → ∞ if and
only if (vk, ak) is persistently exciting.

Theorem 2 is essentially an observability result. It suggests
that if some states are not observed through binary mea-
surements, then the uncertainty about those states does not
decrease over time. If all states are observed, however, then
the uncertainty is reduced in a manner similar to the standard
Kalman filter with a persistently exciting Ck matrix.

Even if the covariance matrix converges to zero, it is not
clear whether the filter’s estimates converge to the true state.
However, as shown in Section VI, simulations suggest that the
estimates do converge to the true state. Furthermore, similar
convergence results exist for the EP algorithm (which also
contains a Gaussian approximation), namely 1) EP converges
to the true state for strongly log-concave observation mod-
els [46] (the probit model is log-concave but is not strongly
log-concave) and 2) in the limit, EP has a fixed point at the
true state if the observation model has bounded derivatives [47]
(true for the probit model). Thus, it is likely that the context-
aware filter’s mean also converges to the true state but we
leave proving this result for future work.

C. Convergence of “Site” Approximations
In an effort to better understand the asymptotic behavior of

the context-aware filter for systems with no dynamics, in this
subsection we analyze the effect of a single update in the limit.
In particular, we show that as more data is available, discrete
updates converge to a Newton-Method-like step (this result is
similar to a recent result about the limit behavior of EP [47]).

Definition: The Newton Method for finding the minimum
of a twice-differentiable function f is computed as follows:
given the previous iteration point xn, the next step is [13]

xn+1 = xn −
[
f

′′
(xn)

]−1
f

′
(xn).

The significance of this property is that the Newton Method
converges to the optimal value (i.e., the peak of the distribu-
tion) of concave or quasi-concave functions. Since the pos-
terior distribution in (5) is log-concave (i.e., quasi-concave),
there is strong evidence to believe that the context-aware filter
does indeed converge to the true state.

Each update of the context-aware filter could be viewed as a
Gaussian approximation of the observation model itself (i.e., of
the probit model). Specifically, the posterior Gaussian approx-
imation could be considered as a Gaussian distribution that
resulted from an update in which the observation model was
also a Gaussian distribution with the appropriate parameters
(also known as a “site” approximation in machine learning).

Definition (Site Approximation): Given a Gaussian prior
φ(x;µk−1,Σk−1) and a binary update with observation model
Φ((vTk x + ak)bk), a site approximation is a Gaussian dis-
tribution ps(x) := φ(x;µs,Σs) such that the distribution
(normalized by the constant β)

pG(x) = βφ(x;µk−1,Σk−1)φ(x;µs,Σs)



7

has the same mean and covariance matrix as the true posterior

pk|k(x) =
1

Zk
Φ((vTk x+ ak)bk)φ(x;µk−1,Σk−1).

Site approximations are easily computed when we consider
the natural parameters of the distribution. Suppose the prior
distribution is φ(x; Ω−1k−1ωk−1,Ω

−1
k−1), where Ωk−1 = Σ−1k−1

and ωk−1 = Ωk−1µk−1 are the prior’s information matrix and
mean, respectively. Similarly, suppose the posterior Gaussian
approximation is φ(x; Ω−1k ωk,Ω

−1
k ). Then the parameters of

the site approximation φ(x; (Ωsk)−1ωsk, (Ω
s
k)−1) are [48]:

Ωsk = Ωk − Ωk−1 (15)
ωsk = ωk − ωk−1. (16)

The site approximation abstraction is useful as it allows us to
reason about the “contribution” of each update.

Theorem 3: Suppose the prior is φ(x; Ω−1k ωk,Ω
−1
k ) (where

Ωk = Σ−1k and ωk = Ωkµk). After performing an update
in the context-aware filter, the natural parameters of the site
approximation are:

Ωsk+1 = vk+1γ
−1
k+1v

T
k (17)

ωsk+1 = Ωsk+1µk + (I + Lk+1)vk+1N
−1
k+1bk+1, (18)

where

Nk+1 = vTk+1Σkvk+1 + χk+1

Lk+1 = vk+1γ
−1
k+1v

T
k+1Σk.

Corollary 3: Suppose the system has no dynamics (i.e.,
Ak = I , the identity matrix, and Q = 0). If (vk, ak) is
persistently exciting, then the natural parameters of the site
approximations converge to

Ωsk+1
a.s.−−−→ ψ

′′

k+1(µk) (19)

ωsk+1
a.s.−−−→ Ωsk+1µk − ψ

′

k+1(µk), (20)

where ψk+1 is the negative log-likelihood of the measurement
bk+1, i.e.,

ψk+1(x) = − ln(Φ((vTk+1x+ ak+1)bk+1)).

Remark: Since Ωsk+1µ
s
k+1 = ωsk+1, we can conclude

that µsk+1
a.s.−−−→ µk − [ψ

′′

k+1(µk)]−1ψ
′

k+1(µk). This is not
the same as the Newton Method since it contains the site
approximation mean instead of the posterior distribution mean.
Yet, it shows that the site approximations themselves behave
as a Newton Method update that is added to the prior mean.

The significance of Corollary 3 is that the Newton Method
converges to the minimal (maximal) point of a log-convex (-
concave) function. Although the site approximations are not
identical to the Newton Method (since the ψk+1(x) functions
change over time), they do perform a Newton Method update
at each time step. In turn, a Newton Method behavior implies
that the site approximations converge to the Canonical Gaus-
sian Approximation (CGA) [46], i.e., the Gaussian distribution
whose mean is the maximizer of the true observation model’s
probability distribution and whose covariance matrix is the
Hessian at that maximum. Finally, it is known that CGA’s
converge almost surely to a large class of posterior distribu-
tions, e.g., as shown by the Bernstein-von Mises Theorem [49].

