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Abstract—Within industrial automation systems, 3D (three 

dimensional) vision provides very useful feedback information in 
autonomous operation of various manufacturing equipment (e.g., 
industrial robots, material handling devices, assembly systems, 
machine tools). The hardware performance in contemporary 3D 
scanning devices is suitable for on-line utilization. However, the 
bottleneck is the lack of real-time algorithms for recognition of 
geometric primitives (e.g., planes, natural quadrics) from a 
scanned point cloud. One of the most important and the most 
frequent geometric primitive in various engineering tasks is 
plane. In this paper, we propose a new, fast, one-pass algorithm 
for recognition (segmentation and fitting) of planar segments 
from a point cloud. To effectively segment planar regions, we 
exploit the orthonormality of certain wavelets to polynomial 
function, as well as their sensitivity to abrupt changes. After 
segmentation of planar regions, we estimate the parameters of 
corresponding planes by using standard fitting procedures. For 
point cloud structuring a z-buffer algorithm with mesh triangles 
representation in barycentric coordinates is employed. The 
proposed recognition method is tested and experimentally 
validated in several real world case studies. 
 

Index Terms—3D vision, Industrial automation systems, 
Intelligent manufacturing systems, Manufacturing automation, 
Object recognition, Object segmentation, Reverse engineering 
 

I. INTRODUCTION 
ed by extensive development of 3D data acquisition 
systems, the field of application of reverse engineering 

(RE) techniques has significantly expanded over the recent 
years. The speed, accuracy and mobility of the state of the art 
scanning devices [1], [2], especially optical ones, gave a new 
momentum for implementation of RE methods in 
manufacturing process control [3] and inspection [4]. In 
intelligent manufacturing systems, which should be able to 
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adapt to changing environments full of uncertainties, 3D 
scanning devices provide indispensable feedback information 
that can be used for control of tasks carried out by robots, 
handling equipment, assembly systems, etc.  

These industrial applications have imposed new 
requirements to 3D digital acquisition systems, such as large 
measuring volume along with satisfactory precision, high 
speed, real-time data processing, reliability in real-world 
industrial environments, and all of this at affordable prices. 
Whereas hardware in modern devices provides high speed and 
resolution, the bottleneck for their use in real-time is data 
processing [5]. The raw 3D data registration, integration, and 
meshing have been in the focus of many research studies, 
resulting in generation and implementation of a number of 
very successful techniques for solving these problems [5], [6]. 
Nevertheless, point cloud segmentation, simplification and 
surface fitting still remain the most critical elements of these 
systems and an open area for research (this has been 
thoroughly addressed in the related work section).  

The generation of a dimensionally correct polygonal mesh 
[7] from a point cloud is a standard feature of CAD (Computer 
Aided Design) systems. However, the resulting 3D models, 
although aesthetically sound, are not composed of high level 
geometric primitives (e.g., planes, natural quadrics) present in 
the initial object model, and thus do not show the original 
designer’s intent. The reconstruction of high-level parametric 
part geometry from a point cloud is typically carried out 
manually through annotation of points that belong to certain 
parametric surfaces [8]. This task is very tedious, time 
consuming, and error prone.  

On the other hand, automatic point cloud segmentation and 
surface fitting as well as the reconstruction of object’s primary 
geometry are the main requirements for implementation of 3D 
scanning devices in automated manufacturing of scanned 
objects and in real-time control of manufacturing processes in 
industrial conditions. Typical example is recognition of planes 
in a scene during motion planning in mobile robotics, which is 
a very important issue within reconfigurable manufacturing 
systems [9]. Another example is detection of the seam pose in 
robotized welding tasks [3], [10], in unstructured or semi-
structured environments. Furthermore, automatic workpiece 
alignment in machining systems as well as teleoperation using 
augmented reality [11] would extensively benefit from the use 
of 3D scanning devices and recognition of the primary 
geometry. 

Segmentation and fitting of planes in point cloud has 
attracted more research efforts than other types of primary 
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geometry. Besides the simplicity of the planar surface, there 
are other mainly application driven reasons for this. For 
example, online navigation of mobile robots [12]-[14] in 
unstructured environment using sensory information from 
triangulation laser scanners [15] or structured light systems 
[1], [16] requires recognition of planar surfaces (e.g., walls, 
machines and other objects in robot’s surroundings) from 
point cloud [17], [18]. Another application domain for plane 
recognition is automatic architectural reconstruction [19]-[21]. 

In this paper, we propose a fast one-pass algorithm for 
extraction/segmentation of planar regions from a point cloud 
that is based on Discrete Wavelet Transform (DWT). Note 
that due to its convenient properties wavelet transform has 
been extensively employed for 2D image analysis, showing 
excellent results in e.g., image compression [22], [23], 
denoising [24], texture analysis [25]. However, the use of 
DWT in 3D point cloud processing is relatively new and thus 
far very limited. Some recent papers reported the utilization of 
wavelet transform in analysis of 3D geometric texture [26], 
scattered point cloud structuring [27] and compression [28], as 
well as in 3D point clouds integration [29]. Nevertheless, to 
the best of our knowledge, except in our research, wavelet 
transform has not been previously employed in recognition of 
planar segments in a point cloud.  

