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Abstract—A digital microfluidic biochip (DMFB) is an attrac-
tive technology platform for automating laboratory procedures
in biochemistry. In recent years, DMFBs based on a micro-
electrode-dot-array (MEDA) architecture have been proposed.
MEDA biochips can provide advantages of better capability
of droplet manipulation and real-time sensing ability. However,
errors are likely to occur due to defects, chip degradation,
and the lack of precision inherent in biochemical experiments.
Therefore, an efficient error-recovery strategy is essential to
ensure the correctness of assays executed on MEDA biochips. By
exploiting MEDA-specific advances in droplet sensing, we present
a novel error-recovery technique to dynamically reconfigure
the biochip using real-time data provided by on-chip sensors.
Local recovery strategies based on probabilistic-timed-automata
are presented for various types of errors. An on-line synthesis
technique and a control flow are also proposed to connect local-
recovery procedures with global error recovery for the complete
bioassay. Moreover, an integer linear programming (ILP)-based
method is also proposed to select the optimal local-recovery time
for each operation. Laboratory experiments using a fabricated
MEDA chip are used to characterize the outcomes of key droplet
operations. The PRISM model checker and three benchmarks are
used for an extensive set of simulations. Our results highlight the
effectiveness of the proposed error-recovery strategy.

Index Terms—Micro-electrode-dot-array, digital microfluidics,
optimization, error recovery, on-line synthesis.

I. INTRODUCTION

OVER the past decade, microfluidic biochips, also referred
to as lab-on-a-chip, have been used for various biochem-

ical applications, such as high-throughput DNA sequencing,
point-of-care clinical diagnostics, and protein crystallization
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for drug discovery [1]. While early generations of microflu-
idic biochips used continuous fluid flow through permanently
etched microchannels, more recent biochips, referred to as
digital microfluidic biochips (DMFBs), manipulate liquids as
discrete droplets of nanoliter and picoliter volumes based on
the principle of electrowetting-on-dielectric (EWOD). Com-
pared with the conventional continuous-flow biochip, a DMF-
B offers the advantages of simple instrumentation, flexible
device geometry, reconfigurability and easy coupling with
other technologies. To achieve the full potential of scalability
and reconfigurability in digital microfluidics, a novel micro-
electrode-dot-array (MEDA) architecture [2]–[4] has been
proposed recently.

Unlike conventional digital microfluidics, where electrodes
of equal size are arranged in a regular pattern, the MEDA ar-
chitecture is based on the concept of a sea-of-micro-electrodes
with an array of identical basic microfluidic unit components
called microelectrode cells (MCs). Each MC consists of a
microelectrode and a control/sensing circuit. A high-voltage
shielding layer is inserted between the microelectrode and the
control/sensing circuit to ensure the correct operation of the
MC. The MEDA architecture allows microelectrodes to be
dynamically grouped to form a micro-component (e.g., mixer
or diluter) that can perform different microfluidic operations
on the chip. Prototypes of MEDA-based biochips have been
fabricated using TSMC 0.35 µm CMOS technology [2], and
these devices can use a power-supply voltage of only 3.3 V
for embedded control circuits [3].

However, as in the case of integrated circuits, continued
increase in the density and area of microfluidic biochips will
also result in more defects and reduce yield [5]. Fault models
can be used to represent the effect of physical defects at some
level of abstraction. These models can be used to capture
the effect of defects that result in incorrect behavior. Some
possible causes of physical defects are as follows.
• Dielectric breakdown: High voltage during actuation

causes dielectric breakdown, which can directly expose
the droplet to high voltage. In this case, droplet electrol-
ysis happens and the droplet cannot be controlled.

• Damage to the hydrophobic layer: The hydrophobic layer
can be damaged by chemical reaction or physical scratch.
A damaged hydrophobic layer cannot provide sufficient
electrowetting force when electrodes are actuated, and
then reduced force impedes droplet transportation.

• Short-circuited miroelectrodes: A short between two ad-
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jacent microelectrodes leads to a “larger” electrode. Once
a droplet resides on this larger electrode, it is not able to
create the desired variation of interfacial surface tension
along the droplet transportation path.

• Parasitic transistor leakage: Parasitic transistor leakage in
the control circuit can result in a degradation of the high
voltage level on the bottom microelectrode. Accordingly,
there is not enough voltage difference between the top and
the bottom electrode, which fails the droplet actuation.

In addition to defects and imperfections for fabricated
MEDA-based biochips, faults may also arise during bioassay
execution. For example, excessive actuation voltage may lead
to electrode breakdown and charge trapping [6], and DNA
fouling may lead to the malfunction of multiple electrodes in
the biochip [7]. Faults in biochips may eventually result in
errors (e.g., a splitting operation with unbalanced droplets),
which can adversely impact the correctness of the entire
experiment. However, many biomedical applications (e.g.,
clinical diagnostics) require high precision for each operation.
Therefore, efficient error-recovery strategies are required to
ensure robust fluidic operations and high confidence in the
outcome of biochemical experiments.

Several error-recovery strategies for digital microfluidic-
s have recently been proposed in [8]–[11]. However, due
to the inherent differences between traditional DMFBs and
MEDA, existing error-recovery solutions cannot exploit the
advantages specific to MEDA-based biochips. For example,
in conventional DMFBs, droplets need to be transported to
a nearby checkpoint for error detection. However, in MEDA-
based biochips, droplets can be detected anywhere on the chip
and the response time for sensing is only 10 ms [2]. Moreover,
previous strategies use a unified recovery procedure (e.g., roll-
back [10], [11]) for all types of errors; this approach can make
error recovery inefficient and result in longer recovery time for
specific types of errors. Furthermore, prior methods assume
that error recovery is always feasible and they neglect the
likehood that error-recovery procedures may also fail.

To overcome the above drawbacks, we propose a new
probabilistic-timed-automata (PTA)-based strategy for error
recovery in MEDA-based biochips. The proposed error-
recovery strategy aims to fully exploit the advanced sensing
techniques offered by MEDA. The key contributions of this
paper are listed as follows:

1) We propose a classification of the outcomes of operations
into three categories: no error, minor error, and major
error. Each outcome is treated in a different way in the
proposed error-recovery strategy.

2) We carry out laboratory experiments using a fabricated
MEDA biochip to estimate these outcome probabilities.

3) Instead of utilizing the same error-recovery strategy for
all types of errors (e.g., roll-back [10], [11]), we propose
different PTA-based error-recovery strategies for different
types of local errors. Discrete-time analysis and model
checking are also used to compute the probability of
success under constraints on the error-recovery time.

4) An on-line synthesis approach is proposed for MEDA
biochips. A control flow is also proposed to connect the

(a) 

(b) 

Fig. 1. (a) Illustration of a conventional DMFB [12]. (b) Illustration of the
MEDA architecture and microelectrode cell (µ-electrode cell).

local recovery procedures to global error recovery for the
complete bioassay. We also examine the influence of local
recovery procedures on the execution of the bioassay.