Thus, Corollary 3 presents strong evidence to believe that the
context-aware filter does indeed converge to the mean of the
true posterior distribution. The next Section presents several
simulation scenarios in support of this claim as well.

VI. SIMULATION EVALUATION

We evaluate the context-aware filter both in simulation
and on real data collected from CHOP. In this section we
provide evaluation in simulation. The next section presents
the application of the context-aware filter to the problem of
estimating the blood oxygen content during surgery.

A. System with No Dynamics
We first evaluate the filter on a system with no dynamics,

in order to illustrate the significance of Theorem 2. Figure 3
shows the filter’s evaluation on a scalar system with a constant
state xk = 3 and with access to one context measurement
with parameters vk = 1 and ak = −5. The initial condition is
µ0 = 1, Σ0 = 2. Figure 3c shows the evolution of the covari-
ance for 10 runs of the system; as expected, the covariance
converges to 0 for each one, thus ensuring the convergence of
the filter overall. Figure 3b shows the estimation errors for the
same 10 runs; the estimates are close to the true state, although
some estimates converge more slowly due to different random
realizations of the measurements. Finally, Figure 3a shows
the toothed shape of the estimates for an example run, with
discrete jumps as new context measurements are incorporated.

B. System with Unstable Dynamics
In the second simulation, we evaluate the filter’s perfor-

mance on an unstable system. The system dynamics are:

xk+1 =

[
1.01 0

0 1.01

]
xk + wk,

where wk ∼ N (0, 0.001I) and x0 = [1 1]T .7 24 context
measurements are received at each time, 12 with weights
vk,1 = [0 1]T and 12 with weights vk,2 = [1 0]T ; the
12 offsets ak are decreased linearly from 0 to -240 (i.e., they
provide rough information as to whether each state is between
0 and 20, 20 and 40, etc.).

Figure 4 shows the results of the simulation. Figure 4a
shows that the filter tracks the state very well after the
initial period of uncertainty. The total number of context
measurements equal to 1 at each step are shown in Figure 4b;
as can be seen in the figure, eventually the system crosses
almost all 24 context thresholds. In addition, we observe
similar trends as in Figure 3, i.e., the estimates track the real
system well after the initial period of uncertainty (Figure 4c),
and the trace of the covariance matrix (Figure 4d) converges
over time. The spikes in the trace of the covariance matrix
around step 200 are due to the fact that the system receives
the same context measurements around steps 150-230; once
more context thresholds are crossed, the filter’s uncertainty
decreases again. These results suggest that the filter does con-
verge over time (given certain observability-like conditions)
and is likely asymptotically unbiased.

7Systems with larger-eigenvalue dynamics were tested as well with similar
results; the system used in this section was chosen for visualization purposes.
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Fig. 3: Illustration of the performance of the context-aware filter on a non-moving scalar system.
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Fig. 4: Illustration of the performance of the context-aware filter on an unstable system.

(a) System with µ0 = 0, σ0 = 1, vk = 1,
ak = −3.5.

(b) System with µ0 = 0, σ0 = 1, vk = 1,
ak = −2.5.
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(c) True posterior pdf of the system in Fig-
ure 5a after 1000 steps (same as in Table I).

Fig. 5: Detailed analysis of two systems from Table I.

C. Shape of the True Posterior Distribution

In this subsection, we provide simulation results in order
to inspect the shape of the true posterior distribution and to
justify the Gaussian approximation used in the context-aware

filter. Since we cannot derive a closed-form expression for the
true posterior after more than one update, we simulate multiple
different systems, compute the posterior numerically and ana-
lyze its properties in order to compare it to the approximating
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TABLE I: Absolute difference between the true posterior
distribution’s mean and mode (in one dimension) after 1000
updates.

µ0 = 0
σ0 = 1

µ0 = 0
σ0 = 3

µ0 = 0
σ0 = 5

µ0 = 0
σ0 = 7

µ0 = 0
σ0 = 9

vk = 1
ak = −0.5 0.0049 0.0051 0.0035 0.0007 0.0017

vk = 1
ak = −1.5 0.0019 0.0018 0.0033 0.0024 0.0071

vk = 1
ak = −2.5 0.0353 0.0144 0.0218 0.0309 0.0193

vk = 1
ak = −3.5 0.3095 0.7392 0.1132 1.3231 1.567

vk = 1
ak = −4.5 0.1986 0.6484 1.0011 1.2933 1.5569

Gaussian. We aim to show that the true posterior is sufficiently
symmetric so that the Gaussian approximation is reasonable.

One measure of symmetry is the closeness between the
distribution’s mean and mode – the more symmetric a distri-
bution is, the closer its mean and mode are. Thus, we measure
the difference between the posterior’s mean and mode as
indication of its symmetry. We simulate multiple non-moving
scalar systems with access to one context measurement; in
different systems, we vary the value of the offset parameter in
the probit function, ak,8 and the system’s initial covariance.
For each system, we record the absolute difference between
the posterior’s mean and mode after 1000 updates.

