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Abstract—Modern manufacturing systems require fast and
effective adaptation to fluctuating market conditions and product
diversification. This high level adaptability can be achieved
through the utilization of Reconfigurable Manufacturing Systems
(RMS), which should be based on modular equipment that is
easily integrated, scalable, convertible in terms of functionality,
and self diagnosable. RMS also necessitate the use of a dynamic
controller architecture that is distributed, fully modular, and
self configurable.

In this paper, we present a control system design approach
for reconfigurable machine tools through the use of modularized
and decentralized CNC control. Specifically, we investigate design
challenges for Plug-n-Play automation systems, where new system
functionalities, such as adding new axes in existing CNC units,
can be introduced without significant reconfiguration efforts and
downtime costs. We propose a fully decentralized motion control
architecture realized through a network of individual axis control
modules. Reconfiguration of motion control systems based on this
architecture can be achieved by only presenting the controller on
each axis with information about machine configuration and the
type of axis. This effectively enables modularity, reconfigurability,
and interoperability of the machine control system. Finally,
we present an implementation of the decentralized architecture
based on the use of a real-time operating system, wireless
networking, and low-cost ARM Cortex-M3 MCUs; we illustrate
its effectiveness by considering machining of a standard test part
defined in ISO 10791-7 using a software-in-the-loop testbed.

I. INTRODUCTION

S a result of globalization and fluctuating market con-
ditions, production companies are facing the challenge
of manufacturing individualized products according to cus-
tomer demands [1]. Increase in product variety has been
accompanied by a decrease in lot sizes, up to the level
of one-off products. Thus, profitable manufacturing in such
conditions requires fast and effective adaptation of manufac-
turing systems and their accommodation to quick changes
of diversified products. This high level adaptability can be
achieved through development and implementation of Recon-
figurable Manufacturing Systems (RMS), which are based on
modular equipment that is easily integrated, scalable in terms
of production capacity, convertible in terms of functionality,
and self diagnosable [2], [3], [4], [5].
Manufacturing resources modularity, changeability and in-
terconnectivity has to be achieved at the mechanical (i.e., hard-
ware), as well as at the machine control system level. The
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transition from traditional hierarchical automation pyramid
to distributed/decentralized control systems [6] is crucial for
RMS. The most important enabling technologies for ad-
hoc configuration of manufacturing resources are Internet of
Things (IoT) and Cyber-Physical Systems (CPS) within the
Industrie 4.0 framework [7], [8], [9], [10].

The major components of RMS are Reconfigurable Machine
Tools (RMTs). RMTs provide large possibilities for adaptation
to manufacturing of diverse products through change of po-
sition and/or orientation of modules, modules swapping, and
adding additional axes and/or spindles as needed [11]. Besides
adaptability to changing needs, RMTs enable higher utilization
of resources, and accordingly significant cost reductions. Nev-
ertheless, the time needed for machine tool reconfiguring is a
limiting factor in RMTs application. It includes not only the
physical reconfiguration of the mechanical sub-system but also
the reconfiguration of the machine’s control system software.

Currently used control systems for machine tools are based
on Computer Numerical Control (CNC) units that are not
modular, and which usually include a large number of different
configuration options that are rarely utilized to full extent. This
introduces a design time tradeoff between reconfigurability and
resources consumption; in order to support reconfigurability
control units are significantly over-designed, leading to a low
resource utilization for the most of the unit’s operational
lifetime. Furthermore, with the existing CNC units, reconfigu-
ration requires extensive time intervals to adapt control system
software to the new configuration of the machine, thus having
negative influence on the responsiveness of the manufacturing
system. Consequently, RMTs necessitate the use of a dynamic
controller architecture [11] that is distributed, fully modular,
and self-configurable.

Recently, open architecture CNC systems have been intro-
duced to provide a desired level of reconfigurability, while
offering advanced measurement and control functionality for
RMTs [12]. These systems are implemented in a centralized
manner, usually based on PCs running a Real-Time Operating
System (RTOS). In these architectures, each machine axis
has its own control module on the centralized platform and
adding new axis implies control system hardware changes.
In addition, implementation of a new machine configuration
in open CNC requires control system software adaptation
where programming skills and significant user intervention are



Fig. 1. Decentralized CNC system — Numerical Control Kernel is not executed
on a centralized controller; rather all NCK functionalities are executed on
individual axis controllers.

needed [13], [14]. Finally, self-configurability is not achieved
at the motion control level [15], and changes in machine
configurations, if not defined in advance, are very challenging,
significantly increasing development time and costs.