5) We propose an ILP-based method for determining the
local recovery time for each operation in the bioassay.
The method can effectively reduce the time cost with a
predefined probability of success for any given bioassay.

6) Simulation results for three benchmarks are derived us-
ing the PRISM model checker and compared with the
results from previous methods. Our results illustrate the
effectiveness of the proposed error-recovery strategy.

The remainder of the paper is organized as follows. Sec-
tion II presents background material on digital microfluidics
and the MEDA architecture. Section III presents the PTA-
based error-recovery strategy in detail. Section IV presents the
method to select the optimal time limit for local error recovery.
Section V describes the proposed method for global error
recovery. Section VI presents experimental results. Finally,
Section VII concludes the paper.

II. DIGITAL MICROFLUIDICS AND MEDA

A DMFB utilizes electrowetting-on-dielectric (EWOD) to
manipulate and move nanoliter or picoliter droplets con-
taining biological samples on a two-dimensional electrode
array. MEDA extends this basic architecture by adding more
flexibility, as described in Section I. A comparison between a
conventional DMFB and a MEDA-based biochip is presented
in Fig. 1. A typical MEDA-based biochip consists of two
plates: a top plate, which serves as a reference electrode, and
a bottom plate with patterned microelectrodes.

The size of the microelectrodes can be 10 times smaller
(e.g., 100 µm [13] in length) than conventional electrodes.
Each microelectrode cell (MC) consists of a microelectrode,
an activation circuit, and a sensing circuit. MEDA-based
DMFBs allow the dynamic grouping of microelectrodes to
form different shapes and fluidic modules.
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A dielectric layer and a hydrophobic layer are deposited
above the microelectrodes, and droplets are sandwiched be-
tween the two plates. Once the electrodes are actuated, the
EWOD force induces droplet motion. In this way, fluidic
operations (e.g., cutting and mixing) on droplets with different
sizes can be achieved on the chip.

Different with conventional DMFBs, MEDA biochips can
provide a real-time sensing mechanism to detect the property
(droplet-property sensing) and the location (droplet-location
sensing) of the droplet. Droplet sensing results are presented
in the sensing map. The sensing technique on MEDA biochips
can provide chip-users with detailed information about the
outcomes of on-chip operations. Therefore, any errors can
be detected in a real-time manner and the error-recovery
technique can be applied to correct these errors.

III. ERROR RECOVERY FOR LOCAL ERRORS

In this section, we first describe the errors that are being
targeted in this paper. Instead of regarding the detection
outcome for each operation as either “success” or “failure”, we
classify the outcome into three categories: “no error”, “minor
error” and “major error”. A probabilistic timed automata
(PTA)-based error recovery approach is proposed for each
type of error. PTA is a formalism for modelling systems
whose behaviour incorporates both probabilistic and real-time
characteristics [14]. PTAs are similar to finite-state machines
(FSMs) that use clocks to capture time, which can be used to
specify guard conditions and invariants as well as probabilistic
edge transitions. The probability of success (POS) for error
recovery is also considered. The outcome classification and
the PTA-based approach distinguish this work from previous
error-recovery strategies for conventional DMFBs.

A. Target Errors in MEDA

A DMFB is said to have an error if its operation does
not match its specified behavior. Errors are typically caused
by physical defects in DMFBs. Fault models can be used
to represent the effect of physical defects at some level of
abstraction. As described in [9], [15], [16], faults in DMFBs
can be classified as being either catastrophic or parametric.
Catastrophic faults lead to a complete malfunction of the
system, while parametric faults cause degradation in the sys-
tem performance. Physical defects that cause parametric faults
include geometrical parameter deviations, which includes de-
viation in insulator thickness, electrode length and the height
between parallel plates [15]. In this paper, we assume that
chips have been carefully tested using both functional test
methods [16] and structural test methods [15] before they are
used for bioassay execution. For example, we assume that
droplets will never be stuck during their transportation and
droplet dispensing can always be successfully achieved.

However, some manufacturing defects may be latent, and
they may produce errors during field operation. Moreover,
harsh operational environments and biological samples (e.g.,
protein) may result in particle contamination and residue on
surfaces due to adsorption, which may also result in unex-
pected errors [17]. These are referred to as on-line errors, and

(a) 

(b) 

Glucose droplet 

PBS droplet  

Mixed droplet 

Fig. 2. Illustration of (a) two droplets before mixing and the corresponding
droplet-property sensing map, and (b) the mixed droplet and the corresponding
droplet-property sensing map.

they occur after a series of fluidic operations [18]. Such on-
line errors can have serious consequences on bioassay results.
Therefore, to ensure robust execution of the target bioassay,
we propose efficient error-recovery approaches for these on-
line errors. More specifically, we target on-line errors related
to mixing, splitting, mixing, and dilution.

B. Outcome Classification of Fluidic Operations

Outcomes of error detection can either be “success” or
“failure” in a conventional DMFB [8], [11]. However, once
an error is detected, there is no way to determine the extent of
the error. For example, we can detect that a droplet splitting
operation produces two droplets with unbalanced volumes,
but we are not able to easily determine the extent of volume
imbalance.

However, MEDA provides a practical sensing technique for
droplets on the chip, referred to as real-time droplet size
sensing [19]. This sensing technique can provide us with
detailed information about the outcomes of error detection.
Accordingly, we are able to classify the outcomes of error de-
tection into multiple categories, and the most-efficient recovery
procedure can be utilized for each type of error.

1) Outcome Classification for Mixing: In addition to
droplet-location sensing, droplet-property sensing can also
be achieved on MEDA-based biochips [19]. Droplet-property
sensing can be used to distinguish between different kinds of
droplets based on their permittivities. Since there is a sensing
circuit under each microelectrode, droplet-property sensing
can be achieved anywhere on the chip in a real-time manner.

A software package can be used to map different permit-
tivity levels to various colors for ease of visualization [19].
An example is shown in Fig. 2(a): the glucose droplet is
visualized in the measurement window using blue color while
the phosphate-buffered saline (PBS) droplet is orange. Based
on the detected permittivity levels, we are able to determine
whether two droplets are uniformly mixed. If two droplets are
uniformly mixed, there will be only one detected permittivity
level. Accordingly, there is only one color, defined as final
color, in the visualization of the mixed droplet in the measure-
ment window. Otherwise, there are multiple colors associated
with the visualization of the mixed droplet; see Fig. 2(b). We
next quantify the error factor (Fmix) for mixing operation:
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Sensing map 

Droplet 1 Droplet 2 

Fig. 3. Illustration of two split droplets on a MEDA-based chip and the
corresponding droplet-sensing map.

Fmix =
NP

NT
(1)

where NP denotes the number of microelectrodes visualized
by the final color in the measurement window, and NT

represents the total number of microelectrodes occupied by
the droplet.

After we calculate Fmix, two user-defined thresholds, Tm1

and Tm2 (Tm1 < Tm2), can be used to distinguish between
different outcomes. The outcome of a mixing operation is
characterized as (i) major error if Fmix ≤ Tm1, (ii) minor
error if Tm1 < Fmix ≤ Tm2, or (iii) no error if Fmix > Tm2.