Table I presents the results. When ak is close to the true
mean, 0, the difference between the mean and the mode is
very small, i.e., the posterior is very symmetric. As ak gets
larger, the difference becomes bigger, which means that the
posterior is more skewed. This is due to the fact that for
these systems only measurements of -1 are observed during
the 1000 simulation steps because the probability of receiving
a measurement of 1 is low (≤ 10−4). To explore this issue,
we simulate two of these systems for longer time; the results
are shown in Figure 5. As the number of updates increases,
measurements of both 1 and -1 are observed, resulting in
the means and modes getting closer. In addition, the true
posterior distribution of the system in Figure 5a is plotted
after 1000 steps in Figure 5c – although no measurements of
1 have been observed, the distribution appears very similar to
a Gaussian. Thus, we conclude that the posterior distribution is
close to symmetric for many systems, especially when context
measurements have a high probability of being both 1 and -1.

VII. CONTEXT-AWARE ESTIMATION OF BLOOD OXYGEN
CONTENT

To evaluate the effectiveness of the context-aware filter, in
this section we apply it to the problem of estimating the O2

content in the blood, one of the most closely monitored vari-
ables in operating rooms. The O2 content has to be maintained
within safe ranges; high values could be toxic whereas low
values may lead to organ failure. Thus, controlling the O2

content is one of clinicians’ top priorities during surgery.

8Since systems are not moving, it is sufficient to only vary ak in vTk x+ak .

Fig. 6: A typical hemoglobin dissociation curve for O2. It
shows the composition of O2 content in the blood as well as
the shape of the relationship between the overall content and
the pressure of dissolved O2.

Currently, the O2 content can only be measured through
blood gas analysis, which is invasive and not real-time. As
a real-time non-invasive alternative, clinicians use a proxy,
the hemoglobin-oxygen saturation in the peripheral capillaries
(SpO2), measured by a pulse oximeter at an extremity (usually
a finger tip). SpO2 is a good measure of the O2 content
because hemoglobin-bound O2 accounts for the majority of O2

in the blood. O2 appears in two forms in the blood: it is bound
to hemoglobin or dissolved in the blood; the relationship
between these variables is captured in Figure 6. However, the
saturation is usually constant at 100% in healthy people; thus,
when reduced SpO2 is observed, the O2 content has already
decreased and is potentially entering the steep portion of the
curve in Figure 6 where the patient might be in a critical state.

In contrast, estimating the partial pressure of dissolved O2

(PaO2) is proactive because large drops in PaO2 are observed
before a sharp decrease in the O2 content, i.e., when the patient
is still in the top right portion of the curve in Figure 6. Cur-
rently, measuring PaO2 also requires blood gas analysis. It is,
however, possible to relate other available (real-time and non-
invasive) measurements to PaO2; in particular, one could use
the available pulmonary measurements (e.g., partial pressures
of inhaled and exhaled O2) and construct a (parameterized)
model relating the measurements to the state. Once PaO2

is estimated, it is also possible to obtain an estimate of the
O2 content by using a (parameterized) functional form of the
curve in Figure 6. Thus, the problem addressed in this section
is to estimate both the O2 content and PaO2 using only
the non-invasive pulmonary measurements.

If the model parameters were known, one could use standard
filtering techniques to perform the estimation task. However,
there are two confounding factors when identifying these
parameters from data: 1) the physiological model only captures
general trends and does not have great predictive power; 2)
the available data is noisy and insufficient to obtain good
parameter estimates. Thus, instead of identifying the param-
eters for each patient, we use population averages for the
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parameters (as obtained from medical literature) and augment
the measurement model with context measurements in order
to improve the overall estimation accuracy.

The next subsection provides a summary of the physiolog-
ical model mapping the measurements to the state (including
a general-trends dynamic model for the state). Then we
introduce two classes of context measurements as derived from
medical device data that is not directly used as a measurement.
Finally, we provide the case-study evaluation.

A. Physiological Model
This subsection presents the dynamic physiological model

for the O2 content and for PaO2. In the interest of space, only
a summary of the model is provided. For a full description of
the modeling process, please refer to our preliminary work [2].

At a high level, the circulation of O2 can be described
as follows. As O2 is inhaled, it reaches the lungs and the
alveoli where O2 enters the blood stream through diffusion.
The pulmonary veins carry O2 to the heart, which pumps O2

into the arteries and eventually to the peripheral capillaries
where metabolism occurs. Metabolism burns O2 and produces
carbon dioxide (CO2). The CO2-rich blood is transported via
the veins back to the heart, whence it is pumped into the
pulmonary arteries that take it to the lungs for a new round of
diffusion. A simplified schematic of this process is presented in
Figure 7; variables starting with a P denote partial pressures,
and variables starting with a C denote concentration (in the
blood only); the subscripts denote the corresponding location.

The process of diffusion is complicated by the fact that
some blood does not pass through the lungs (e.g., due to blood
draining directly into the cavity of the left ventricle through
the thebesian veins [50]). Thus, as shown in Figure 8, the
shunted blood remains CO2-rich whereas blood that passes
through the lungs diffuses until the partial pressures of O2 in
the blood and the lungs are equal.

By using the intuition from Figures 7 and 8 and two widely
used equations from the medical literature, namely the oxygen
content equation and the alveolar gas equation [50], we arrive
at the final model:

ak+1 = (1− f)(1.34Hb+ 0.003(c1uk + c2,kek))

+ f(ak − µ) + v1,k

ek+1 = ek + v2,k

yk = ek + wk,

(21)

where ak is the arterial O2 content, ek is the partial pressure
of exhaled CO2, Hb is the concentration of hemoglobin in
the blood, uk is the percent of O2 in inhaled air (as input by
clinicians), µ is the effect of metabolism on the O2 content,
f is the proportion of shunted blood, c1 and c2,k are known
constants, and v1,k, v2,k and wk are white Gaussian noises.
Finally, yk denotes the available continuous measurement, the
partial pressure of exhaled CO2 (denoted by EtCO2).