In this paper, we investigate design challenges for Plug-n-
Play (PnP) automation systems, where new system function-
alities, such as adding new axes in existing CNC units, can
be introduced without significant reconfiguration efforts and
downtime costs. Specifically, we focus on CNC control units
and propose a fully decentralized motion control architecture
realized through a network of individual axis control modules
(as shown in Fig. 1). With the proposed design, reconfiguration
of motion control systems is carried out by only presenting
the controller on each axis with information about machine
configuration, and the type of axis (e.g., X,Y, Z) that the
controller is running. This effectively enables modularity,
reconfigurability, and interoperability of the machine con-
trol system. Furthermore, we present an implementation of
the decentralized architecture on low-cost ARM Cortex-M3
based boards [16], and show that, unless highly accurate CNC
machining is considered, low-power wireless communication
can be used to coordinate axis controllers. Finally, as a proof of
concept, we evaluate system performance within a Software-
In-the-Loop (SIL) framework by considering machining of a
standard test defined in ISO 10791-7 [17].

This paper is organized as follows. We start by presenting
the conventional architecture used in CNC machines (Sec-
tion II). Section III defines the architecture of the proposed
decentralized solution for the Numerical Control Kernel. In
Section IV, we describe design challenges and system imple-
mentation, while system evaluation is presented in Section V.
Finally, in Section VI, we provide discussion and avenues for
future work.

II. STATE-OF-THE-ART CNC ARCHITECTURE

A conventional CNC system comprises of three functional
components: Numerical Control Kernel (NCK), Programmable
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Fig. 2. Standard architecture of CNC systems.

Logic Control (PLC), and Man Machine Interface (MMI) [18].
The functional decomposition is presented in Fig. 2. NCK is
the functional component central to the machining process,
used to translate formal specification of a physical part to
be manufactured into motion of the axes. PLC unit controls
other operational aspects of the machining process excluding
the motion path calculation and motion control. Finally, MMI
provides an interface through which the operator can input
part specifications, alter machine settings, and monitor the
status/progress of the machining process. Unless otherwise
noted, in this paper we focus on the Numerical Control Kernel.

Using the part specifications in ISO 6983 code (G-
code) [19], which we will refer to as part program, the
parser is responsible of checking code correctness and passing
parsed commands to the interpreter.! Interpreter extracts geo-
metric specifications such as end positions of linear segments,
toolpath radius and commanded feed-rates and, assuming
acceleration/deceleration control before interpolation (ADCBI)
is used, conveys them to the acceleration/deceleration con-
troller.2 Given its input, the acceleration/deceleration controller
constructs a velocity profile of every path segment, before
feeding it to the interpolator. Based on the velocity profile, the
interpolator generates incremental reference position values for
each axis. Finally, reference position increments are integrated
and the result is sent to the position controllers in charge
of controlling the axes motors. Note that all stages except
parsing are performed on a periodical basis; position control
is performed within the motor drive for each axis.

The conventional architecture limits efficient system recon-
figurations for several reasons. NCKs are usually designed
and tuned to support a certain number of axes and the
number of utilized axes depends on the machine configuration.
Reconfiguration of a machine tool in terms of an axis pose
change or installation of additional axes requires complicated
reconfigurations of control and mechanical systems’ hardware.
Secondly, components of the system are usually custom built
or utilize very specific settings, which severely limits interop-
erability of equipment coming from different manufacturers.
In addition, the system architecture is centralized, meaning
that on failure of the controller executing the NCK, the

't is worth noting here that our approach does not specifically depend
on the use of G-code; our results easily translate to newer programming and
execution paradigms such as STEP-NC.

2More details about differences between acceleration/deceleration control
before and after interpolation can be found in [18], Chapter 4.



machine is subject to an erroneous state that requests major
overhaul, readjustments, etc. Modularity is not enforced on
the axis level since the centralized execution scheme disables
modularization on any level higher than the lowest actuation
stage involving the motor drives and axes’ motors. All of
these properties embedded within the conventional architecture
effectively disable design of Plug-n-Play automation systems.