2) Outcome Classification for Splitting: The outcome clas-
sification for splitting is based on the size difference between
two split droplets. The computation of the error factor for the
splitting operation (Fsplit) is described by (2), where N1 is the
number of microelectrodes occupied by one split droplet, and
N2 is the number of microelectrodes occupied by the other
split droplet.

Fsplit = 1− |N1 −N2|
max{N1, N2}

(2)

An example is shown in Fig. 3. After splitting, Droplet
1 occupies 17 microelectrodes (N1 = 17) and Droplet 2
occupies 25 microelectrodes (N2 = 25). Therefore, the error
factor for the splitting operation in Fig. 3 is calculated to be
1− |17−25|

max{17,25} = 0.68.
Similar to mixing operations, two user-defined thresholds,

Ts1 and Ts2 (Ts1 < Ts2), can be used to distinguish between
different outcomes of splitting operations. The outcome of
a splitting operation is characterized as (i) major error if
Fsplit ≤ Ts1, (ii) minor error if Ts1 < Fsplit ≤ Ts2, or (iii)
no error if Fsplit > Ts2.

3) Outcome Classification for Dilution: A dilution oper-
ation can be regarded as a mixing operation followed by a
splitting operation. Therefore, the outcome classification for
any dilution operation is determined by the outcome classifica-
tions of the corresponding mixing and splitting operations. The
outcome of the dilution operation can be characterized as no
error if and only if outcomes of both the mixing and splitting
operations are characterized as no error. If the outcome of
either mixing or splitting is characterized as a major error, the
outcome of the dilution operation is characterized as a major
error. In other cases, the outcome of the dilution operation is
characterized as a minor error. The outcome classification for
dilution operations is shown in Table I.

TABLE I
OUTCOME CLASSIFICATION OF DILUTION OPERATIONS.

Outcome (Dilution) Outcome (Mixing) Outcome (Splitting)
No error No error No error

Minor error No error Minor error
Minor error Minor error No error
Minor error Minor error Minor error
Major error No error Major error
Major error Minor error Major error
Major error Major error No error
Major error Major error Minor error
Major error Major error Major error

C. Experimentally Characterized Outcome Probability

Note that Tm1, Tm2, Ts1, and Ts2 are user-defined pa-
rameters. Higher values of these parameters indicate higher
precision requirements on the bioassay outcomes.

The outcome probability of an operation is defined as the
probability that the outcome of the operation belongs to that
particular category. We estimated the outcome probabilities for
mixing and splitting using experiments on a fabricated MEDA-
based biochip. The micro-photo of the fabricated chip and the
experimental setup are shown in Fig. 4. The splitting operation
was performed using a 7×7 deionized (DI) water droplet. The
mixing operation was performed using a 10× 10 PBS droplet
and a 10× 10 glucose droplet.

We repeated experiments involving the mixing and splitting
operations 100 times. Each mixing (splitting) operation takes
two seconds (one second) to complete. Based on the classifi-
cation method described in Section III-B, the outcome of each
operation is placed in one of the three categories: no error,
minor error, and major error.

The outcome probability of mixing/splitting/dilution opera-
tions can be calculated based on the experimental results. In
this paper, the selection of threshold values (Tm1, Tm2, Ts1,
and Ts2) is based on the experimental results. Fig. 5 presents
the distribution of the error factor Fmix and Fsplit for mixing
and splitting operations. As shown in the figure, there are three
clusters corresponding to the three outcomes: major error,
minor error, and no error. In Fig. 5(a), 0.70 (0.90) can separate
cluster 1 and cluster 2 (cluster 2 and cluster 3). Accordingly,
we set 0.70 and 0.90 as Tm1 and Tm2, respectively. Similarly,
we set 0.50 and 0.80 as Ts1 and Ts2, respectively.

Experimentally characterized outcome probabilities are
shown in Table II. Note that the outcome probabilities in
Table II are obtained using a fabricated MEDA biochip. These
probabilities are used to provide some level of information.
Note that different MEDA biochips may result in different

(a) 
(b) 

Fig. 4. (a) Chip micro-photo and (b) experimental setup.



0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2729347, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

LI et al.: EFFICIENT AND ADAPTIVE ERROR RECOVERY IN A MICRO-ELECTRODE-DOT-ARRAY DIGITAL MICROFLUIDIC BIOCHIP 5

N
u

m
b

er
 o

f 
m

ix
in

g
 o

p
er

at
io

n
s 

N
u
m

b
er

 o
f 

sp
li

tt
in

g
 o

p
er

at
io

n
s 

Error factor for mixing operations (Fmix) 

(a) (b) 

Error factor for splitting operations (Fsplit) 

Major error 
Minor error 

No error 

Major error 
Minor error 

No error 

Fig. 5. Distribution of (a) Fmix and (b) Fsplit over the number of operations.
TABLE II

EXPERIMENTALLY CHARACTERIZED OUTCOME PROBABILITY.

Outcome Probability
Mixing Splitting Dilution

No error 0.82 0.68 0.56
Minor error 0.13 0.23 0.30
Major error 0.05 0.09 0.14

probability values. If accurate probabilities are required for a
MEDA biochip, corresponding experiments are needed to be
executed on the same chip.

We observed that the outcome probability of one operation
does not depend on the outcome of the previous operation.
Therefore, the outcome probabilities in Table II are static.
However, the outcome probabilities may be different for
different types of droplets. More studies are needed to explore
the relationship between the outcome probability and the type
of droplet. For the sake of simplicity and due to then lack
of significant experimental results to the contrary, we assume
here that the outcome probability is the same for all types
of droplets. According to Table II, if we detect a mixing
error, the probability that the error is a minor error or a
major error is calculated to be 0.13/(0.13 + 0.05) ≈ 0.77
or 0.05/(0.13 + 0.05) ≈ 0.23, respectively. Similarly, the
probability that the splitting error is a minor or a major error
is calculated to be 0.72 and 0.28, respectively.

D. Local Recovery Approaches

In this subsection, we first present a formal method to
check for the existence of backup droplets for any operation
in the given bioassay. We then present the proposed PTA-
based methods for local error recovery. The method for
backup-droplet checking is used in the PTA-based methods
for recovery procedures for mixing errors and dilution errors.

1) Backup-Droplet Checking Method: Here we first give
the definition of backup droplets. For a splitting or a dilution
operation, if only one of its output droplets is used as the input
for the immediate successors, the other (redundant) droplet
is a backup droplet for possible error recovery. Moreover,
dispensing operations can be scheduled for execution as early
as possible and some extra droplets can be stored on the
biochip as backup. Those unused backup droplets are sent back
to the waste reservoir when the bioassay is completed.