As discussed above, we use population averages for the
parameters in (21), µ and Hb; f can be estimated through an
initial blood gas measurement [2]. Note that only one of the
states in (21) is observed through a continuous measurement.
The next subsection describes the context measurements used
to estimate the other state, namely the O2 content.

B. Context Measurements

In order to estimate the O2 content, we introduce two classes
of context measurements as derived from medical device data
that is not used directly in (21). The first context measurement
can be obtained by using the intuition from Figure 6. Note
that as soon as SpO2 drops below a certain threshold, the O2

content is almost entirely determined by hemoglobin-bound
O2. Furthermore, by using the oxygen content equation [50],
one can conclude that CaO2 < (1.34 ∗ SpO2)Hb. Thus, we
introduce a binary context measurement b1k that is equal to
1 if SpO2 < 99% and -1, otherwise. The parameters in the
observation model are set to v1k = [1 0]T and a1k = −(1.34 ∗
0.99)Hb (once again, a population average is used for Hb).

The second class of context measurements aim to capture
the effect of three clinician inputs that are not used in the
model directly but do affect the patient’s state: the volume of
inhaled air (Vt), respiratory rate (RR) and peak inspiratory
pressure (PIP ). Although mapping these inputs to the O2

content requires knowledge of multiple non-identifyable pa-
rameters (e.g., lung thickness), it is possible to track relative
changes in the O2 content (as caused by relative input changes)
once a baseline is established. In particular, we construct a
signal sk that represents the “expected” amount of diffused
O2, up to the unknown parameters (refer to our prior work
for the exact functional form of sk [2]). We initialize sk
(say, at time q) with a single blood gas measurement of
the O2 content, and then track relative changes in sk, which
correspond to relative changes in the O2 content. Thus, binary
context measurements b2k, b

3
k, b

4
k, and b5k are introduced that

are equal 1 when sk < 0.5sq , sk < 0.8sq , sk > 1.2sq and
sk > 1.5sq , respectively. The context model parameters are
also set accordingly, e.g., v2k = [1 0]T , a2k = −0.5CaO2(q),
where CaO2(q) is the measured O2 content at time q.

C. Evaluation

To evaluate the filter’s performance, we use real-patient data
collected during infant lung lobectomies performed at CHOP.
A lung lobectomy is the incision of a cyst from the patient’s
lung; lobectomies often require one-lung ventilation in order
to keep the perioperative lung still. In infants, one lung is often
not enough to provide sufficient O2; hence, critical drops in
O2 content are frequently observed during such surgeries.

For evaluation purposes, we use only cases that have at least
two blood gas measurements available; the dataset consists of
51 such cases overall. As noted above, the first blood gas
measurement is used to initialize sk; each subsequent blood
gas measurement is used as ground truth for evaluation pur-
poses. Finally, the available blood gas data only contain PaO2

measurements, hence only PaO2 estimates are evaluated.
Figure 9 presents the absolute estimation errors of the

context-aware filter, with all patient measurements stacked
together for easier visualization. We compare the performance
of the context-aware filter with another PaO2 estimation
approach that also requires one blood gas measurement for
initialization; we refer to this algorithm as the “FiO2-based
estimator” (FiO2 denotes the fraction of O2 in inhaled air – it
is denoted by uk in (21)). The context-aware filter’s average
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Fig. 7: A simplified schematic model of O2 variables in the
respiratory and cardiovascular systems.

Fig. 8: An illustration of shunted vs. non-shunted blood
dynamics in the lung. O2-rich non-shunted blood participates
in diffusion and then mixes with CO2-rich shunted blood.
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Fig. 9: Absolute errors for each of the two compared PaO2

estimators. Red dashed line shows the average error of the
context-aware filter, whereas blue dashed line indicates the
average error of the FiO2-based estimator.

estimation error is about 20% lower (51.7 mmHg vs. 63.3
mmHg). More importantly, the context-aware filter results in
much fewer outliers (one error above 150 mmHg as compared
to 10 for the FiO2-based estimator); this illustrates arguably
the biggest benefit of context – providing good information
in cases with inaccurate models or insufficient measurements.
Note that estimation errors of 100 mmHg (or more) are still
significant, and further improvements are required to enable
automatically closing the loop; yet, the reasonably uniform
distribution of the errors suggests that the context-aware filter
is not greatly affected by inter-patient variability and is thus
a reasonable choice of estimator, once a more accurate model
and more precise measurements are obtained.

To further evaluate the context-aware filter’s performance,
we present two cases, one with good and one with bad esti-
mation performance, respectively. Figure 10a presents a case
where context measurements bring a significant improvement;

this is due to the fact that the diffusion signal sk raises alarms
indicating sk is less than 0.8, but not less than 0.5, of the
baseline. Thus, the context-aware filter estimates are around
80% of the initial blood gas measurement, i.e., close to the
ground truth. In contrast, the FiO2-based estimator is heavily
affected by the reduced FiO2 and produces large errors.

Figure 10b presents an example with a large estimation error
by the context-aware filter. In this case, the diffusion signal
sk is too low at the initialization stage, and no low alarms
are raised later. A possible explanation for this behavior is
a wrong timestamp of the blood gas sample; timestamps are
entered manually and are known to be significantly wrong in
certain cases [51]. If the baseline had been established around
step 420 (which is when clinicians first took action by lowering
Vt), low sk alarms would be raised later, thereby improving
the performance of the context-aware filter.