In this paper, we have opted to employ DWT in order to 
exploit the orthogonality of Daubechies wavelets to 
polynomials for segmentation of planar regions from point 
cloud (we will elaborate on this in Section 4). Advantageous 
properties of DWT, i.e., the combination of its high 
computational speed and insensitivity of certain wavelets to 
linear functions, provide a solid basis for creation of fast plane 
segmentation algorithm. We show that after efficient 
segmentation of planar regions, their parameters can be easily 
estimated using different fitting procedures (e.g., least squares 
regression). The advantages of our algorithm over existing 
methods for planar segments recognition from a point cloud 
(these methods will be addressed in the next section) are its 
simplicity, speed (planes are recognized in a single pass), the 
fact that the method is autonomous (i.e., there is no need for 
user intervention), and the precision of estimated plane 
parameters is data driven. We illustrate these advantages and 
real-world applicability of the proposed procedure on three 
case studies. We effectively show that the proposed algorithm 
outperforms the existing algorithms for planar segment 
detection in the execution time. First case study is a frequently 
used benchmark test piece; second considers a test piece with 
known geometry, whereas in the third case study we recognize 
the planar segments in a test piece with unknown and 
extremely complex geometry from the plane recognition point 
of view. 

The rest of the paper is organized as follows. Related work 
is discussed in Section 2. Section 3 presents relevant 
theoretical background, while the proposed method for 
recognition of planar regions in a point cloud is presented in 
Section 4. In Section 5, we apply the proposed procedure to 
three practical case studies. Finally, Section 6 presents 
concluding remarks and avenues for future work. 

II. RELATED WORK 
Currently, there are three main approaches for recognition 

of planar features in a point cloud, based on 3D Hough 
transform, RANSAC (Random Sample Consensus) method, 
and region growing. 

3D Hough transform [17] is an extension of 2D Hough 
transform [30] that maps each plane from R3 space into a 
single voxel in the discrete Hough space whose coordinates 
are plane parameters (θ, ϕ, r). Using this procedure, every 
point P(x, y, z) from the original R3 space is mapped into a 
large number of voxels in Hough space (θ, ϕ, r) – a voxel for 
each plane that passes through the P(x, y, z). The planes in a 
point cloud are recognized using a voting procedure. The 
voxel that contains the highest number of votes (points 
mapped from the point cloud) represents the plane in R3 space. 
If there is more than one plane in R3 space there will be more 
voxels with a high number of votes – one voxel for each plane. 
On the other hand, if there are no planes in R3 space, the 
points will be scattered all over the space. The threshold for 
detection of planes has to be fine-tuned to detect small planar 
segments and yet not to be prone to detection of nonexistent 
planes. Besides, there is a tradeoff between the velocity of 
execution and the accuracy of plane parameters that can be 
tuned by Hough space quantization. To precisely determine 
plane parameters, the space discretization steps should be 
small leading to higher computational costs.  

RANSAC [31] randomly selects a minimal set of points 
from a point cloud and calculates free parameters of the model 
(i.e., geometric primitives). In the case of a plane, it picks 3 
points and fits the candidate plane through them. When 
parameters of the primitive candidate are estimated, the 
algorithm detects the points from the cloud that belong to this 
primitive and the procedure is repeated for a predefined 
number of times. The geometric primitive that contains the 
highest number of points is considered to be the best fit for 
given data. The original RANSAC method assumes that only 
one model can be fit through a point cloud, e.g., one plane. If 
there is more than one geometric primitive in the cloud, the 
points that belong to the first detected primitive are removed 
from the cloud, and the algorithm is recursively applied until 
all the points are exhausted. In this case, the computational 
cost of the algorithm can be very high due to the randomness 
of points sampling. To deal with this issue, in [32] the authors 
propose localized sampling strategy that considers the distance 
between the points. Nevertheless, the proposed strategy is 
based on computation of a surface normal vector for each 
point and requires a number of parameters that have to be fine-
tuned for fast performance and precise results.  

There are a number of region growing methods that start 
from a few points from the cloud and construct regions by 
expanding the seed according to parameters of geometric 
primitives. Different clustering methods have been proposed, 
including k-means clustering [33], agglomerative hierarchical 
clustering of the mesh triangles [34], [35] or points from the 
cloud [36], partition based on expectation maximization [37], 
multidimensional particle swarm optimization [38], detection 
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of peaks in spherical coordinates [39], and estimation of 
subwindow plane parameters [40]. These methods usually 
utilize the best fit of geometric primitives as a metric, 
assuming that the possible primitives are known a priori. 
Selection of the initial seed is highly critical for the 
performance of region growing methods, and it is usually 
performed manually. 

To address these limitations, we present a new algorithm for 
recognition (segmentation and fitting) of planar regions from a 
point cloud. The proposed algorithm segments all planes 
visible from a selected viewpoint in one pass. The accuracy of 
estimated plane parameters using our method is data driven. 
Furthermore, the method is not based on region growing, it is 
autonomous, and does not require interventions from the user. 

III. OVERVIEW OF DISCRETE WAVELET TRANSFORM  
The method for recognition of planar regions that we 

propose in this paper employs Discrete Wavelet Transform 
(DWT). Before presenting the proposed procedure, in this 
section, we briefly introduce the background of DWT. 