In a given sequencing graph, each node represents an
operation. We define the number of input droplets as the in-
degree IN(Oi) for operation Oi. Similarly, the out-degree
OUT (Oi) is defined as the number of output droplets. Both
IN(Oi) and OUT (Oi) can be calculated from the sequencing
graph. Note that droplets with different sizes can exist on
MEDA biochips, IN(Oi) and OUT (Oi) are counted in the

O1 

O11 O12 O13 

O2 

O21 O22 

O23 O24 

O3 

O31 O32 

O33 

(a) (b) (c) 

1 1 
1 1 1 

1 1 1 1 

1 

0 

IN(O1): 0 

OUT(O1): 3 

IN(O2): 2 

OUT(O2): 2 

IN(O3): 2 

OUT(O3): 1 

NOP 

Fig. 6. Examples of operations in different categories in (a) Category I,
(b) Category II, and (c) Category III. Operation NOP is a pseudo-source
operation. Red numbers represent the number of unit droplets from operations
to their successor operations.

number of unit droplets. Based on IN(Oi) and OUT (Oi),
operation Oi can be divided into three categories.

Category I: IN(Oi) is less than OUT (Oi). If Oi is in
Category I, the operation Oi is a dispensing operation, and
IN(Oi) is zero. Therefore, there are always backup droplets
for any operation in Category I. An example is shown in
Fig. 6(a). The dispensing operation O1 is with an in-degree of
zero and an out-degree of three. Dispensed droplets are used
for operations O11, O12, and O13.

Category II: IN(Oi) is equal to OUT (Oi). In this category,
all droplets generated from the operation Oi is used for sub-
sequent operations. Accordingly, there is no backup droplets
for the operation Oi. An example is shown in Fig. 6(b).
The dilution operation O2 is with an in-degree of two and
an out-degree of two. The two diluted droplets are used for
subsequent operations O22 and O23.

Category III: IN(Oi) is larger than OUT (Oi), which
means not all droplets generated from Oi will be used for
subsequent operations. An example is shown in Fig. 6(c).
Operation O3 is a dilution operation. However, only one
diluted droplet is used for operation O33. Therefore, the other
diluted droplet from O3 can be used as the backup droplet for
operation O3.

Operations in Category I and Category III are with backup
droplets. For an operation Ok, if the numbers of backup
droplets for Ok’s immediate predecessors are all nonzero, Ok

can be re-executed using backup droplets.
2) PTA-Based Methods for Local Recovery: We have de-

veloped PTA-based methods for local recovery in the case of
mixing, splitting, and dilution errors, respectively. The state-
transition diagram of the PTA for mixing errors (PTAm)
is shown in Fig. 7(a). There are two thresholds in PTAm:
the time threshold tth and the location threshold lth. Time
threshold tth limits the maximum time for local recovery and
location threshold lth limits the largest number of mixers that
can be used for error recovery. The parameters t, try, and
loc are used to record the time cost, the number of recovery
operations on one mixer, and the number of mixers that have
been used for local recovery, respectively.

In PTAm, we first carry out error detection and then clas-
sify the corresponding detection outcome; an error-recovery
approach is then selected based on the corresponding classi-
fication. For example, a mixing operation with a minor error
can be simply recovered by redoing the mixing on the current
mixer, while a mixing operation with a major error has to be
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Fig. 7. Illustration of PTAs for recovery from (a) mixing errors, and (b)
splitting errors. Orange (green) outline indicates that the corresponding state
is a start (end) state in the state transition diagram.

routed to a nearby mixer to redo the mixing operation.

When a mixing error is detected, PTAm enters the
Faulty Check state. Based on the classification results, the
next state can either be Minor Error or Major Error; the
corresponding transition probabilities are calculated using the
experimental results discussed in Section III-C and highlighted
in Fig. 7(a). If the PTAm moves to Minor Error, the next state
can be Reroute1, Mix, Call Backup, or Final Fail. In the state
of Reroute1, the droplet will be moved to a nearby available
mixer to redo the mixing. In the Mix state, the droplet will
be mixed one more time on the same mixer; In Call Back
state, PTAm will search for backup droplets to recover from
the mixing error (here we use the method in Section III-
D to find backup droplets); In Final Fail, because the time-
cost execeeds tth, the local recovery is deemed to have
failed. Similarly, if PTAm moves to the Major Error state,
the next state can be Reroute1, Call Backup, or Final Fail.

Mixing_PTA Splitting_PTA 

Final_Success 
Final_Fail 

try:=0 

loc:=0 

t:=0 

try:=0 

t:=0 
Detect_Split 

mix_s = 1 

mix_s = 0 

split_s = 0 

split_s = 1 

detect = 1 

detect = 0 

Fig. 8. Illustration of PTAd (PTA for error recovery of dilution errors).

Whenever PTAm transitions to Mix, the next state is always
Check. Based on the results of error detection, PTAm can
move to Minor Error, Major Error or Final Success. The
corresponding transition probabilities are also highlighted in
Fig. 7(a). The Final Success state indicates that local recovery
has been successful, while the Minor Error and Major Error
states will continue to lead to other states until PTAm moves
either to Final Success or Final Fail. In PTAm, the time
cost associated with the Mix state is 2 s; other states are not
associated with any time cost.

The state-transition diagram of the PTA for splitting errors
(PTAs) is shown in Fig. 7(b). This PTA is similar to PTAm:
time threshold tth is used to limit the time cost for error
recovery; parameters t and try are used to record the error-
recovery time and the number of operations on one splitter,
respectively. In contrast to PTAm, two states, Merge Minor
and Merge Major, are added to PTAs. If the outcome of a
splitting operation is classified as minor error (major error),
the split droplets will be merged for the next splitting step
in the Merge Minor (Merge Major) state. Another difference
between PTAs and PTAm is that PTAs does not have the
Call Backup state. This is because the new droplet for split-
ting can be simply generated by merging two split droplets,
therefore there is no need for a backup droplet. In PTAs, the
time cost associated with the Split state is 1 s; other states are
not associated with any time cost.

The PTA for dilution errors (PTAd) is shown in Fig. 8.
Since a dilution operation can be regarded as a mixing
operation followed by a splitting, here we divide the dilution
into two stages: mixing stage and splitting stage. Accordingly,
the proposed PTAd is a combination of PTAm and PTAs

(see Fig. 8). Parameters try, loc, and t in PTAd have the
same meaning as the corresponding parameters in PTAm and
PTAs. If an error is detected in the mixing stage, PTAd

enters the Mixing PTA state. The parameter mixs (splits)
is used to indicate whether recovery has been made from
the mixing (splitting) error. The parameter detect is used to
indicate whether a splitting error is detected. If mixs = 1,
PTAd moves to the Detect Split state; otherwise, PTAd

transitions to the Final Fail state. In the Detect Split state,
parameters try and t are reset to 0. If an error is detected in the
splitting stage, then PTAd moves to Splitting PTA; otherwise,
PTAd transitions to the Final Fail state. Note that PTAd will
finally transition to either the Final Fail or Final Success state
based on whether recovery can be successfully completed.