Based on these results, we conclude that the context-aware
filter is a promising direction for future work, especially in
scenarios with inaccurate models and unobservable states. In
addition to improving estimation performance, context greatly
reduces worst-case errors, which is critical in a medical setting
where good performance for every individual is required.

VIII. CONCLUSION

This paper addressed the problem of continuous estima-
tion using discrete context measurements. We developed the
context-aware filter that approximates the posterior distribution
with a Gaussian distribution with the same first two moments.
We showed that the filter’s expected uncertainty is bounded
provided that the probability of receiving context measure-
ments is at least some positive number for all states. Further-
more, we provided an observability-like result that states that
the eigenvalues of the filter’s covariance matrix converge to
zero after repeated updates if and only if a persistence-of-
excitation condition is true for the context measurements. In
future work, we aim to extend the bounded-uncertainty result
to multidimensional systems as well as to analyze conditions
under which the filter is asymptotically unbiased.
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(a) Example case with good estimation by the context-aware filter.
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(b) Example case with bad estimation by the context-aware filter.

Fig. 10: Example cases for different scenarios. Red SpO2 data points indicate low-SpO2 alarms; blue SpO2 data points indicate
no SpO2 alarms. Diffusion signal: red data points indicate 0.5sq alarms; yellow data points indicate 0.8sq alarms; green data
points indicate no alarms; blue data points indicate 1.2sq alarms; magenta data points indicate 1.5sq alarms.

APPENDIX A
PROOF OF PROPOSITION 1

First note that the update equation takes the form:

pk|k(x) =
p(bk | x)φ(x;µk|k−1,Σk|k−1)∫
p(bk | x′)φ(x′;µk|k−1,Σk|k−1)dx′

=
Φ((vTk x+ ak)bk)φ(x;µk|k−1,Σk|k−1)

Zk
,

where

Zk =

∫
Φ((vTk x

′ + ak)bk)φ(x′;µk|k−1,Σk|k−1)dx′.

The derivation for Zk is carried out as follows:

Zk =

∫
Φ((vTk x

′ + ak)bk)φ(x′;µk|k−1,Σk|k−1)dx′

= Ex
[
Φ((vTk x+ ak)bk)

]
= Ex

[
P(y ≤ (vTk x+ ak)bk)

]
= E(x,y)

[
1y≤(vTk x+ak)bk

]
= P((vTk x+ ak)bk − y ≥ 0)

= P
(

(vTk µk|k−1 + ak)bk + z
√
vTk Σk|k−1vk + 1 ≥ 0

)
= P(z ≥ −Mk) = 1− Φ(−Mk) = Φ(Mk),

where y and z are standard Normal random variables inde-
pendent of each other and of x.

APPENDIX B
PROOF OF PROPOSITION 2

To show that the function g(x) = ln(pk|k(x)) is concave,
we need to show that its Hessian (with respect to x) is negative
definite. To see this, first note that

g(x) = − ln(Zk) + ln(Φ((vTk x+ ak)bk))

− ln(
√

(2π)n|Σk|k−1|)

− 1

2
(x− µk|k−1)TΣ−1k|k−1(x− µk|k−1).

The first derivative of g(x) is:

g′(x) = vkbkα((vTk x+ ak)bk)− Σ−1k|k−1(x− µk|k−1),

where α(x) = φ(x; 0, 1)/Φ(x). The Hessian of g(x) is:

g′′(x) = vkv
T
k b

2
k[−α((vTk x+ ak)bk)((vTk x+ ak)bk)

− α2((vTk x+ ak)bk)]− Σ−1k|k−1

= −vkvTk h((vTk x+ ak)bk)− Σ−1k|k−1.

Since vkv
T
k is positive semidefinite and Σk|k−1 is positive

definite, it remains to show that the term h((vTk x + ak)bk)
is non-negative; but this is true as shown in Proposition 4.

APPENDIX C
PROOF OF PROPOSITION 3

First note that

µk|k =

∫
x′

Φ((vTk x
′ + ak)bk)φ(x′;µk|k−1,Σk|k−1)

Zk
dx′.
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We compute the mean in closed form, similar to the derivation
in Chapter 3.9 in [38], by computing the gradient with respect
to µk|k−1 of the following two equivalent expressions for Zk:∫

Φ((vTk x
′ + ak)bk)φ(x′;µk|k−1,Σk|k−1)dx′ = Φ(Mk).

(22)

The corresponding derivatives are:

∂Zk
∂µk|k−1

=

∫
Σ−1k|k−1(x′ − µk|k−1)Φ((vTk x

′ + ak)bk)

· φ(x′;µk|k−1,Σk|k−1)dx′

= bkvk
φ(Mk; 0, 1)√
vTk Σk|k−1vk + 1

,

where we used the fact that ∂Φ(x)/∂x = φ(x). Note that the
first term in the integral on the left-hand side is ZkΣ−1k|k−1µk|k.
The second term is ZkΣ−1k|k−1µk|k−1. Therefore, we get

ZkΣ−1k|k−1µk|k = ZkΣ−1k|k−1µk|k−1 + vk
bkφ(Mk; 0, 1)√
vTk Σk|k−1vk + 1

.

Thus, we arrive at

µk|k = µk|k−1 + bkΣk|k−1vk
α(Mk)√

vTk Σk|k−1vk + 1
,

where we used the second expression for Zk to get α. The final
expression for µk|k is obtained by solving for χk in the equa-
tion α(Mk)(vTk Σk|k−1vk + 1)−1/2 = (vTk Σk|k−1vk + χk)−1.

