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part was made on a conventional milling machine. Fig. 9 
presents the triangles on the points that were recognized as 
points belonging to the fitted planes. An example of plane 
recognition results obtained using alternative algorithms for 
surface visible from positive z-axis is presented in Table V.  

C. Case Study 3 – Casting with Complex Geometry 
In the previous two examples we have used the test pieces 

whose geometry was known in advance. In this case study we 
will consider the piece shown in Fig. 10 - a casting that 
represents un-machined insert of an injection mold die whose 
geometry is unknown. This is a very interesting test piece 
since it has a number of cylindrical surfaces with relatively 
large diameters that can be easily mixed up with planar 
surfaces. In addition, the piece has a number of freeform 
surfaces. Besides, the flatness of planar surfaces obtained 
during casting process is extremely low as can be observed in 
Fig. 10a.  

Using the proposed method six planar regions were 
recognized from point cloud. Three of them (visible from the 
selected viewpoint) are shown in Fig. 10b. The algorithm was 

able to adequately distinguish planar regions from cylindrical 
surfaces with large diameter, as well as from freeform 
surfaces. Furthermore, the errors in planar surfaces flatness 
were not recognized as belonging to detected regions, as can 
be observed from Fig. 10b.  

In this case study we have opted to compare the 
performance of the selected three algorithms for surface 
visible from negative y direction. The results are presented in 
Table VI.  

D. Comparison of Alternative Recognition Methods 
For illustration of the performances of the developed 

method, we have compared its results to 3D Hough transform 
and RANSAC for all three case studies. Our discussion will 
consider the computation efficiency (i.e, required execution 
times), accuracy, and parameters of the considered algorithms. 
1) Computation Efficiency 

For real-time applications, one of the most important 
properties is the speed of the algorithm for recognition of 
planar segments from a point cloud (i.e., required computation 
time). In terms of speed, the proposed DWT based method has 
significantly outperformed both 3D Hough transform and 
RANSAC. When compared to DWT based algorithm and 
RANSAC, 3D Hough transform has shown especially low 
time efficiency. In our case studies, 3D Hough transform used 
2-3 orders of magnitude more CPU time for recognition of 
planes (as can be seen in Tables III, V, and VI) than the 
proposed DWT based algorithm and RANSAC.  

The computation times of RANSAC when compared to our 
algorithm were significantly higher – 6.02 times in case study 
1, 8.71 times in case study 2, and 154.93 times in case study 3. 
These differences in RANSAC’s execution times in different 
case studies are caused by the randomness of initial points 
sampling. Namely, in case studies 1 and 2, a large number of 
points from the point clouds belong to planar segments and 
there was a higher probability that RANSAC would select 
initial points from planar regions in early iterations. On the 
other hand, the test piece in case study 3 contained a 
significant number of curved segments, resulting in the 
prolonged execution time. However, the DWT based method 
proposed in this paper has shown similar computational 
efficiency in all of the three case studies. 
2) Accuracy 

The second important property of the algorithms for plane 
detection is the accuracy of the estimated plane parameters. As 
can be observed from Tables III, V, and VI, plane parameters 
obtained by using DWT based method and RANSAC are 
similar since the estimation in these algorithms is data driven. 
The accuracy of 3D Hough transform, on the other hand, is 
determined by 3D Hough space quantization. In our 
experiments we have used a discretization step of 0.5 mm for 
r, and 5° for θ and ϕ, and all of the estimated parameters were 
the multiplication product of these values. Fortunately, all the 
planes in these examples had normal vectors whose inclination 
angles to coordinate axes were close to multiplication product 
of 5°, so the results from 3D Hough transform are acceptable. 

TABLE VI 
RESULTS OF COMPARISON OF ALTERNATIVE ALGORITHMS IN  

CASE STUDY 3 

Algorithm CPU 
time [s] Parameter Value of 

parameter 
Detected plane  

[r, θ, ϕ]a 
DWT based 1.14 Detail threshold: 0.0004 [69.95, 90.42°, 100.1°]
3D Hough 3152.5 

 
 
 

Res. (θ, ϕ, r): 
Threshold: 
Range for r 
No. of planes 

5°, 5°, 0.5mm 
0.05mm 
0÷171mm 
2 

[70, 90°, 100°] 

RANSAC 176.62 Threshold 
No. of planes 

0.05mm 
2 

[70.45, 89.63°, 99.76°]

aAn example of detected plane 

 
Fig. 10.  Test piece in case study 3: a) Un-machined insert of an injection 
mold die; b) Detected planar regions in test piece from case study 3.  
 