In the proposed PTAs for local recovery, i.e., PTAs,
PTAm, and PTAd, a transition to the next state depends
only on the current state; this is referred to as the Markov
property [20]. Therefore, we map these PTAs to discrete-time
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Markov chains (DTMCs). Here, we assume that the com-
putation time for droplet routing and droplet-transportation
time are negligible compared to microfluidic operation times
in local recovery procedures [21]. However, the transition
times from the initial state to the Final Success state in
PTAm, PTAs, or PTAd may be different. Therefore, we
divide the Final Success state into different sub-states, re-
ferred to as Final Success sub-states, in each of the above
DTMCs. For example, it can take 2, 4, 6, 8, or 10 s
to transition from the Faulty Check (initial state) to the
Final Success state in PTAm. We divide the Final Success
state into the following sub-states: (i) Final Success 2, (ii)
Final Success 4, (iii) Final Success 6, (iv) Final Success 8,
and (v) Final Success 10 in the DTMC corresponding to
PTAm. The utilization of Final Success sub-states eliminates
the need for cumbersome time calculations, hence we can
focus exclusively on the state-occupancy probability calcula-
tions.

We use the probabilistic model checker, PRISM version
4.0.3 [22], to verify and analyze the DTMCs. We first develop
a model for each DTMC using PRISM and check whether
local recovery will eventually enter either the Final Fail state
or the Final Success sub-states. We then apply discrete-time
simulation to calculate the probabilities that the DTMC can
eventually transition to different Final Success states. The
summation of these probabilities is the probability of success-
ful recovery.

IV. TIME-LIMIT SELECTION FOR LOCAL RECOVERY

PTAs for local recovery proposed in Section III-D are
constrained by time limits on local recovery (TLLRs) because
TLLRs can influence state transitions in the PTAs. Therefore,
different TLLRs will result in different probabilities of success
(POS) for local recoveries. The POSs for local recoveries can
directly affect the POS for the complete bioassay. The method
in [5] utilize a unified TLLR for all local recoveries, which
is not necessary. Therefore, here we consider the optimization
problem of how to determine the optimum TLLR for each
operation under a pre-specified constraint on the given POS
for the complete bioassay. We use integer linear programming
(ILP) to solve the problem.

A. ILP Formulation

To create an ILP model for this problem, we need to
define the set of variables and constraints. We first define
tpi as the type of operation Oi. Two values, Ps(tpi) and
Pf (tpi), are defined as the probability of success and the
probability of failure for Oi with the type tpi. Note that
Ps(tpi) and Pf (tpi) can be obtained from the experimental
results described in Section III-C. For example, if operation
O1 is a mixing operation, Ps(tp1) and Pf (tp1) are 0.82 and
0.18, respectively. We then define Pri(Ti) as the probability
that we can recover from the error for operation Oi using the
proposed local recovery technique when TLLR is Ti. Once
Ti is determined, Pri(Ti) can be calculated based on the
proposed PTAs for different local recoveries. The calculation is
presented in Section VI-A. Based on the above definitions, the

probability that the operation Oi can be successfully executed
can be calculated as follows.

Pi = Ps(tpi) + Pf (tpi) · Pri(Ti) (3)

In order to calculate Pri(Ti), we introduce a binary variable
that is defined as follows: dij = 1 if Ti = j s, and 0 otherwise.
For example, if T1 = 3 s for operation O1, d13 is 1. Otherwise,
d13 is 0. Variable Sij is the probability that the error on
operation Oi can be recovered if the TLLR is j. As discussed
in Section III-D, we can utilize the PRISM model checker to
calculate the probability Sij once the type of operation Oi

is determined. Those probabilities are presented in Table III.
Finally, Pri(Ti) can be calculated using (4), where TRmax is
the predefined upper bound on TLLR for all operations.

Pri(Ti) =

TRmax∑
j=1

(Sij · dij) (4)

Similarly, the TLLR Ti for operation Oi can be calculated
using (5).

Ti =

TRmax∑
j=1

(j · dij) (5)

Using above defined variables, the objective function of
the ILP model is shown in (6), where N is the number of
operations in the given bioassay.

Minimize
1

N

N∑
i=1

Ti (6)

As the POS of the complete bioassay should be no less than
a pre-specified value Pth, the constraint for the ILP model can
be expressed in (7).

N∏
i=1

Pi ≥ Pth (7)

It should be noted that (7) is a non-linear constraint. We

linearize this by introducing a new variable Qm =
m∏
i=1

Pi.

The constraint (7) can be transformed to (8).

POS = QN

QN = QN−1 · PN

QN−1 = QN−2 · PN−1

...

Q2 = Q1 · P2 = P1 · P2

(8)

Variable Qi in (8) can be calculated using (9).

Qi = Qi−1 · Pi

= Qi−1 ·

(
Ps(tpi) + Pf (tpi) ·

TRmax∑
j=1

(Sij · dij)

)

= Ps(tpi) ·Qi−1 + Pf (tpi) ·
TRmax∑
j=1

(Sij · dij ·Qi−1)

(9)
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Fig. 9. ILP model for the optimization of TLLR selection.

Note that the product of variables dij and Qi−1 is also
nonlinear. We define another variable Fij to represent the
product of these two variables, and the variable Fij can be
linearized using standard linearization techniques as shown in
Fig. 9. Variable Gij is used to represent the product of Sij

and Fij . Accordingly, (9) can be linearized as (10).

Qi = Ps(tpi) ·Qi−1 + Pf (tpi) ·
TRmax∑
j=1

Gij (10)

The complete ILP model is shown in Fig. 9.

B. Randomized Rounding

While the ILP model presented in Section IV-A can be used
to optimally solve TLLR selection problem, the ILP model
does not scale well for large bioassays. Since LP problems
can be solved optimally in polynomial time [23], we adopt
the method of LP-relaxation, i.e., the binary variables are
relaxed to real-valued variables. However, the fractional values
obtained for the dij variables are inadmissible in practice;
these variables must be mapped to either 0 or 1. Therefore,
here we use randomized rounding to regulate the LP solution.

The randomized rounding technique for ILP problems con-
sists of three steps. The first step is to solve the corresponding
LP problem, fixing all dij variables than are assigned to 1.
The second step is to randomly pick a variable from unfixed
dij variables and assign it to 1 with a probability equal to the
corresponding dij value. For example, the LP solution assigns
0.8 to a variable dij , we first generate a random number
between 0 and 1. If the generated number is no large than
0.8, dij is assigned to 1. Otherwise, dij is assigned to 0.
Note that during the randomized rounding, the constraints in
the ILP model should not be violated in order to ensure the
final solution is feasible. For example, if dij is supposed to be
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Fig. 10. Control flow for error recovery.

rounded to 1 using the randomized rounding, we first check
whether dij = 1 can result in any constraint violation. If so, dij
is forced to be assigned to 0. On the third step, the LP problem
is solved again and the randomized rounding is repeated until
all dij variables are set to either 0 or 1.

V. ERROR RECOVERY FOR THE COMPLETE BIOASSAY

In this section, we present the error recovery for the com-
plete bioassay. A control flow is first proposed to connect the
local recovery procedures with global error recovery for the
complete bioassay. The on-line synthesis technique for MEDA
biochips is then proposed.