The expression for the covariance matrix is:

Σk|k = Σ̂k|k − µk|kµTk|k, (23)

where

Σ̂k|k =

∫
x′x′T

Φ((vTk x
′ + ak)bk)φ(x′;µk|k−1,Σk|k−1)

Zk
dx′.

Σ̂k|k is computed in similar to the mean, by computing the
Hessians with respect to µk|k−1 of both sides of (22):∫

Σ−1k|k−1(x
′−µk|k−1)(x′−µk|k−1)TΣ−1k|k−1

· Φ((vTk x
′ + ak)bk)φ(x′;µk|k−1,Σk|k−1)dx′

−
∫

Σ−1k|k−1Φ((vTk x
′ + ak)bk)φ(x′;µk|k−1,Σk|k−1)dx′

= −bkvkvTk
φ(Mk; 0, 1)(vTk µk|k−1 + ak)

(vTk Σk|k−1vk + 1)3/2
.

Note that one of the terms in the integral on the left-hand side
is ZkΣ−1k|k−1Σ̂k|kΣ−1k|k−1. Therefore, we rearrange terms and
divide by Zk to obtain the following:

Σ−1k|k−1Σ̂k|kΣ−1k|k−1 = Σ−1k|k−1 + Σ−1k|k−1µk|kµ
T
k|k−1Σ−1k|k−1

+ Σ−1k|k−1µk|k−1µ
T
k|kΣ−1k|k−1

− Σ−1k|k−1µk|k−1µ
T
k|k−1Σ−1k|k−1

− bkvkvTk
α(Mk)(vTk µk|k−1 + ak)

(vTk Σk|k−1vk + 1)3/2
.

Finally, we arrive at the expression for Σ̂k|k:

Σ̂k|k = Σk|k−1 + µk|kµ
T
k|k−1 + µk|k−1µ

T
k|k − µk|k−1µ

T
k|k−1

− bkΣk|k−1vkv
T
k Σk|k−1

α(Mk)(vTk µk|k−1 + ak)

(vTk Σk|k−1vk + 1)3/2
.

Thus, the covariance matrix can be computed by plugging in
the expression for Σ̂k|k in (23). To simplify it to the final
form shown in the Proposition statement, we first plug in the
expression for µk|k − µk|k−1 from (6) and then solve for γk.

APPENDIX D
PROOF OF THEOREM 1

Consider the (scalar) modified algebraic Riccati equation
(MARE) defined as:

gβ(x) = axa+ q − βaxv(vxv + 1)−1vxa,

where v = mini |vi|, i.e., the minimum-in-magnitude of all
context weights. Note that if β = 1, then this becomes the
standard algebraic Riccati equation, which converges for any
σ0. On the other hand if β = 0, the covariance matrix diverges
for some σ0 if a is unstable. We use the MARE to bound
the expected value of context-aware filter’s variance and give
conditions on β for which the expectation is bounded.

We first bound the expected variance of the filter using the
MARE. From (10), followed by applying the prediction step,
we get (by using the simplified notation σk = σk|k−1):

E[σk+1] = E[aσka+ q − θmaσkvk(vkσkvk + γmk )−1vkσka

− θpaσkvk(vkσkvk + γpk)−1vkσka]

≤ E[aσka+ q − ηaσkv(vσkv + γmk )−1vσka

− ηaσkv(vσkv + γpk)−1vσka]

≤ E[aσka+ q − ηaσkv(vσkv + min{γmk , γ
p
k})
−1vσka]

≤ E[aσka+ q

− ηaσkv
(
vσkv +

(1− h(0))(vσkv) + 1

h(0)

)−1
vσka]

= E[aσka+ q − ρaσkv(vσkv + 1)−1vσka]

= E[gρ(σk)],

where ρ = ηh(0) < 1, θm is the probability of bk = −1
(with resulting γmk ); θp and γpk are their analogues when bk =
1. The first equality is the expected value of σk+1 for each
possible value of bk. The second inequality uses the fact that
both θp, θm ≥ η. In the third inequality we discard one of
the two negative terms, keeping the one with smaller γk (i.e.,
the one that results in Mk < 0; note that 0 < h(x) < 1 and
h′(x) < 0, from Proposition 4). The last inequality is true
because h(x) > h(0) for any x < 0.

The rest of the proof mimics the proof of Theorem 3 in [12].
Consider the sequence sk+1 = gρ(sk), with s0 = σ0. We show
that E[σk] ≤ sk using induction. Note that E[σk] ≤ sk implies:

E[σk+1] ≤ E[gρ(σk)] ≤ gρ(E[σk]) ≤ gρ(sk) = sk+1,

where the first inequality was shown above, and the second and
third inequalities are shown in Lemma 1 in [12]. Furthermore,
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as shown in Theorem 3 in [12], sk is bounded from above,
given that ρ > ρ (ρ ∈ [0, 1), as shown in [12]), i.e.,

E[σk] ≤ sk ≤Mσ0
,∀k.

APPENDIX E
PROOF OF LEMMA 1

The proof proceeds by induction on k. The base case is
shown in (10). For the induction step, we assume that K < N
updates result in the form in (14), with matrices Γk and Vk
replaced by ΓK and VK , respectively. Given weights vk+K+1,
the next discrete update is

Σk+K+1 = Σk+K − Σk+Kvk+K+1β
−1vTk+K+1Σk+K (24)

where by induction

Σk+K = Σk − ΣkV
T
K (VKΣkV

T
K + ΓK)−1VKΣk,

β = vTk+K+1Σk+Kvk+K+1 + γk+K+1.