Wavelet transform represents a one-dimensional signal f (t) 
as a linear superposition of atomic functions called wavelets. 
The wavelets are obtained by translation and dilatation of a 
single non-periodic function - the mother wavelet. In discrete 
wavelet transform, mother wavelet is translated and dilated 
with discrete steps. DWT of signal f (t ), denoted by Tm,n, can 
be represented by the following equation [41]: 

( )∫ −= −− dtnbtaatfT mm
nm )( 0

2/
0

2/
0, ψ  (1) 

Here, ψ(t ) is the mother wavelet, a0
m is dilatation, and b0 

translation step, while overline denotes complex conjugate 
operation. The presented discretization is non-uniform in time-
frequency space, and it provides a higher time resolution for 
low and higher frequency resolution for high frequencies. To 
make DWT unique and inverse DWT feasible, the wavelets 
used in DWT must form an orthonormal basis [41]. 

Multiresolution analysis (MRA), originating from image 
processing, has had a significant impact on DWT. Besides 
subband filtering scheme [42], which is a fast real-time 
applicable hierarchical algorithm for execution of direct and 
inverse DWT, MRA provides efficient methods to generate 
orthonormal wavelet bases. The basic MRA algorithm for 
DWT can be briefly stated as follows1. It starts from a 
sequence of resolutions 2 -j, j∈(0, -∞). Approximation of 
signal f at the resolution j = 1 is denoted by A1. This 
approximation is obtained at the first level of transform by 
subtracting details D1 from the signal f. Similarly, 
approximation A2 is obtained by subtracting details D2 from 
approximation A1. This process is repeated until the J th level 
of transform. Following this procedure, the signal f can be 
represented as a sum of its approximation at resolution J (i.e., 
AJ) and details Dj, j∈[1, J ] taken from it during passing from 

 
1 Due to lack of space, in this section we provide a high-level description 

of the MRA and subband filtering. Detailed description of MRA and subband 
filtering scheme used to compute details and approximations Dj and Aj, can be 
found in [41], [42]. 
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In the above equation, orthonormal bases {ψj,n, n∈Z} and 
{φJ,n, n∈Z} represent the family of wavelets and 
corresponding scaling functions, an

J are the approximation and 
dn

j the detail coefficients, computed by the aforementioned 
subband filtering scheme [42]. Finally, J denotes the level of 
transform. 

There are a number of families of wavelets (Daubechies 
wavelets, coiflets, symmlets, biorthogonal wavelets [41]) that 
form orthonormal bases. All of them are compactly supported, 
thus providing excellent time/spatial localization properties to 
the transform. In addition, some of them have an asymmetric 
shape and can be employed for detection of abrupt changes in 
signal such as edges. 

Besides application in time series analysis, DWT can be 
performed on two dimensional signal represented by matrix S 
with dimensions m×n, using the following procedure: 

Step 1: One-dimensional DWT of each row of matrix S 
Step 2: One-dimensional DWT of columns computed in 

step 1. 
Two-level DWT of two-dimensional signal S can be 

visualized [41] as shown in Fig. 1. Here, ai represent 
approximation and d i,H, d i,V and d i,D detail coefficients at i =1, 
2 levels of transform. These matrices have 2n (where n is the 
level of transform) smaller dimensions then the original signal 
matrix. Two dimensional DWT inherits all the properties of 
one dimensional DWT including real time applicability and 
sensitivity to abrupt changes.  

IV. METHOD FOR RECOGNITION OF PLANAR REGIONS BASED 
ON DWT 

To detect planar regions in a point cloud, we exploit the 
orthogonality of certain wavelets to polynomial functions, in 
particular to constant and linear functions. After effective 
detection, we estimate plane parameters by using standard 
fitting procedures. In this section, before presenting the 
method itself, we introduce some theoretical background and 
present the idea on a synthesized surface. 

A. Vanishing Moments of Wavelets 
Besides suitability for detection of abrupt changes (e.g., 

edges) in a signal, there exists another property of certain 

 
Fig. 1.  Visualization of 2D DWT. 
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wavelet families that is crucial for the detection of planar 
regions in point cloud. Namely, the wavelets from Daubechies 
family (db wavelets) have N vanishing moments [41], 
meaning that: 

( )∫ −== 1,...1,0,0 N n   dxxx nψ  (3) 

where N denotes the order of wavelet ψ. Thus, the db wavelets 
of order N are orthogonal to the polynomials 1, x, x 2, … x N-1 
and the signal, after DWT is applied, will be approximated by 
polynomials of order N-1. Consequently, the detail 
coefficients in the areas of the signal that are well 
approximated by a polynomial of order N-1 will be close to 
zero. In the case of Daubechies wavelet of order 2 (i.e., db2 
wavelet), the detail coefficients and details will be close to 
zero in all areas in which a signal is well approximated by a 
linear function or a constant. On the other hand, in all 
nonlinear areas, the detail coefficients will have large values. 
It is very important for the application at hand that the detail 
coefficients will extract high frequency noise from real world 
signals [43] and that the presented approach for detection of 
linear segments is not sensitive to this kind of noise. 