On the other hand, in existing CNC systems, position con-
trollers for different axes are independent due to the absence
of feedback from the position control back to previous stages
within the NCK, along with the absence of any real-time inter-
axis coupling. Consequently, this enables implementation of a
decentralized NCK as a distributed network of components,
where each of the axis controllers locally executes all compo-
nents necessary to specify its actions (Fig. 1). In the following
section, we discuss an architecture where execution of all
corresponding NCK functionality is done locally at the axis
level, and show that it facilitates modularity, reconfigurability,
and interoperability of CNC systems.

III. DECENTRALIZED CNC ARCHITECTURE

To address limitations of existing CNC units when used in
RMS, we propose a decentralized NCK architecture (shown in
Fig. 1) that facilitates functionality expansion, such as adding
more degrees of freedom in the machining process or swap-
ping axes to obtain the desired workspace. Specifically, in the
new architecture each axis controller contains all functionali-
ties of a standard NCK - i.e., Interpreter, Acc/Dec controller,
and Interpolator. The proposed decentralized architecture has
been enabled by the fact that there is no tight inter-axis
coupling or feedback between functional stages in the conven-
tional architecture. This architecture allows partitioning of the
traditional CNC system over individual axes into independent
modules by distributing the NCK homogenously on the axis
level. This implies that code parsing and interpretation, control
of tool acceleration/deceleration, toolpath interpolation, and
finally tool position control are performed independently for
each axis, on behalf of the respective axis controller.

Note that in this design geometry specifications of the
desired part remain the same on control units for all axes;
this is also the same part program that would be input in
a conventional (i.e., centralized) system. Additionally, we
exploit wireless communication between axis modules, as
is shown in Fig. 1. Due to the fact that only limited low-
rate communication is required, we utilize low-power IEEE
802.15.4 compatible wireless networks. Reliability of synchro-
nization over IEEE 802.15.4 can be guaranteed given that
payloads for sync beacons are very small, and the periodicity
of synchronization is low relative to periods of other important
tasks (such as position control).

However, moving from a centralized control of all axes
to decentralized axes control introduces the implementation
challenge of providing synchronous execution of the part pro-
gram on all axes controllers. To maintain machining accuracy,
tight timing synchronization constraints have to be imposed
on code execution between each of the axes’ controllers
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Fig. 3. Example showing trajectory deviation, from the commanded trajectory,
when the Y axis controller lags in execution to the X axis controller by a
constant delay.

as any synchronization error introduces additional accuracy
impairment. To illustrate this, consider Fig. 3 that presents a
simple 2D example of a linear segment. As shown in the figure,
significant deviation occurs in the obtained tool trajectory
compared to the commanded path if one of the axes lags after
the other by a (constant) delay.

A. Software Design Requirements for PnP CNC

To support PnP operation of the proposed architecture as a
network of axis controller modules, software design is based
on a task set constructed to modularize the software aspect
of the system. Identification of essential responsibilities of
a single axis controller results in the software architecture
depicted in Fig. 4(a).

Interpretation of a part program, acceleration/deceleration
control, and trajectory interpolation are performed within a
set of tasks with a common goal to prepare reference position
samples. Results of executions of one task are commuted to the
next stage through intermediary buffers. The interpolating task
feeds an I/O interface to forward reference position samples
from the buffer to the position controller, which is integrated
within the axis drive (e.g., servo drive). All axis drives are
isolated from the CNC controller and they automatically close
position, velocity and current loops with motors for their
respective axes.

Note that trajectory interpolation must execute at the same
rate at which the position control loop is closed. Thus, no
deadlines of this task may be missed since this would imply
staling of the reference value on the input of the position
controller, and hence potentially incurring machining inaccu-
racy or physical damage to the mechanical components. This
imposes hard real-time constraints on all tasks involved in
the operation of the NCK. In other words, system design has
to provide guarantees that the interpolator task would never
starve, i.e., its input buffer should be charged in a timely
manner relative to the discharge rate. Therefore, to ensure
timeliness of the NCK tasks’ executions and provide real-time
guarantees for axes control, these tasks are executed on top of
an RTOS.

Additionally, to ensure synchronous execution of the part
program on individual axis controllers in the decentralized
architecture, a synchronization mechanism needs to be im-
plemented on top of the RTOS. Implemented as a high-
priority periodical synchronization task, it provides periodical
clock offset compensation with respect to the global notion of
time present in the network, without effecting schedulability
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of other tasks. Finally, part program downloading, controller
configuration, and process supervision are realized through an
aperiodic task that communicates with a higher planning entity.
As the timing of this task’s execution is not as critical, we
consider it as a soft real-time task, with soft guarantees for
resource allocation.