By rearranging terms and using the block matrix inversion
lemma, Equation (24) can now be written as

Σk+K+1 = Σk −
[

ΣkV
T
KΣkvk+K+1

]
·

·
[
VKΣkV

T
K + ΓK VKΣkvk+K+1

vTk+K+1ΣkV
T
K vTk+K+1Σkvk+K+1 + γk+K+1

]−1
·
[

VKΣk
vTk+K+1Σk

]
,

i.e.,

Σk+K+1 = Σk − Σk
[
V TK vk+K+1

]
·

·
[[

VK
vk+K+1

]
Σk
[
V TK vTk+K+1

]
+

[
ΓK 0
0 γk+K+1

]]−1
·
[

VK
vTk+K+1

]
Σk,

which has the desired form of the Riccati (update) equation.

APPENDIX F
PROOF OF THEOREM 2

To prove sufficiency (<=), let V be the matrix of persis-
tently exciting vi, i.e., V = [v1, . . . , vn]T ; V is square and
invertible. Consider the sequence of times k1, k2, . . . , where
k1 = 1 and kt+1 = kt+lkt +1; all vi in V occur between each
pair of kt and kt+1 by construction. Using Lemma 1, it suffices
to show that the eigenvalues of the covariance sequence

Σkt+1
= Σkt − ΣktV

T (V ΣktV
T + Γkt)

−1V Σkt (25)

converge to 0 almost surely. Note from (10) that no binary
update can increase the eigenvalues of Σk, so any updates
with weights and offsets not in P can be ignored as they do
not affect the convergence.

Diagonalizing Σkt = UDUT , we rewrite (25):

Σkt+1 = U(D −D(D +MΓktM
T )−1D)UT , (26)

where M = UTV −1. Thus, we conclude that

Σkt+1 � U(D −D(D + δmaxkt I)−1D)UT , (27)

where δmaxkt
is the largest eigenvalue of MΓktM

T , i.e.,

λikt+1
≤ λikt −

(λikt)
2

λikt + δmaxkt

.

Therefore, using the second Borel-Cantelli Lemma,
λikt

a.s.−−−→ 0 as long as the sum of the probabilities of
events {δmaxk ≥ δ∗}t (for some δ∗ > 0) is infinite. But δmaxkt
is lower-bounded if γmaxkt

(the largest γk between times kt
and kt+1) is bounded from above. From (11), it can be seen
that γk is upper-bounded if the function h is bounded from
below. But for each k, Mk < 0 with probability at least

δ̄ := min
bk∈{1,−1},(vi,ai)∈P

Φ(((vi)Tx∗ + ai)bk),

where x∗ is the true (non-moving) state. Thus, h has a non-
zero probability of having negative input, i.e., it is bounded
from below by h(0) = α2(0) (note that h′(x) < 0, from
Proposition 4). Thus,

∑
t P[δmaxkt

≥ δ∗ | b0:k] =∞ because

P[δmaxkt ≥ δ∗ | b0:k] ≥ P[h(Mk) ≥ α2(0) | b0:k]

≥ P[Mk < 0 | b0:k] ≥ δ̄.

To prove necessity (=>), note that if (vk, ak) is not persis-
tently exciting, there exists a time K such that the set of
context weights vk for k > K do not span Rn, i.e., the matrix
VK of all such weights is not full rank. We now show this
implies that there exists at least one λik that does not go to
0. Returning to (14), there exists a rotation matrix U such
that one eigenvector (call it p) of ΣkU

T is aligned with an
eigenvector of V ⊥K , the null space of VK . Consider the matrix

G = U(Σk − ΣkV
T
K (VKΣkV

T
K + Γk)−1VKΣk)UT .

G has the same eigenvalues as Σk+K but the eigenvalue
corresponding to p is also an eigenvalue of Σk, i.e., this
eigenvalue remains unchanged when VK is not full rank.

APPENDIX G
PROOF OF THEOREM 3

First note that applying the matrix inversion lemma to the
covariance update in (10), we get:

Ωk+1 = (Σk − Σkvk+1(vTk+1Σkvk+1 + γk+1)−1vTk+1Σk)−1

= Σ−1k + vk+1γ
−1
k+1v

T
k+1.

Therefore,

Ωsk+1 = Ωk+1 − Ωk = vk+1γ
−1
k+1v

T
k+1.

The mean at time k+1 is equal to (by using the update in (6)):

µk+1 = µk + Σkvk+1(vTk+1Σkvk+1 + χk+1)−1bk+1

= µk + Σkvk+1N
−1
k+1bk+1,

where Nk+1 = vTk+1Σkvk+1 + χk+1. Thus, the information
mean of the “site” approximation becomes

ωsk+1 = Ωk+1µk+1 − Ωkµk

= Ωk+1µk + (I + Lk+1)vk+1N
−1
k+1bk+1 − Ωkµk

= Ωsk+1µk + Ωkµk + (I + Lk+1)vk+1N
−1
k+1bk+1 − Ωkµk,

where Lk+1 = vk+1γ
−1
k+1v

T
k+1Σk, and we used the inverse-

lemma expression for Ωk+1.
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APPENDIX H
PROOF OF COROLLARY 3

As shown in Theorem 2, if vk is persistently exciting, then
all eigenvalues of Σk converge to 0. To analyze the conver-
gence of the natural parameters of the “site” approximations,
first note that the first two derivatives of ψ are as follows:

ψ
′

k+1(x) = −vk+1α((vTk+1x+ ak+1)bk+1)bk+1 (28)