Furthermore, on a transition between two C0 continuous2 
segments (e.g., linear segments with different inclination), 
there will be an abrupt change in signal. Since db2 is a highly 
asymmetric wavelet, it will be sensitive to this change and the 
level of detail coefficients at the connection of two C0 
continuous segments will be high. To illustrate this, Fig. 2 
presents the first level details obtained by decomposition of a 
synthesized signal using db2 wavelet. The signal (Fig. 2a) 
consists of six linear and two circular segments. The details of 
the signal at the first level of DWT using db2 wavelet are 
shown in Fig. 2b. It can be seen that details are equal to zero 
 

2 Values of functions representing segments are equal in their intersection 
point, but the values of higher derivatives of functions are not equal 

in all areas in which the signal is constant or linear, while 
details differ from zero in areas corresponding to circular 
segments. The boundaries between segments represent abrupt 
changes in the signal and DWT detects them – i.e., details 
differ from zero. This information is very useful for 
segmentation of adjacent linear segments. Although the 
transition between linear and circular segments is G1 
continuous3, and there is no abrupt change, the increase of 
detail coefficients at segments boundaries is present due to the 
different polynomial representation of adjacent segments. 

B. Planar Segments Detection using DWT 
Two-dimensional DWT inherits all properties of the one-

dimensional transform including sensitivity to abrupt changes 
(edges) and orthonormality to polynomial surfaces. These are 
the properties of db wavelets that we exploit for generation of 

 
3 Tangent vectors of functions have the same direction in intersection point 

 
Fig. 2.  Synthesized 2D signal: a) Original signal, b) The details of the first 
level DWT using ‘db2’. 
 

 
Fig. 3.  Synthesized 3D signal (point cloud): a) Original signal, b) The details 
of the first level 2D DWT obtained using ‘db2’, c) The fitted planes obtained 
using the proposed procedure. 
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a fast one-pass algorithm for segmentation of planar regions. 
Namely, the details of 2D DWT using db2 wavelet will be 
close to zero in all areas that represent planar surfaces, and we 
utilize this fact to segment planar regions from a point cloud. 

To illustrate the segmentation of planar regions using 2D 
db2 DWT, we synthesized a surface that consists of six planar 
and two cylindrical segments (Fig. 3a). This surface is 
generated by extrusion of the profile presented in Fig. 2 along 
the vector [1, 1, 1]. Fig. 3b presents the details of 2D db2 
DWT at the first level of transform of the selected surface. As 
expected, the details are equal to zero in points that belong to 
planar segments. The only exceptions are the points at the 
surface edges. These high level details will be exploited for 
the segmentation of adjacent planar segments. Simple 
thresholding of the details (Fig. 3b), when observed from 
positive z-axis, leads to generation of a binary 2D matrix 
(binary image) that contains one connected region for each 
planar segment in the processed surface (Fig. 4a). 

Using the standard procedure [44] for detection of 
connected components in 2D binary image (Fig. 4b), and then 
returning into the 3D space, the planar segments are 
recognized and segmented. After the segmentation, since all 
data that belong to one segment are sampled from a single 
plane, we can apply standard procedures (e.g., least squares 
regression) for identification of plane parameters. The 
detected planar segments are shown in Fig. 3c, and the 
estimated plane parameters in Table I. Estimated plane 
parameters are exactly the same as the synthesized surfaces’ 
parameters, since the considered signal is without noise. For 
example, the unit vector of the cross product between the 
direction vector of profile line of segment 3 ([0 1 0]) and the 
extrusion vector ([1 1 1]) is [0.7071, 0.0000, -0.7071] – 
exactly the value detected by the proposed method (Table I). 
Note that the angles between synthesized profile lines of 
segments 1-6 and y-axis are -15°, -75°, 0°, 60°, -49.2741°, and 

30°, respectively. The performances of the procedure on real 
world signals will be addressed in the next section. 

C. Algorithm for Detection of Planar Segments 
As a result of the previous observations, we propose a 

method for segmentation of planar segments that can be 
summarized by Algorithm 1. After the application of the given 
procedure all the points belonging to planes will be clustered. 

The presented algorithm computes one level 2D DWT of 
the signal using db2 wavelet. The subband filtering scheme 
used to implement this transform consists of a convolution of 
the signal by a filter with 4 samples, and downsampling of the 
signal by 2 for each row and column of the starting 2D matrix 
(to obtain detail coefficients d 1,H, d 1,V and d 1,D). In addition, 
details D1 are computed using inverse DWT on detail 
coefficients (approximation coefficients ai are equal to zero). 
The inverse DWT requires signal upsampling by 2 and 
convolution by a filter with 4 samples for each row and 
column. Consequently, the presented method is 
computationally inexpensive. In addition, all planar regions in 
the signal are detected in a single pass, which is a significant 
advantage of this method to the RANSAC algorithm (since 
RANSAC is iterative when more than one plane is present). 

As shown in Table I, the accuracy of estimated plane 
parameters is data driven. For a signal without noise, the 
method is able to estimate the exact value of parameters. On 
the other hand, the estimate of plane parameters using 3D 
Hough transform would depend on the discretization of Hough 
space. 