TABLE V 
RESULTS OF COMPARISON OF ALTERNATIVE ALGORITHMS IN  

CASE STUDY 2 

Algorithm CPU 
time [s] Parameter Value of 

parameter 
Detected plane  

[r, θ, ϕ]a 
DWT based 0.66 Detail threshold: 0.025 [97.50, 89.93°, 70.19°]
3D Hough 901.83 

 
 
 

Res. (θ, ϕ, r): 
Threshold: 
Range for r 
No. of planes 

5°, 5°, 0.5mm 
0.2mm 
0÷135mm 
4 

[97.50, 90°, 70°] 

RANSAC 5.75 Threshold 
No. of planes 

0.2mm 
4 

[97.50, 89.94°, 70.20°]

aAn example of detected plane 
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However, if the planes with different normal vectors were 
present in point cloud, the 3D Hough transform with selected 
Hough space discretization would not provide acceptable 
accuracy. In this case, a higher resolution of Hough space 
would be required, introducing also a higher computation cost. 
3) Parameters of the Algorithms 

The third important property of the algorithms is the 
number of required parameters. The threshold is the parameter 
that is used in all three methods. In 3D Hough transform and 
RANSAC, the threshold represents the maximal distance 
between a recognized point on the plane and the estimated 
plane that point belongs to. On the other hand, in DWT based 
method the threshold can be experimentally obtained and 
depends on surface finish (i.e., roughness and waviness). 

Successful recognition of planes from a point cloud 
demands appropriate assignment of the threshold value. Table 
VII presents acceptable threshold ranges for compared 
algorithms and considered case studies; the ranges were 
empirically obtained. For these threshold values, all planar 
segments were adequately recognized. The values of 
thresholds in ranges from Table VII do not have significant 
influence neither on the values of estimated plane parameters, 
nor on the computational efficiency. For example, in case 
study 2, all the values of estimated parameters r, θ, and ϕ, (for 
the plane from Table V, and for different thresholds from 
Table VII) were in the range ±0.005 mm, ±0.005°, and 
±0.005° for DWT, and in the range ±0.01 mm, ±0.01°, and 
±0.01° for RANSAC. For Hough transform, as expected, the 
values of estimated plane parameters were exactly the same 
regardless the threshold value from Table VII. This illustrates 
that within the aforementioned threshold ranges, all three 
algorithms are quite robust to threshold variations. 

Outside the threshold ranges from Table VII, the 
recognition results are as follows. If DWT based algorithm 

and Hough transform succeed to segment the plane from a 
point cloud, they will adequately estimate the plane 
parameters. On the other hand, for RANSAC, the accuracy of 
estimated plane parameters will depend on the selected 
threshold. Fig. 11 illustrates the effect of the threshold on the 
estimated values of r, θ, and ϕ for an example of the plane 
from Table V. 

Another difference between methods is that when compared 
to DWT based algorithm and RANSAC, the number of 
parameters in 3D Hough transform is large. Besides threshold 
and 3D Hough space discretization steps, the range for r 
should be provided. It is worth noting that to speed up the 
execution of 3D Hough transform and RANSAC, we have 
used an additional parameter – a number of planes to be 
recognized. Alternatively, a minimum number of detected 
points on a plane can be used to prevent the recognition of 
nonexistent planes. 

VI. CONCLUSION 
In this paper, we have introduced a new method for 

segmentation of planar regions from a point cloud. The 
method is based on DWT and it exploits orthonormality of 
certain wavelets to linear and constant functions to distinguish 
planar segments from other surfaces in the cloud. Besides, the 
adjacent planar regions are segmented utilizing the asymmetry 
of wavelets and their sensitivity to abrupt changes.  

The presented method employs a fast algorithm that is 
suitable for detection of multiple planar regions in the cloud. 
This algorithm is one pass, which is its advantage to RANSAC 
algorithm that demands a significant number of iterations in 
the presence of multiple planes. It is also not subject to the 
tradeoff between the velocity of execution and the accuracy of 
the plane parameters that characterizes Hough transform. In 
the presented method, the accuracy of plane parameters is data 
driven. The method does not require manual intervention 
typically present in region growing methods that are very 
sensitive to the seed selection. The only parameter of the 
proposed method is signal details threshold that depends on 
the roughness and flatness of the considered planar regions. In 
this paper, on three real-world case studies we have illustrated 
all the aforementioned advantages of the proposed algorithm 
over existing algorithms for planar segment detection. 

The main drawback of the proposed method is that the 
algorithm requires a structured point cloud as input. To 
overcome this issue, we have used the derivative of z buffer 
algorithm for scattered point cloud structuring. However, it 
should be noted that a significant number of scanning devices 
outputs regular point sets, particularly as a low level output 
which is as a rule used in control tasks. In addition, although 
planar regions are crucial for a large number of 3D vision 
based industrial control tasks, the other types of surfaces (e.g., 
cylinders) are frequently met in manufacturing environments. 
The future work should address the segmentation of more 
complex surfaces (e.g., natural quadrics). 

TABLE VII 
THE RANGE OF THRESHOLD PARAMETERS FOR SUCCESSFUL RECOGNITION 

OF PLANES IN CONSIDERED CASE STUDIES 

 DWT based 
algorithm 

3D Hough 
transform [mm] RANSAC [mm] 

Case study 1 0.0005 – 0.004 0.02 – 0.4 0.002 – 0.5 
Case study 2 0.002 – 0.05 0.15 - 0.4 0.02 – 2.0 
Case study 3 0.00035 – 0.0012 0.007 – 0.4 0.02 – 0.1 

 

 
Fig. 11.  Impact of the threshold value on the estimated plane parameters for 
RANSAC – plane from Table V, case study 2.  
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