ψ
′′

k+1(x) = vk+1v
T
k+1h((vTk+1x+ ak+1)bk+1). (29)

We first show that Ωsk+1 = vk+1γ
−1
k+1v

T
k+1 converges

to ψ
′′

k+1(µk), i.e., that γ−1k+1 converges to h((vTk+1µk +
ak+1)bk+1). But this is clear from (11): as the eigenvalues
of Σk converge to 0, γ−1k+1 converges to h(Mk+1), and Mk+1

converges to (vTk+1µk + ak+1)bk+1.
As derived in (18), the information mean is ωsk+1 =

Ωsk+1µk + (I + Lk+1)vk+1N
−1
k+1bk+1. First note that N−1k+1

converges to 1/χk+1, which in turn converges to α((vTk+1µk+
ak+1)bk+1), as can be seen from (7). Thus, in order to show
that the second term of ωsk+1 converges to −ψ′

k+1(µk), it
suffices to show that Lk+1 converges to 0. But this is clear
from the definition of Lk+1 in Theorem 3.
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[20] O. C. Imer, S. Yüksel, and T. Başar, “Optimal control of lti systems
over unreliable communication links,” Automatica, vol. 42, no. 9, pp.
1429–1439, 2006.

[21] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
Decision and Control, 46th IEEE Conference on, 2007, pp. 5492–5498.

[22] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S.
Sastry, “Foundations of control and estimation over lossy networks,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 163–187, 2007.

[23] S. Joshi and S. Boyd, “Sensor selection via convex optimization,”
Transactions on Signal Processing, vol. 57, no. 2, pp. 451–462, 2009.

[24] M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On efficient
sensor scheduling for linear dynamical systems,” Automatica, vol. 48,
no. 10, pp. 2482–2493, 2012.

[25] J. Williams, “Information theoretic sensor management,” Ph.D. disser-
tation, MIT, 2007.

[26] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in Proceedings
of the 5th annual ACM/IEEE international conference on Mobile com-
puting and networking. ACM, 1999, pp. 263–270.

[27] S. Martı́Nez and F. Bullo, “Optimal sensor placement and motion
coordination for target tracking,” Automatica, vol. 42, no. 4, pp. 661–
668, 2006.

[28] I. Hwang, H. Balakrishnan, and C. Tomlin, “State estimation for hybrid
systems: applications to aircraft tracking,” IEE Proceedings-Control
Theory and Applications, vol. 153, no. 5, pp. 556–566, 2006.

[29] O. L. V. Costa and S. Guerra, “Stationary filter for linear minimum
mean square error estimator of discrete-time markovian jump systems,”
Transactions on Automatic Control, vol. 47, no. 8, pp. 1351–1356, 2002.

[30] S. C. Smith and P. Seiler, “Estimation with lossy measurements: jump
estimators for jump systems,” IEEE Transactions on Automatic Control,
vol. 48, no. 12, pp. 2163–2171, 2003.

[31] M. C. F. Donkers, W. P. M. H. Heemels, N. Van de Wouw, and L. Hetel,
“Stability analysis of networked control systems using a switched linear
systems approach,” IEEE Transactions on Automatic control, vol. 56,
no. 9, pp. 2101–2115, 2011.

[32] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal, “Identification
of hybrid systems: A tutorial,” European journal of control, vol. 13, no.
2-3, pp. 242–260, 2007.

[33] Z. Wang, D. W. C. Ho, and X. Liu, “Variance-constrained filtering
for uncertain stochastic systems with missing measurements,” IEEE
Transactions on Automatic control, vol. 48, no. 7, pp. 1254–1258, 2003.

[34] M. Blaschko and C. Lampert, “Object localization with global and local
context kernels,” in British Machine Vision Conference, 2009.

[35] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. Fernandez-
Madrigal, and J. Gonzalez, “Multi-hierarchical semantic maps for mobile
robotics,” in Int. Conf. on Intelligent Robots and Systems, 2005.

[36] R. Anati, D. Scaramuzza, K. Derpanis, and K. Daniilidis, “Robot
localization using soft object detection,” in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2012, pp. 4992–4999.

[37] N. Atanasov, M. Zhu, K. Daniilidis, and G. Pappas, “Semantic local-
ization via the matrix permanent,” in Robotics: Science and Systems,
2014.

[38] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-
ing. The MIT Press, 2006.

[39] H. Nickisch and C. Rasmussen, “Approximations for binary gaussian
process classification,” Journal of Machine Learning Research (JMLR),
vol. 9, no. Oct, pp. 2035–2078, 2008.

[40] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT press,
2005.

[41] L. He, Y. Qi, and J. Chen, “Optimal estimation algorithm design under
event-based sensor data scheduling,” in In Proceedings of the 6th IFAC
Workshop on Distributed Estimation and Control in Networked Systems
(NecSys16), 2016, pp. 157–162.

[42] D. Han, Y. Mo, J. Wu, S. Weerakkody, B. Sinopoli, and L. Shi,
“Stochastic event-triggered sensor schedule for remote state estimation,”
IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2661–
2675, 2015.



16

[43] S. Dharmadhikari and K. Joag-Dev, Unimodality, convexity, and appli-
cations. Elsevier, 1988.

[44] M. R. Sampford, “Some inequalities on mill’s ratio and related func-
tions,” The Annals of Mathematical Statistics, vol. 24, no. 1, pp. 130–
132, 1953.

[45] M. Green and J. B. Moore, “Persistence of excitation in linear systems,”
Systems & Control Letters, vol. 7, no. 5, pp. 351–360, 1986.
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