 

Algorithm 1 Recognition of planar regions from point cloud  
 
Step 1: 2D DWT of the scanned surface using db2 and 

generation of D1 details 
Step 2: Thresholding of D1 details with the predefined 

threshold 
Step 3: Generation of binary image 
Step 4: Segmentation of k connected regions in the binary 

image 
for i=1:k 

Step 5: Selection of points from point cloud whose 
projection on xy plane is in the corresponding 2D region 

Step 6: Fitting the plane through points and merging fitted 
planes with identical parameters 

Step 7: From the point cloud, select all the points whose 
projection is with predefined tolerance within the 
corresponding 2D region and that belong to the fitted 
plane within predefined interval (tolerance); denote 
selected points as points on the plane i 

end 
 
It is worth noting that the proposed method does not require 

user intervention during the plane recognition process. The 
only parameter that has to be set before the recognition 
process starts is the signal details threshold. The appropriate 
value of the threshold depends on the roughness and waviness 

TABLE I 
NORMAL VECTORS AND POINTS ON DETECTED PLANAR SEGMENTS 
OBTAINED USING THE PROPOSED DWT-BASED METHOD FROM THE 

SYNTHESIZED SIGNAL SHOWN IN FIG. 3A  

Planar 
segm.  Normal vector Point on the plane 

1 [0.7746, -0.1637, -0.6109] [-31.5259, 149.1820, 39.9732] 
2 [0.7746, -0.6109, -0.1637] [-15.6946, 19.9000, 74.2678] 
3 [0.7071, 0.0000, -0.7071] [0.0000, 89.2234, 0.0000] 
4 [-0.3437, 0.8133, -0.4695] [-167.1627, 70.6513 -122.3716] 
5 [0.8157, -0.4384, -0.3774] [-68.2649, 127.0357, 147.5578] 
6 [0.3437, 0.4695, -0.8133] [176.3748, 129.1153, -74.5448] 

 
Fig. 4.  a) The binary 2D matrix after thresholding of the signal presented in 
Fig. 3b, b) Recognized connected regions in binary image. 
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of scanned surface and it should be specified for the 
application at hand. Note that the surface finish of scanned 
objects is usually uniform for certain classes of engineering 
tasks (e.g., for sheet metal, castings, and machined parts). 
Thus, when a threshold is adequately set once, there will be no 
need for its frequent change. In the case studies presented in 
the next section, we have estimated the threshold by taking a 
convenient sample of a planar region. We performed one level 
2D DWT on this sample, and estimated the threshold as a 
maximum of absolute values of details D1. This value can be 
observed as a roughness and waviness of selected planar 
region. As part of our future efforts we plan to investigate 
robustness of the proposed threshold assignment procedure to 
extremely rough surfaces.  

The presented method detects planar surfaces whose 
normals’ inclination to positive z-axis is in the (-90°, 90°) 
range. This is due to the selection of z-axis positive half as the 
primary direction and xy-plane as the basis for 2D DWT 
application. For detection of the surfaces with different 
inclination angles, the procedure should be repeated by taking 
–z, ±y and ±x directions as primary and corresponding planes 
as the bases for 2D DWT application. If some regions are 
visible from two or three directions, the parameters of fitted 
planes from different directions will be identical (if there is no 
noise in the signal) and this information can be used for 
merging the same regions. Alternatively, the points belonging 
to a single plane can be excluded from the point cloud before 
applying the procedure in other directions. 

It should be also emphasized that the presented procedure 
requires a structured point cloud at input. Essentially, the most 
of the available scanning devices inherently have the 
structured point cloud as the low level output and scan the 
surface only in the positive z direction [2]. However, due to 
subsequent processing such as multiple view integration, a 
number of 3D scanners provide an unstructured point cloud as 
the final output. In such cases, a procedure for point cloud 
structuring should be conducted prior to the use of the 
presented method for segmentation of planar regions. 
Alternatively, low-level output can be used in control tasks. 

 

V. REAL WORLD APPLICATIONS  
We have applied the presented method for recognition of 

planar segments in a point cloud to three real world industrial 
case-studies. The first example is a benchmark used in various 
works on reverse engineering [45]-[48]. The second case study 
focuses on a part bounded with planar surfaces, while the third 
example deals with an insert of injection molding die. 

All the parts were scanned using the ATOS Compact Scan 
3D scanning device by GOM GmbH [49]. The scanning 
device provides an unstructured point cloud in STL format 
with a very high resolution. The parts were scanned in 
multiple directions. To obtain a structured scan of the surface 
in the positive z direction, we have employed a procedure 
based on the z buffer algorithm [50] and representation of 
triangles in barycentric coordinates. 

To illustrate the performance of the proposed method we 
have compared its computational cost, results, and parameter 
initialization with standard 3D Hough transform using 
algorithm from [17] and RANSAC using code provided in 
[51]. All results presented in this section have been obtained 
when the algorithms have been tested on a system with 1.7 
GHz Intel Core i7 processor (with 2 cores) and 8 GB of 1600 
MHz DDR3 memory. Finally, we discuss the obtained results 
at the end of the section. 

A. Case Study 1 - Planar Surfaces Parallel to Coordinate 
Axes 

In this case study we analyze the benchmark part from Fig. 
5, which was made on a 3-axis machining center and has very 
poor surface finish. After scanning, point cloud contained 
792,522 points, which gave a very high resolution on a part 
with 26.5×50×90 mm dimensions. Before applying the 
proposed segmentation procedure we have re-sampled the 
point cloud and extracted the surface visible from the positive 
z axis. After transforming the extracted surface with one level 
2D db2 DWT and thresholding the details, the proposed 
method generated the binary image presented in Fig. 6a. Fig. 
6b shows the recognized connected regions in the binary 
image. Following the algorithm presented in Section 4 along 
+z axis, we have obtained 3 planar segments, whose plane 
parameters are given in Table II (segments 1-3). Fig. 7a 
presents mesh triangles on the points from the cloud that were 
recognized as points belonging to the fitted planes. 