A. Control Flow

The proposed control flow is shown in Fig. 10. When
a bioassay is specified for execution on the biochip, high-
level synthesis techniques are first utilized to derive the
results of operation scheduling, module placement and droplet
routing [21]. Then all operations are stored in the queue
Qt based on their assigned starting time in an ascending
order. Operations are executed based on their order in Qt.
Once an operation is found to have an error, the local error-
recovery approach is invoked. If the bioassay can recover
from that error, local error-recovery returns global control to
the controller and the next operation in Qt is executed. If
recovery cannot be made from the error, the controller checks
whether partial re-synthesis (PRS) [11] is available. If PRS
is available, new synthesis results are generated and Qt is
updated; otherwise, the error recovery fails and we need to
execute the bioassay from the beginning.

For the complete bioassay, the probability of successful
recovery and the completion time depend on the number
of detected errors and the local recovery approaches. Let
n denote the number of detected errors in the bioassay.
Suppose the probability of successful local recovery for error
i (i = 1, 2, . . . , n) is Pi. Under the assumption that local
error recoveries are mutually independent, the corresponding
probability of successful recovery (Pb) can be computed as

Pb =
n∏

i=1

Pi. An on-line synthesis technique is proposed in

Section V-B to dynamically generate synthesis results when
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errors are detected and to calculate the bioassay completion
time.

B. On-Line Synthesis

As illustrated in Fig. 10, the recovery graph is generated
and utilized to recover from the detected error when partial
recovery synthesis is available. The sequencing graph is also
updated to incorporate the generated recovery graph. On-line
synthesis technique is used to generate results of operation
scheduling, module placement, and droplet routing on-the-fly
for the updated sequencing graph with a minimum impact on
the time-to-response.

An off-line synthesis technique for MEDA biochips has
been proposed in [4]. However, the method in [4] takes long
computation time for large scale of sequencing graph, i.e., it
takes 341.69 s to generate the synthesis results for protein-
dilution bioassay [24]. In order to ensure efficient recon-
figuration, we propose a rapid on-line synthesis technique.
Moreover, compared with off-line synthesis, on-line synthesis
can optimize the bioassay completion time because it can
dynamically exploit the biochip configuration at the time of
error occurrence. Details of the proposed on-line synthesis
technique are described as follows.

1) Adaptive Scheduler: Since error-recovery response time
is critical, we use the greedy list-scheduling algorithm with
computational complexity O(n) [21], where n is the number
of operations in the sequencing graph.

Since droplet routing time is no longer negligible and it
needs to be considered on MEDA biochips [4], the sequencing
graph needs further update to reflect the influence of droplet
routing time. Here we first set the upper bound of the droplet
routing time, Tup, as the maximum droplet routing time in the
original synthesis results. We then insert droplet-routing op-
eration with execution time Tup between any two consecutive
operations.

The list scheduler is invoked when final sequencing graph is
generated. It receives the updated sequencing graph and gen-
erates operation scheduling results. If one droplet routing time
Tr violates the pre-specified upper bound Tup, the sequencing
graph is re-generated for unexecuted operations. At the same
time, Tup is updated to be Tr. Adaptive scheduler can then be
invoked again to generate the scheduling results.

2) Adaptive Placer: A forbidden set (FS)-based module
placement method is proposed in [4]. The method first iden-
tifies the FS for each new module Mi (a set of locations
where Mi cannot be placed) is always maintained). Then,
all the potential sites where Mi can be placed are obtained
and stored in the possible set (PS). A scanning approach is
finally used to examine each possible placed region, compute
the placement cost for each position (based on droplet routing
time), and finally select the optimal location. The placement
cost for a new module Mi is calculated using Cost(Mi) =

max
oj∈parent(oi)

{RTij(Mi,Mj)}, where RTij(Mi,Mj) is the

droplet routing time between modules Mi and Mj , parent(oi)
is the set of oi’s parent operations and Mj is the bound
fluidic module for oj . However, the scanning approach needs

1: Start: input start location S and end location E;
2: frontier = PriorityQueue()
3: frontier.put(S, 0)
4: came from = { }
5: came from[S] = None
6: while not frontier.empty( ) do
7: current = frontier.get( )
8: if current == T then
9: output droplet route

10: break
11: end if
12: for next in graph.neighbors(current) do
13: if next not in came from & not in obstacles then
14: priority = Manhattan(T , next)
15: frontier.put(next, priority)
16: came from[next] = current
17: end if
18: end for
19: end while
20: End: output derived droplet route.

Fig. 11. Pseudocode for the adaptive router.

to examine each possible location site, which consumes large
computation time.

The proposed adaptive placer utilizes the method in [4]
to identify all possible placed sites for the new module
Mi. In contrast to the scanning site-selection method, we
avoid the use of a scanning method to select the optimal
location for Mi. We formulate the routing cost from module
Mi to module Mj as ((xj − xi)2 + (yj − yi)2) × 1/Vij ,
where (xi, yi) and (xj , yj) are locations for Mi and Mj ,
respectively, and Vij is the droplet velocity, which can be
calculated using the velocity model proposed in [4]. Similarly,
the placement cost for a new module Mi is calculated using
n∑

i=1

((xn − xi)2 + (yn − yi)2)/Vin . The objective is to find

an optimal location such that the placement cost for Mi is
minimized.

Based on the placement cost function, the optimal x
coordinate (xoi) and y coordinate (yoi) for Mi will be
n∑

i=1

(xi × 1/vin )/
n∑

i=1

1/vin and
n∑

i=1

(yi × 1/vin )/
n∑

i=1

1/vin,

respectively. However, xoi and yoi may not always be integers,
and they need to be rounded to closest integers x,oi and y,oi. If
the rounded location is in the possible set of Mi, it is selected
as the final location; Otherwise, the closest location to the
rounded location in the possible set is selected. Using the
proposed site-selection method, the computation complexity
of the placer is reduced from O(nS) to O(n), where n and S
represent the number of operations and the size of the MEDA
biochip, respectively.

3) Adaptive Router: Droplet routing problem has been
proved be NP-hard [25]. Several heuristic droplet-routing algo-
rithms, including modified Lee algorithm [26], integer linear
programming (ILP)-based algorithm [27], and soukup-based
algorithm [28], have been proposed for conventional DMFBs.
An A∗-based algorithm is proposed for MEDA biochips [29].
However, all these algorithms take significant amount of time
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TABLE III
PROBABILITY OF SUCCESS FOR DIFFERENT LOCAL STRATEGIES∗ .