Potential high complexity of the interpolation algorithm
(e.g., NURBS interpolation) imposes hard computational re-
quirements on the underlying hardware platform. Further
on, the low period of the interpolating task (of the order
of a millisecond corresponding to the position control loop
sampling time) incurs significant overhead in task switching.
Finally, the synchronization task introduces additional load on
the resources by utilizing the networking stack. To support
standard (and more complex) interpolation methods while
ensuring that tasks with hard real-time constraints are executed
in a timely manner, the task set of each axis controller can be
shared among a Higher-Level Controller (HLC) and a Lower-
Level Controller (LLC), as presented in Fig. 4(b).

Specifically, calculating reference position values can be
segregated into the HLC for each axis, which does not have
to run under real-time constraints, and need not communicate
with HLCs of other axes. This is possible when no feedback
from the position control exists back to the interpolator.
Here, the HLC computes the trajectory by implementing code
interpretation, acceleration/deceleration control and interpola-
tion. Under these conditions, the LLCs remain responsible of
maintaining inter-axis synchronization and timely adjusting
reference position input of the position controller for their
respective axis. Reference position values calculated by the
HLC are charged into a buffer between the HLC and the LLC
for each axis. The result of this load balancing is that the
resource demanding NCK-related tasks, synchronization task
and the task representing interface to the planning level are
now shared among a low-cost microcontroller based LLC, and
a HLC with timeliness requirements that can be relaxed due
to a higher computation power.

The LLC’s task set reduces to two computationally light
tasks, besides the synchronization task. One task obtains
reference position values from the higher-level controller for
its respective axis through a low latency local link. The other
task forwards these reference values to the position controller.
Guaranteeing synchrony in controlling all axes of the machine

remains embedded within the LLCs. To maintain features such
as fast part code downloading, easy configuration changes
and prompt process status supervision over the air, these
aperiodic tasks are also mapped into the HLC. For these
purposes, communication between HLCs to a planning level
gateway can be realized through a wireless protocol with a
higher bandwidth than 250 Kbit/s offered by IEEE 802.15.4
standard (e.g., IEEE 802.11). Nevertheless, a single hardware
platform can still act as an autonomous controller with no need
for an additional higher-level controller, as we described, if
simple interpolation algorithms are to be used, or if a more
computationally powerful platform with real-time guarantees
is to be the base of an axis controller.

IV. SYSTEM IMPLEMENTATION

In this section, we describe our design of the decentralized
motion control architecture. We start by describing specific
characteristics of the implemented task set on the utilized
platform, before focusing on axes synchronization and control
task implementation.

A. Task Set Specification

We implemented our axis controllers on ARM Cortex-M3
microcontroller unit (MCU) based development boards [16],
with the MCUs running at 96 MHz. These modules com-
municate over IEEE 802.15.4-compliant wireless transceivers
(Microchip MRF24J40MA 2.4 GHz [20]). On top of this
platform, we run Nano-RK RTOS [21]. Due to the limitations
of the hardware platform, we are unable to run the full software
application model on a single CPU as described in Fig. 4(a).
Our platform could support simple interpolation algorithms.
Furthermore, the task switching overhead is too large to allow
us to have the interpolating task execute with 1ms period,
which is a typical sampling interval for position controllers,
while ensuring that no deadlines are missed for all remaining
tasks. Similarly, although executed with a low rate, long
execution times of the synchronization task caused by lengthy
network packet parsing, could potentially affect schedulability,
and real-time execution guarantees, of other tasks.

These limitations lead us to the software architecture shown
in Fig. 4(b). For purposes of evaluating the decentralized CNC
architecture, our real-time application on the LLC comprises
of a low-priority synchronization task and a periodic hardware
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Fig. 5. In-band, one-way communication, master initiated synchronization
sequence enables sub-8us timing synchronization without additional hardware
or Start of Frame Delimiter interrupt feature of the radio (SFD shaded on the
beginning of every packet).

timer interrupt service routine of the highest priority. These
tasks are described in the rest of this section.