The procedure was repeated for the surfaces visible from 
the ±x and ±y directions, and the recognized planar regions are 
presented in Fig. 7b. Fig. 7 illustrates that the proposed 
procedure efficiently segmented planar segments, regardless 
the very inconvenient surface texture. In this case study all 
planar surfaces on the test piece were parallel to the coordinate 
axes, which is in accordance with parameters of recognized 
planes from Table II. Namely, all the normal vectors presented 
in this table are parallel to coordinate axes as expected. The 
error is less than 0.15%. 

 
Fig. 5.  The test piece used in case study 1 – machined part with planar 
surfaces parallel to coordinate axes. 
 

 
Fig. 6.  a) Binary image after details thresholding; b) Detected connected 
regions in binary image. 
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For the surface visible from positive z-axis besides our 
method, we have employed 3D Hough transform and 
RANSAC algorithm for detection of planar regions. The 
computational cost and a sample of recognized plane along 
with algorithms’ parameters are presented in Table III.  

 
 

B. Case Study 2 – Planar Surfaces with Arbitrary Orientation 
In the previous case study, all planar surfaces were mutually 

perpendicular or parallel. The scanning procedure was 
performed in a way that all planar regions were perpendicular 
to one of the coordinate axes. In this case study, we have used 
a test piece bounded by planes with different orientations. The 
scanned part is presented in Fig. 8. The surface finish of the 
part is very poor, even worse than in the previous case study. 

The part was scanned and the obtained point cloud was very 
dense with 1,059,619 points on the part with dimensions ca. 
48.30×70×100mm. After carrying out the complete procedure 
for surfaces visible from the +z, ±x and ±y directions, we have 
recognized the boundary planes with parameters presented in 
Table IV. The plane parameters are in accordance with the 
part geometry since the part was designed in such a way that 
the angles between base planar surface and inclined planar 
surfaces were 20°, 45° and 60°. The error between designed 
and detected plane orientations is less then 1%. Note that the 

 
Fig. 9.  Detected planar regions in the test piece with planar segments with 
arbitrary orientations. 

TABLE IV 
NORMAL VECTORS AND POINTS ON DETECTED PLANAR SEGMENTS 

OBTAINED BY ALGORITHM 1 IN CASE STUDY 2 
Normal vector Planar 

segm. Cartesian coordinates Spherical coord. 
Point on the 

plane 

1 [-0.0023, -0.7062, 0.7080] [1, -90.19°, 44.93°] [-40, 50, 58.68] 
2 [-0.4969, 0.0001, 0.8678] [1, 179.99°, 29.80°] [-40, 50, 46.66] 
3 [0.0011, 0.9408, 0.3389] [1, 89.93°, 70.19°] [-40, 50, 148.99] 
4 [0.7104, -0.0054, 0.7038] [1, -0.43°, 45.27°] [-40, 50, 50.50] 
5 [0.0004, 1.0000, 0.0033] [1, 89.98°, 89.81°] [0, 100.54, 0] 
6 [-0.0012, -1.0000, 0.0007] [1, -90.07°, 89.96°] [0, -0.00, 0] 
7 [1.0000, -0.0000, -0.0002] [1, -0.00°, 90.01°] [-0.00, 0, 0] 
8 [-1.0000, 0.0002, -0.0039] [1, 179.99°, 90.22°] [-70.11, 0, 0] 

TABLE III 
RESULTS OF COMPARISON OF ALTERNATIVE ALGORITHMS IN  

CASE STUDY 1 

Algorithm CPU 
time [s] Parameter Value of 

parameter 
Detected plane  

[r, θ, ϕ]a 
DWT based 0.45 Detail threshold: 0.002 [26.52, -174.81°, 0.00°]
3D Hough 118.15 

 
 
 

Res. (θ, ϕ, r): 
Threshold: 
Range for r 
No. of planes 

5°, 5°, 0.5mm 
0.2mm 
0÷27mm 
3 

[26.5, -180°, 0°] 

RANSAC 2.71 Threshold 
No. of planes 

0.2mm 
3 

[26.52, -177.95°, 0.07°]

aAn example of detected plane 

TABLE II 
NORMAL VECTORS AND POINTS ON DETECTED PLANAR SEGMENTS 

OBTAINED BY ALGORITHM 1 IN CASE STUDY 1 
Normal vector Planar 

segm.  Cartesian coordinates Spherical coord. 
Point on the 

plane 

1 [-0.0006, -0.0002, 1.0000] [1, -161.57°, 0.00°] [0, 0, 11.48] 
2 [-0.0004, -0.0001, 1.0000] [1, -165.96°, 0.00°] [0, 0, 19.49] 
3 [-0.0011, -0.0001, 1.0000] [1, -174.81°, 0.00°] [0, 0, 26.52] 
4 [-0.0002, 1.0000, 0.0006] [1, 90.01°, 89.97°] [0, 0.00, 0] 
5 [0.0000, -1.0000, -0.0004] [1, -90.00°, 90.02°] [0, -90.04, 0] 
6 [1.0000, -0.0000, 0.0000] [1, -0.00°, 90.00°] [0.00, 0, 0] 
7 [-1.0000, 0.0001, -0.0001] [1, 179.99°, 90.01°] [-50.02, 0, 0] 

 

 
Fig. 7.  a) Detected planar regions visible from positive z axis; b) Detected 
planar regions on the scanned part. 
 