Local Recovery Probability of Success with Different Time Cost Constraint t
t = 1 s t = 2 s t = 3 s t = 4 s t = 5 s t = 6 s t = 7 s t = 8 s t = 9 s t = 10 s

Mixing (without backup droplets) N/A 0.820 0.820 0.968 0.968 0.994 0.994 0.997 0.997 0.998
Mixing (with backup droplets) N/A 0.820 0.820 0.968 0.968 0.994 0.994 0.998 0.998 0.999

Splitting 0.680 0.880 0.966 0.985 0.992 0.992 0.992 0.992 0.992 0.992
Dilution (without backup droplets) N/A N/A 0.557 0.721 0.792 0.851 0.934 0.952 0.960 0.978

Dilution (with backup droplets) N/A N/A 0.557 0.721 0.792 0.851 0.934 0.952 0.960 0.978

∗N/A denotes the fact that the local recovery cannot be completed with the corresponding time constraint.

to determine the shortest droplet route. Therefore, they are
not suitable for on-line synthesis. Instead, we use a greedy
best first search (BFS) algorithm for the adaptive router. The
pseudocode for the greedy BFS algorithm is shown in Fig. 11.
Queue frontier is a priority queue, in which elements are
sorted in ascending order of their priorities (line 2). The
priorities are calculated based on the Manhattan distance to
the target location T (line 14). The start location S is assigned
with a priority of 0 (line 3). Function “came from” record the
droplet route (lines 4-5). While queue frontier is not empty,
the first element current with the lowest priority in frontier
is selected (lines 6-7). If current is the target location T , the
droplet route is obtained and the process stops (lines 8-11).
Since diagonal droplet movement can be achieved on MEDA
biochips [4], [13], the neighbors of one location Li include
all locations vertically, horizontally, and diagonally adjacent
to Li. An example is shown in Fig. 11. The priorities of the
neighbor locations of current is calculated as the Manhattan
distance between locations current and T . The neighbors of
current are sorted and stored in frontier if they have not
been recorded and they are not in the obstacle region (lines
12-18). Note that the obstacle region is defined as the region
of executing fluidic modules.

The obtained droplet route needs to meet both (i) fluidic
constraint and (ii) timing constraint. The timing constraint is
introduced in Section V-B. Once the droplet routing time is
larger than the pre-specified upper bound Tup, the sequencing
graph is updated and the on-line synthesizer needs to regen-
erate the synthesis results. For multiple droplet routes that
may intersect or overlap with each other, fluidic constraint
rules is imposed to avoid undesirable behavior. Details of the
fluidic constraint for MEDA biochips is described in [30]. If
the adaptive router fails to route the droplet from the start
location to the end location, the adaptive placer is invoked to
regenerate the module-placement results to improve the droplet
routability.

Note that even though the greedy BFS method may not
obtain the exact shortest droplet route, the algorithm is very
fast and is suitable for on-line synthesis.

VI. EXPERIMENTAL RESULTS

We first examine the relationship between the probability
of success for error recovery and the error-recovery time for
each type of local error. The evaluation is carried out for
both scenarios—with the presence and absence of backup
droplets. We then present simulation results for three real-life
benchmarks to evaluate the proposed error-recovery strategy.

A. Results for Local Faults

Probability computation in PTAs can be carried using a
recursive procedure [31]; therefore, as discussed in Section
IV, we utilize the PRISM model checker to calculate the
probability of success (POS) for each type of local error.

Some types of samples, e.g., fibronectin, are known to
degrade within 10 s [32]. Therefore, the time threshold tth
is set to be 10, 5, and 10 s in the PTAs for mixing, splitting,
and dilution errors, respectively. The location threshold lth is
set to be 2 in both PTAs for mixing errors and dilution errors.
This is because if recovery cannot be made from the error
after using two mixers (diluters), the error-recovery time has
already exceeded the time threshold.

Lines 1-2 in Table III present the relationship between the
POS (Pmix) and the time cost (Tmix) for mixing errors. We
note that, as expected, the more the time spent on error recov-
ery, the higher is the value of Pmix. When Tmix is larger than
8 s, Pmix for the scenario of “with backup droplets” is larger
than the corresponding Pmix for the scenario of “without
backup droplets”. However, the difference is almost negligible;
thus the backup droplets do not significantly influence Pmix

for mixing errors.
The relationship between the POS (Psplit) and the time cost

(Tsplit) for splitting errors is shown in line 3 in Table III. As
explained in Section V, no backup droplet is utilized by the
PTA for splitting errors. Therefore, here we only consider the
scenario of “without backup droplet”. Note that Psplit also
increases with the increase in Tsplit.

Lines 4-5 in Table III present the relationship between the
POS (Pdilute) and the time cost Tdilute for dilution errors.
Similar to local recovery for mixing and splitting errors,
Pdilute increases with the increase in Tdilute. Based on these
simulation results, we conclude that Pdilute for the scenario of
“with backup droplet” is larger than the corresponding Pdilute

for the scenario “without backup droplet” when Tdilute is
larger than 15 s. However, since we have set tth to be 10
s for dilution errors, there is no difference between the values
of Pdilute in lines 4-5 in Table III.

B. Results for Bioassays

We next present simulation results for three real-life bench-
marks, namely PCR [33], in-vitro diagnostics [25], and protein
dilution [24], to evaluate the proposed method. All simulations
are carried out on an Intel Core i7 platform with a 2.67 GHz
CPU and 8 GB of RAM. The experimentally characterized
module library for MEDA is shown in Table IV. Without any
loss of generality, we first set the size of one electrode in
conventional DMFBs to be equal to a 4 × 4 microelectrode
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TABLE IV
EXPERIMENTALLY CHARACTERIZED MEDA MODULE LIBRARY FOR

SYNTHESIS.

Operation Resource Time
Dispensing Reservoir 3 s

Mixing 2× 2-array mixer 2 s
Diluting 2× 2-array diluter 3 s
Sensing sensing circuit 0.01 s

array in MEDA-based biochips; therefore, a 2 × 2 array in
Table IV actually represents an 8 × 8 microelectrode array.
We then set the chip size to be 10× 10.

The error-recovery capability of MEDA-based biochips can
be evaluated on the basis of the bioassay completion time and
the POS when errors are detected. Here we use Ppcr, Pinvitro,
and Pprotein to present the POS for bioassays of PCR, in-
vitro diagnostics, and protein dilution, respectively. Likewise,
Tpcr, Tinvitro, and Tprotein refer to the completion time for
bioassays of PCR, in-vitro diagnostics, and protein dilution,
respectively.

In our simulation, we randomly inject up to four errors into
each benchmark 30 times, and then calculate the corresponding
completion time and POS for different time limits on local
recovery (TLLR). Similar to tth in Section III-D, TLLR
is defined as the maximum time that is allowed for local
recovery. Here we utilize a unified value of TLLR for all local
errors. For example, if TLLR is set to 5 s, the time limits
for all types of errors are also 5 s. The comparison between
the unified TLLR selection and the unique TLLR selection
proposed in Section IV is presented in Section VI-C. Based
on the simulation results, the variance in the completion time
and the POS is negligible for all benchmarks; therefore, we
only present the mean values in Fig. 12 to Fig. 14. The CPU
time for the proposed on-line synthesis method ranges from
0.03 s to 0.18 s, which meets the requirement of real-time
computation and further demonstrates that the computation
time for on-line synthesis will not influence the completion
time for the bioassay.