B. Clock Synchronization Task

To implement timing synchronization on our platform, we
faced several challenges. Our design strategy and focus on the
use of off-the-shelf platforms, limits us from using additional
hardware for out-of-band synchronization as in [22]. Further
limited by a reduced multiplexed interrupt line on the utilized
radio module, we were unable to implement any of the typical
approaches to synchronization in wireless sensor networks
(e.g., [23], [24], [25]). Since the radios we use cannot interrupt
the MCU on decoding of the Start of Frame Delimiter (SFD)
of the standard 802.15.4 frame, and have no timestamping
capability on the physical layer, we construct a very simple
alternate technique to synchronize the global clocks of our
controllers, avoiding any additional hardware. We show that
synchronization errors obtained with the use of our scheme
are comparable to the aforementioned approaches considering
factors such as the presence of additional hardware, access to
physical layers of communication protocols, and implementa-
tion complexity. More importantly for the application at hand,
synchronization errors that have been proven to be tolerable
using simulation in our specific application domain are also
well achievable by our synchronization algorithm.

Fig. 5 depicts the synchronization process initiated by one
node in the network, which we refer to as the master node.
We denote the global reference time (i.e., the master’s local
time) with capital letter 7', and the slave’s time with lowercase
letter ¢, both with appropriate indices. At time 7T, the master
node initiates the synchronization process by sending an empty
beacon. After initiating the transmission sequence in its radio,
it waits for an interrupt indicating that the last byte of the
packet has been sent. At the occurrence of this interrupt, the
master takes note of the current time T3. At t; = T} + A, the
last byte of this packet is decoded on the slave’s radio, which
the slave’s MCU is informed on via an interrupt. The slave
takes note of this event by capturing its local time ¢;.

Also, the master sends a second message, at time 75, that
includes the time when the last byte of the previous message
was sent. The last byte of the packet containing this timestamp
is in air at time 73. The slave node decodes the last byte of this
packet at t3 = T35+ A. Given that, on the employed platforms,
the distribution of link delays A between the occurrences of

Normalized
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Fig. 6. Distribution of timing synchronization errors between 1ms periodic
interrupt handler invocations between a master and a slave node over 200sec
(sample mean is —852.2ns, standard deviation is 1.1483us). Over 12hrs of
measurements, the synchronization error never exceeds £8us.

interrupts on the transmitting side and on the receiving side
has a measured mean of 37.54us and a very low standard
deviation of 73.96ns, the slave node can adjust its global time
by compensating for the offset calculated as 6 = 77 —t; — A.

In our experiments, we showed that this simple synchroniza-
tion scheme results in sub-8ys master-slave synchronization
error, which is in the worst-case half of the delay between pe-
riodical interrupt handler activations on controllers of different
axes.? Fig. 6 presents the distribution of the synchronization
errors for position control updates between the master and
a slave axes, measured on a 200s timespan. In addition, on
a 12-hour timespan, the observed synchronization error never
exceeded 8us. In Section V, we show that this synchronization
error satisfies machining accuracy requirements.

C. Control Task

For purposes of evaluating the decentralized CNC archi-
tecture, each axis controller stores a precomputed trajectory
obtained from the interpolation routine. Long execution times
of the synchronization task, extended by parsing of incoming
time synchronization packets, and high overhead in frequent
switching to and from a task with 1ms period may result
in violation of hard real-time execution constraints. Thus, we
implemented the control functionality of an axis controller on
a lower level. The periodical timer interrupt triggers a handler
every 1ms. Within the timer interrupt handler, a reference
position sample is forwarded from the top of the buffer with
reference position samples to the position controller. This low-
level implementation ensures that timeliness requirements are
met, which would not be the case if forwarding reference
position to the position controller remained a responsibility of
a task under the government of the RTOS. To give maximum
priority to the control task, the Nested Vectored Interrupt
Controller (NVIC) of the Cortex-M3 core is configured to
guarantee periodical activation that preempts execution in any
other context in favor of the reference position forwarding.

V. EVALUATION
Evaluation of the control system design on a real physical

machining process is often difficult for several reasons. Safety

3Note that, since we do not have a multi-hop network, the synchronization
delay does not increase with each hop in the network. Thus, the synchroniza-
tion error between any two ‘slave’ axes is less than 2 - 8us.
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conditions required during normal machining operations are
hard to guarantee in both stages of low-level controller design
and high-level trajectory features planning. Impacts of the
proposed decentralization on machining accuracy is easier
to estimate in simulation than on a physical object, since
the latter involves complex measurements with specialized
instrumentation. Thus, to evaluate system performance, we
first used simulation with all components implemented either
as simulation block diagrams in Simulink or as computation
code in Matlab. Secondly, we designed a Software-In-the-
Loop (SIL) testbed, at the point of the reference trajectory
input to the position controller, and we employed our physical
platforms, running software described in the previous section,
as axis controllers. This allowed for a closer insight on the
behavior of the system when real non-ideally synchronized
hardware is involved. The two stages of evaluation are ex-
plained in the following subsections.