 
Fig. 8.  The test piece used in case study 2 – machined part with planar 
surfaces with arbitrary orientation. 
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part was made on a conventional milling machine. Fig. 9 
presents the triangles on the points that were recognized as 
points belonging to the fitted planes. An example of plane 
recognition results obtained using alternative algorithms for 
surface visible from positive z-axis is presented in Table V.  

C. Case Study 3 – Casting with Complex Geometry 
In the previous two examples we have used the test pieces 

whose geometry was known in advance. In this case study we 
will consider the piece shown in Fig. 10 - a casting that 
represents un-machined insert of an injection mold die whose 
geometry is unknown. This is a very interesting test piece 
since it has a number of cylindrical surfaces with relatively 
large diameters that can be easily mixed up with planar 
surfaces. In addition, the piece has a number of freeform 
surfaces. Besides, the flatness of planar surfaces obtained 
during casting process is extremely low as can be observed in 
Fig. 10a.  

Using the proposed method six planar regions were 
recognized from point cloud. Three of them (visible from the 
selected viewpoint) are shown in Fig. 10b. The algorithm was 

able to adequately distinguish planar regions from cylindrical 
surfaces with large diameter, as well as from freeform 
surfaces. Furthermore, the errors in planar surfaces flatness 
were not recognized as belonging to detected regions, as can 
be observed from Fig. 10b.  

In this case study we have opted to compare the 
performance of the selected three algorithms for surface 
visible from negative y direction. The results are presented in 
Table VI.  

D. Comparison of Alternative Recognition Methods 
For illustration of the performances of the developed 

method, we have compared its results to 3D Hough transform 
and RANSAC for all three case studies. Our discussion will 
consider the computation efficiency (i.e, required execution 
times), accuracy, and parameters of the considered algorithms. 
1) Computation Efficiency 

For real-time applications, one of the most important 
properties is the speed of the algorithm for recognition of 
planar segments from a point cloud (i.e., required computation 
time). In terms of speed, the proposed DWT based method has 
significantly outperformed both 3D Hough transform and 
RANSAC. When compared to DWT based algorithm and 
RANSAC, 3D Hough transform has shown especially low 
time efficiency. In our case studies, 3D Hough transform used 
2-3 orders of magnitude more CPU time for recognition of 
planes (as can be seen in Tables III, V, and VI) than the 
proposed DWT based algorithm and RANSAC.  

The computation times of RANSAC when compared to our 
algorithm were significantly higher – 6.02 times in case study 
1, 8.71 times in case study 2, and 154.93 times in case study 3. 
These differences in RANSAC’s execution times in different 
case studies are caused by the randomness of initial points 
sampling. Namely, in case studies 1 and 2, a large number of 
points from the point clouds belong to planar segments and 
there was a higher probability that RANSAC would select 
initial points from planar regions in early iterations. On the 
other hand, the test piece in case study 3 contained a 
significant number of curved segments, resulting in the 
prolonged execution time. However, the DWT based method 
proposed in this paper has shown similar computational 
efficiency in all of the three case studies. 
2) Accuracy 

The second important property of the algorithms for plane 
detection is the accuracy of the estimated plane parameters. As 
can be observed from Tables III, V, and VI, plane parameters 
obtained by using DWT based method and RANSAC are 
similar since the estimation in these algorithms is data driven. 
The accuracy of 3D Hough transform, on the other hand, is 
determined by 3D Hough space quantization. In our 
experiments we have used a discretization step of 0.5 mm for 
r, and 5° for θ and ϕ, and all of the estimated parameters were 
the multiplication product of these values. Fortunately, all the 
planes in these examples had normal vectors whose inclination 
angles to coordinate axes were close to multiplication product 
of 5°, so the results from 3D Hough transform are acceptable. 

TABLE VI 
RESULTS OF COMPARISON OF ALTERNATIVE ALGORITHMS IN  

CASE STUDY 3 

Algorithm CPU 
time [s] Parameter Value of 

parameter 
Detected plane  

[r, θ, ϕ]a 
DWT based 1.14 Detail threshold: 0.0004 [69.95, 90.42°, 100.1°]
3D Hough 3152.5 

 
 
 

Res. (θ, ϕ, r): 
Threshold: 
Range for r 
No. of planes 

5°, 5°, 0.5mm 
0.05mm 
0÷171mm 
2 

[70, 90°, 100°] 

RANSAC 176.62 Threshold 
No. of planes 

0.05mm 
2 

[70.45, 89.63°, 99.76°]

aAn example of detected plane 

 
Fig. 10.  Test piece in case study 3: a) Un-machined insert of an injection 
mold die; b) Detected planar regions in test piece from case study 3.  
 