As shown in Fig. 12-14, larger TLLR and a smaller number
of inserted errors result in higher POS for all three bioassays.
However, larger TLLR leads a significant increase in the
completion time. Therefore, there is a trade-off between the
POS and the completion time.

In order to compare the proposed method with prior works
[8] and [11], we randomly injected errors into the three
benchmarks 30 times and calculated the mean value of both the
POS and the completion time. For both methods, all operations
that did not have injected errors were assumed to complete
successfully with probability of one.

For the proposed method, when an error is detected, the
corresponding local recovery procedure is invoked. If local
recovery fails, no additional recovery approaches are utilized.
For prior methods for comparison, when an error is detected,
we must repeat all necessary operations since there is no
specific local recovery procedure. We used the same proba-
bilities that were presented in Section III for the computation.
The results of this comparison are presented in Fig. 15. As
the number of errors increases, the POS of the proposed

(a) (b) 

Probability of Success Completion Time (s) 

Fig. 12. Illustration of (a) the probability of success and (b) the completion
time as the TLLR and the number of inserted errors are varied for the PCR
benchmark.

(a) (b) 

Probability of Success Completion Time (s) 

Fig. 13. Illustration of (a) the probability of success and (b) the completion
time as the TLLR and the number of inserted errors are varied for the in-vitro
diagnostic benchmark.

(a) (b) 

Probability of Success Completion Time (s) 

Fig. 14. Illustration of (a) the probability of success and (b) the completion
time as the TLLR and the number of inserted errors are varied for the protein
dilution benchmark.

method falls slowly while the POS for [8] falls rapidly for all
benchmarks. Moreover, the proposed method also takes less
completion time for most cases compared to [8].

C. Results for TLLR Selection

We finally compare the simulation results between the
unified TLLR selection method (TLLR values are the same
for all operations) and the TLLR selection method proposed
in Section IV (TLLR values can be different for different
operations). The comparison results for PCR benchmark, in-
vitro diagnostic benchmark, and protein dilution benchmark
are presented in Table V, Table VI, and Table VII, respectively.

In these three tables, ILP and UNI represent the ILP-
based TLLR selection method and the unified TLLR selection
method, respectively. Parameter Pth is the threshold POS,
and parameter N represents the number of operations in
the bioassay. Metrics include the minimum value, maximum
value, and average value of TLLRs for all operations in
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Fig. 15. Comparison between the proposed method with previous methods [8] and [11] on (a) the POS for PCR benchmark, (b) the POS for in-vitro
diagnostic benchmark, (c) the POS for protein dilution benchmark, (d) the completion time for PCR benchmark, (e) the completion time for in-vitro diagnostic
benchmark and (f) the completion time protein dilution benchmark.

TABLE V
COMPARISON BETWEEN THE ILP-BASED AND THE UNIFIED TLLR SELECTION METHOD FOR PCR BENCHMARK.

Parameters Pth = 0.95N Pth = 0.96N Pth = 0.97N Pth = 0.98N Pth = 0.99N

ILP UNI ILP UNI ILP UNI ILP UNI ILP UNI
Minimum value 2.00 s 2.00 s 2.00 s 2.00 s 2.00 s 4.00 s 2.00 s 4.00 s 2.00 s 4.00 s
Maximum value 2.00 s 2.00 s 2.00 s 2.00 s 4.00 s 4.00 s 4.00 s 4.00 s 4.00 s 4.00 s
Average value 2.00 s 2.00 s 2.00 s 2.00 s 2.29 s 4.00 s 3.14 s 4.00 s 3.71 s 4.00 s

TABLE VI
COMPARISON BETWEEN THE ILP-BASED AND THE UNIFIED TLLR SELECTION METHOD FOR IN-VITRO DIAGNOSTIC BENCHMARK.

Parameters Pth = 0.95N Pth = 0.96N Pth = 0.97N Pth = 0.98N Pth = 0.99N

ILP UNI ILP UNI ILP UNI ILP UNI ILP UNI
Minimum value 2.00 s 4.00 s 2.00 s 5.00 s 2.00 s 6.00 s 2.00 s 7.00 s 4.00 s 8.00 s
Maximum value 7.00 s 4.00 s 7.00 s 5.00 s 8.00 s 6.00 s 7.00 s 7.00 s 10.00 s 8.00 s
Average value 3.11 s 4.00 s 3.44 s 5.00 s 3.89 s 6.00 s 4.55 s 7.00 s 5.56 s 8.00 s

TABLE VII
COMPARISON BETWEEN THE ILP-BASED AND THE UNIFIED TLLR SELECTION METHOD FOR PROTEIN DILUTION BENCHMARK.

Parameters Pth = 0.95N Pth = 0.96N Pth = 0.97N Pth = 0.98N Pth = 0.99N

ILP UNI ILP UNI ILP UNI ILP UNI ILP UNI
Minimum value 2.00 s 7.00 s 2.00 s 7.00 s 2.00 s 7.00 s 2.00 s 8.00 s 2.00 s 10.00 s
Maximum value 7.00 s 7.00 s 7.00 s 7.00 s 7.00 s 7.00 s 8.00 s 8.00 s 10.00 s 10.00 s
Average value 5.63 s 7.00 s 5.89 s 7.00 s 6.19 s 7.00 s 7.19 s 8.00 s 8.93 s 10.00 s

the corresponding benchmark. Based on our experiments, we
found that the threshold POS has limited influence on the CPU
time for both ILP and UNI methods. For UNI, the CPU time
is ∼0 s for all three benchmarks. For ILP, the CPU time for
PCR, in-vitro diagnostic, and protein dilution benchmark is 56
s, 492 s, and 6215 s, respectively.

As shown in Table V to Table VII, the minimum value,
maximum value, and average value of TLLRs are always the
same for the unified TLLR selection method. Compared with
the unified TLLR selection method, the proposed ILP-based
method results the difference between the minimum value,
maximum value, and average value of TLLRs. As shown in
the tables, the ILP method can effectively reduce the average
value of TLLRs, which helps to reduce the time spent on error
recovery. The saved time on error recovery can also help to
reduce the completion time for the bioassay, which helps to
improve the efficiency. For small benchmarks, UNI and ILP
method are similar to each other. The ILP method significant
outperforms UNI method for large bioassays.

VII. CONCLUSION

We have presented the first error-recovery strategy for
MEDA biochips. We first described a classification of the
outcomes of operations into different categories. Laboratory
experiments using a fabricated MEDA biochip were used to
estimate outcome probabilities for various operations. We then
presented different probabilistic-timed-automata (PTA)-based
error-recovery strategies for various types of local errors. We
have also proposed an optimal time-limit selection method
for local error recovery. An on-line synthesis technique and
a control flow were proposed to connect the local recovery
procedures with global error recovery for the complete bioas-
say. Simulation results for three benchmarks and comparison
with prior methods highlight the effectiveness of the proposed
error-recovery strategy.
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