A. Simulation of the Decentralized Axes Control

We implemented a model of a two axis system in simulation
and evaluated accuracy of a fully simulated system assuming
both ideal and non-ideal inter-axis synchronization. Specif-
ically, we designed position control and axis mechanics in
Simulink and the trajectory calculation algorithm in Matlab.
The toolpath calculation comprises the interpreter, accelera-
tion/deceleration controller and interpolator. We adopted the
DC servo position control loop model from [26] and extended
it to capture measurement noises. We replaced the proportional
velocity loop controller with a PI controller to enhance ma-
chining accuracy of the modeled servo system. In Simulink, we
run two independent instances of the position control model
to capture behavior of a two-axes machine. In this simplified
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Fig. 8. Magnified excerpt of the tool trajectory near the top corner of the tilted
square feature of the test part during simulation. Reference position tracking
is effectively reduced when inter-axis synchronization is not ideal, but most of
the inaccuracy is induced by non-ideal position control. (Axes scaled in Basic
Length Units of the modeled servo system and axes: 1BLU = 1.27um)

model, all mechanical properties of axes are abstracted through
static resistant torque.

The proposed decentralization adds temporal uncertainty in
appearance of reference position values at the output of each
axis controller, i.e., the input of the position controller. The
input of the position control is a time-discrete signal updated
every interpolation period. Despite the delay in the operation
of one axis in reference to the other being introduced at the
very input of the position controller, it is impractical and
incorrect to model it at that point under the synchronous
execution semantics of Simulink. We model the delay at the
analog position output of the position control loop, which
enables us to observe the behavior of the axes in simulation (as
a whole) when there exists a constant or variable time delay
due to synchronization error between the axes.

Reference trajectory is fed from the output of a simulation
of the interpreter, acceleration/deceleration controller, and in-
terpolator precoded in Matlab. Given a set of end points if
linear segments are in question, and additionally the trajectory
radius if a circular path is desired, our code implements
a simple look-ahead acceleration/deceleration controller and
reference-word interpolator using improved Tustin method for
circular segments.*

We evaluate our approach by simulating the machining
process of a standard test part from ISO 10791-7 [17], depicted
in Fig. 7. We estimate straightness and circularity errors by
fitting a regression curve (first order for linear segments) to
the segment which we want to analyze, and calculating the
distance between the farthest point of the obtained trajectory
of the tool and the respective regression curve. This procedure
provides us with the maximum single-sided tolerance. In a
simple and safe overapproximation, which does not effect our

4Chapters 3 and 4 of [18] discuss in detail interpolation and acceleration/de-
celeration control respectively.
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conclusions, this tolerance is doubled to capture inaccuracies
on both sides of the regression curve. Angularity, perpendicu-
larity and parallelism are evaluated by estimating how well the
obtained toolpath fits into tolerable limitations determined by
the slope of commanded linear features relative to the slope
of the datum defined by the standard. Concentricity is tested
by comparing the location of centers of regression curves
(second order) fitted to obtained trajectories with the center
of the datum defined by the standard. Positioning accuracy
for four holes along the corners of the test part is evaluated
by calculating the deviation in distance between their centers
obtained from the simulation of the toolpath, from the expected
distance from the datum (center of middle hole).

Fig. 8 shows a magnified excerpt of the toolpath trajectory
near the top corner of the tilted square feature of the test part.
Reference tracking capability of the servo system is effectively
reduced when inter-axis synchronization is not ideal. From the
figure, it can be concluded that most of the inaccuracy is a
result of non-ideal position control, rather than inter-axis sync
error. Results quantify this occurrence.

Table I provides some of the tolerances defined in ISO
10791-7, measured in our simulation. The case with perfect
inter-axis synchronization is compared to three simulations
with different values for a constant delay between the two
axes. It can be concluded that, under given conditions, standard
tolerances can be well satisfied with the synchronization
scheme described in Section IV. We thus expect that results
obtained within our SIL framework will only show slight
accuracy degradation compared to the ideal case of perfect
parallel execution of NCK tasks for two axes. We prove so in
the following subsection.