TABLE V 
RESULTS OF COMPARISON OF ALTERNATIVE ALGORITHMS IN  

CASE STUDY 2 

Algorithm CPU 
time [s] Parameter Value of 

parameter 
Detected plane  

[r, θ, ϕ]a 
DWT based 0.66 Detail threshold: 0.025 [97.50, 89.93°, 70.19°]
3D Hough 901.83 

 
 
 

Res. (θ, ϕ, r): 
Threshold: 
Range for r 
No. of planes 

5°, 5°, 0.5mm 
0.2mm 
0÷135mm 
4 

[97.50, 90°, 70°] 

RANSAC 5.75 Threshold 
No. of planes 

0.2mm 
4 

[97.50, 89.94°, 70.20°]

aAn example of detected plane 
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However, if the planes with different normal vectors were 
present in point cloud, the 3D Hough transform with selected 
Hough space discretization would not provide acceptable 
accuracy. In this case, a higher resolution of Hough space 
would be required, introducing also a higher computation cost. 
3) Parameters of the Algorithms 

The third important property of the algorithms is the 
number of required parameters. The threshold is the parameter 
that is used in all three methods. In 3D Hough transform and 
RANSAC, the threshold represents the maximal distance 
between a recognized point on the plane and the estimated 
plane that point belongs to. On the other hand, in DWT based 
method the threshold can be experimentally obtained and 
depends on surface finish (i.e., roughness and waviness). 

Successful recognition of planes from a point cloud 
demands appropriate assignment of the threshold value. Table 
VII presents acceptable threshold ranges for compared 
algorithms and considered case studies; the ranges were 
empirically obtained. For these threshold values, all planar 
segments were adequately recognized. The values of 
thresholds in ranges from Table VII do not have significant 
influence neither on the values of estimated plane parameters, 
nor on the computational efficiency. For example, in case 
study 2, all the values of estimated parameters r, θ, and ϕ, (for 
the plane from Table V, and for different thresholds from 
Table VII) were in the range ±0.005 mm, ±0.005°, and 
±0.005° for DWT, and in the range ±0.01 mm, ±0.01°, and 
±0.01° for RANSAC. For Hough transform, as expected, the 
values of estimated plane parameters were exactly the same 
regardless the threshold value from Table VII. This illustrates 
that within the aforementioned threshold ranges, all three 
algorithms are quite robust to threshold variations. 

Outside the threshold ranges from Table VII, the 
recognition results are as follows. If DWT based algorithm 

and Hough transform succeed to segment the plane from a 
point cloud, they will adequately estimate the plane 
parameters. On the other hand, for RANSAC, the accuracy of 
estimated plane parameters will depend on the selected 
threshold. Fig. 11 illustrates the effect of the threshold on the 
estimated values of r, θ, and ϕ for an example of the plane 
from Table V. 

Another difference between methods is that when compared 
to DWT based algorithm and RANSAC, the number of 
parameters in 3D Hough transform is large. Besides threshold 
and 3D Hough space discretization steps, the range for r 
should be provided. It is worth noting that to speed up the 
execution of 3D Hough transform and RANSAC, we have 
used an additional parameter – a number of planes to be 
recognized. Alternatively, a minimum number of detected 
points on a plane can be used to prevent the recognition of 
nonexistent planes. 

VI. CONCLUSION 
In this paper, we have introduced a new method for 

segmentation of planar regions from a point cloud. The 
method is based on DWT and it exploits orthonormality of 
certain wavelets to linear and constant functions to distinguish 
planar segments from other surfaces in the cloud. Besides, the 
adjacent planar regions are segmented utilizing the asymmetry 
of wavelets and their sensitivity to abrupt changes.  

The presented method employs a fast algorithm that is 
suitable for detection of multiple planar regions in the cloud. 
This algorithm is one pass, which is its advantage to RANSAC 
algorithm that demands a significant number of iterations in 
the presence of multiple planes. It is also not subject to the 
tradeoff between the velocity of execution and the accuracy of 
the plane parameters that characterizes Hough transform. In 
the presented method, the accuracy of plane parameters is data 
driven. The method does not require manual intervention 
typically present in region growing methods that are very 
sensitive to the seed selection. The only parameter of the 
proposed method is signal details threshold that depends on 
the roughness and flatness of the considered planar regions. In 
this paper, on three real-world case studies we have illustrated 
all the aforementioned advantages of the proposed algorithm 
over existing algorithms for planar segment detection. 

The main drawback of the proposed method is that the 
algorithm requires a structured point cloud as input. To 
overcome this issue, we have used the derivative of z buffer 
algorithm for scattered point cloud structuring. However, it 
should be noted that a significant number of scanning devices 
outputs regular point sets, particularly as a low level output 
which is as a rule used in control tasks. In addition, although 
planar regions are crucial for a large number of 3D vision 
based industrial control tasks, the other types of surfaces (e.g., 
cylinders) are frequently met in manufacturing environments. 
The future work should address the segmentation of more 
complex surfaces (e.g., natural quadrics). 

TABLE VII 
THE RANGE OF THRESHOLD PARAMETERS FOR SUCCESSFUL RECOGNITION 

OF PLANES IN CONSIDERED CASE STUDIES 

 DWT based 
algorithm 

3D Hough 
transform [mm] RANSAC [mm] 

Case study 1 0.0005 – 0.004 0.02 – 0.4 0.002 – 0.5 
Case study 2 0.002 – 0.05 0.15 - 0.4 0.02 – 2.0 
Case study 3 0.00035 – 0.0012 0.007 – 0.4 0.02 – 0.1 

 

 
Fig. 11.  Impact of the threshold value on the estimated plane parameters for 
RANSAC – plane from Table V, case study 2.  
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