B. Evaluation Under SIL Framework

In the SIL simulation setup, we use two of our platform
modules as axis controllers in the simulation loop. We record
the moments of activation of the timer interrupt handler on

Ideal Additional impairment at:
inter-axis 100us 500us Ims
sync. SyNC. error | Sync. error | Sync. error
B daum 1.15636 | 0.00001 | 0.00001 | 0.00001
straightness [pm]
bottom
chamfer 1.09598 0.20398 1.01352 2.02547
straightness [pm]
bottom
chamfer 1.31744 0.01020 0.79963 1.90338
angularity [pm]
108 cyl. 412805 || 1.03771 | 5.02564 | 10.01034
circularity [um]
TABLE I

SOFT SIMULATION RESULTS. NOTICE THAT ADDITIONAL ACCURACY
IMPAIRMENT FOR SUB-1004s SYNCHRONIZATION ERRORS IS VERY
SMALL.

Ideal inter-axis Additional impairment
synchronization in SIL simulation
B datum 1.15636 0.00000
straightness [pm]
bottom chamfer
straightness [zm] 1.09598 0.08535
bottom chamfer
angularity [pm] 1.31744 0.06769
_ ©108 cyl. 4.12805 0.01901
circularity [pm]
TABLE II

SOFTWARE-IN-THE-LOOP SIMULATION RESULTS. ADDITIONAL
ACCURACY IMPAIRMENT IS VIRTUALLY NEGLIGIBLE GIVEN THE
SYNCHRONIZATION ERRORS OBTAINED IN HARDWARE PLATFORMS.

both axis modules using a Digital Storage Oscilloscope (DSO).
This enables us to precisely capture the jitter in the period
under which the reference position values appear on the output
of our axis controller for each axis. Our platform instances
are placed in the simulation loop by initializing the transport
delay blocks in Simulink with the exact synchronization er-
rors directly obtained from the DSO measurements. The SIL
evaluation framework is shown in Fig. 9.

Table II presents the same excerpt of measured tolerances
for the test part from ISO 10791-7 as Table I, but shows results
obtained from the SIL simulation. These results illustrate full
feasibility of decentralization of a CNC system governed by
previous discussions. Moreover, at the price of negligible
accuracy impairment, introducing a wireless synchronization
scheme reduces the physical interface of an axis controller to a
power supplying connection. Wireless communication among
axis controllers and towards a higher-level planning entity rises
the level of reconfigurability and greatly broadens the self-
configuration capabilities of a CNC system.

VI. DISCUSSION AND FUTURE WORK

In this paper, we have presented a step towards reconfig-
urable manufacturing through modularized and decentralized
CNC control. We have identified central issues with the
transformation from conventional, centralized to distributed
and decentralized execution of the Numerical Control Kernel.
We have proposed a decentralized system design that exploits
available system resources based on the real-time execution



of suitable Numerical Control Kernel tasks. We have analyzed
a real-time implementation of the architecture and presented
an embedded solution on which we tested the effects of this
transformation. Finally, we have shown decentralization to
be feasible when a sufficiently performing synchronization
technique is employed among the axis controllers.

The proposed design begins with a CNC controller that
accepts its inputs specified in ISO 6983 (i.e., G-codes). Nev-
ertheless, our results easily translate into newer machine tool
control languages such as STEP-NC. The toolpath control
level we targeted in our discussion is based on an architecture
that can well support machine-independent and portable spec-
ifications, and is extendable to accept and provide additional
information on the machining process such as on-machine
simulation, feedback from on-machine sensors, etc.

Additionally, we have presented a new synchronization
scheme for synchronizing global notions of time on embedded
platforms in low-power wireless networks. This has enabled
us to implement axis controllers with all widely available, oft-
the-shelf radio and MCU modules, of which the radio module
does not offer the Start of Frame Delimiter interrupt. This
timing synchronization scheme is applicable to a wide range
of applications outside the scope of this paper.

As a part of our future work, we intend to formalize
the transition from centralized execution of NCK tasks on a
single CNC controller, to parallel execution on axis controllers.
This transition has to formally specify semantics of parallel
execution that guarantees system output preservation after
decentralization, given that the input part program remains the
same. Furthermore, the formal semantics needs to capture the
effects of synchronization errors and support tradeoff analysis
between the desired machining accuracy and requirements for
axes synchronization. Finally, an avenue for future work is to
deploy our axis controllers in a real physical system of axes,
and evaluate its performance.
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