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Abstract— We study the problem of mapping discrete-time
linear controllers into potentially higher order linear controllers
with predefined structural constraints. Our work has been mo-
tivated by the Wireless Control Network (WCN) architecture,
where the network itself behaves as a distributed, structured dy-
namical compensator. We make connections to model reduction
theory to derive a method for the controller embedding based on
minimization of the H1-norm of the error system. This allows
us to frame the problem as synthesis of optimal structured
linear controllers, which enables the utilization of design-time
iterative procedures for systems’ approximation. Finally, we
illustrate the use of the mapping procedure by embedding PID
controllers into the WCN substrate, and show how to reduce
the computation overhead of the approximation procedure.

I. INTRODUCTION

In this paper, we address the problem of embedding
discrete-time linear controllers into structured computational
substrate – i.e., potentially higher order linear controllers
with structural constraints. This work has been motivated by
a recently introduced distributed control scheme from [1].
Unlike traditional networked control schemes that use the
standard network architecture “sensor ! channel ! con-
troller/estimator ! channel ! actuator”, the Wireless Con-
trol Network (WCN) employs a fully distributed control
scheme where the entire network itself acts as a controller.

Each node in a WCN behaves as a dynamical controller
instead of routing information to and from the controller; it
maintains a state, and at each time-step the state value is
updated to be a linear combination of the node’s previous
state and the states of the neighboring nodes and sensors.
As shown in [1], this scheme causes the entire network to
behave as a structured linear compensator, with sparsity
constraints imposed by the underlaying network topology.
Besides introducing a very small overhead, making it suitable
for implementation on resource constrained wireless nodes,
the proposed scheme has several additional benefits (see
Section II). However, to accelerate proliferation of this tech-
nology, it is necessary to provide a method to map existing
controllers, like PID controller or the ones developed using
the standard networked control system techniques (e.g., [2],
[3], [4]), into the WCN computational substrate.

The exact realization of linear controllers using a system
of networked, spatially interconnected systems has drawn a
lot of attention in the past decade (e.g., [5], [6], [7], [8]).
However, the main focus has been on specific networked
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topologies (i.e., structural constraints) or topological condi-
tions for which the controller can be implemented on the
provided structured computational substrate. In this work,
we consider the general case of structural constraints, which
usually means that it is not possible to exactly match the
initial and derived controllers. Consequently, instead of the
exact mapping, we focus on the approximation of linear sys-
tems with potentially higher order, structurally constrained
systems. This problem effectively presents a dual of the
standard model reduction problem – approximating a high-
order system by a lower-order one (according to certain
criteria). Thus, similarly to [9], we employ model reduction
techniques to specify an error system using the H1-norm.
Note that the H1-norm of the difference of the two systems
has been a widely used measure of the model reduction
error, receiving considerable attention in the literature (e.g.,
see survey [10]). Grigoriadis derived necessary and sufficient
conditions for the existence of a solution to the H1 model
reduction problems [11].

The specified error system allows for the problem formu-
lation as synthesis of an optimal structured linear controller
(SLC). The difference is that our structured controller (e.g.,
the WCN) has some freedom in the system dimension to
compensate for the structural constraints – i.e., to reduce
the approximation error we can increase the sizes of states
maintained by some nodes in the network. The SLC design
problem was addressed in [12], [13], [14], where iterative
procedures were used to solve the corresponding optimiza-
tion problems formulated using Linear Matrix Inequalities
(LMIs). We apply these algorithms to obtain the error system
with the local minimal H1 norm. Furthermore, to reduce
the approximation error, we provide a computationally more
efficient method to expand the derived structured controller
by increasing its size (while maintaining the structure).

This paper is organized as follows. In Section II, we
present an overview of the WCN. In Section III, we formulate
the structural mapping problem as an H1-based optimization
problem, before we present (in Section IV) an iterative
method that can be used to solve it. Section V illustrates the
mapping of PID controllers into the WCN and provides an
approach to reduce the computation overhead of the mapping
procedure. Finally, Section VI provides concluding remarks.

1) Notation: Consider a standard linear time-invariant
(LTI) system ⌃ = (A,B,C,D)

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k],
(1)

with A 2 Rn⇥n, B 2 Rn⇥m, C 2 Rp⇥n and D 2 Rp⇥m.
We denote the structural constraints of the system by



 ⌃ =  A ⇥  B ⇥  C ⇥  D, (2)

where  A, B, C, D specify the constraints on the ma-
trices A,B,C and D, respectively. For example, we say
that A 2  A ✓ Rn⇥n satisfies the structural constraints
when [A]

i,j

= 0 if, for any k, the value of x
j

[k] does not
affect x

i

[k+1]. Consequently, other matrix elements are free
parameters.

II. MOTIVATION - WIRELESS CONTROL NETWORKS

We consider the setup presented in Figure 1, where an LTI
plant is to be controlled by a multi-hop wireless network.
The network is described by a graph G{V , E} where V =
{v1, . . . , vN} denotes the set of nodes, while E is the edge
set. To model the WCN, let z

i

[k] denote node v
i

’s state at
time step k. The linear update procedure can be described as

z
i

[k+1] = w
ii

z
i

[k]+
X

vj2Nvi

w
ij

z
j

[k]+
X

sj2Nvi

h
ij

y
j

[k], (3)

where N
vi denotes the neighborhood of the node v

i

– i.e.,
the set of nodes and sensors whose transmissions can be
received by v

i

.
Furthermore, to control the plant, each control input u

i

[k]
is derived as a linear combination of the states from the nodes
in the neighborhood N

ai of the actuator a
i

(that controls the
input):

u
i

[k] =
X

j2Nai

g
ij

z
j

[k]. (4)

Therefore, the behavior of the WCN is specified by the link
weights w

ij

, h
ij

and g
ij

, which define the linear combina-
tions computed by the nodes and actuators in the network. If
the states of all nodes at time step k are aggregated into the
state vector z[k] =

⇥
z1[k] z2[k] ... zN [k]

⇤
T , the behavior of

the entire network can be modeled as:

z[k + 1] = Wz[k] +Hy[k] ,

u[k] = Gz[k]
(5)

for all k 2 N. It is important to note here that in the above
model W 2 RN⇥N ,H 2 RN⇥p,G 2 Rm⇥N , and for all
i 2 {1, . . . , N}, w

ij

= 0 if v
j

/2 N
vi [ {v

i

}, h
ij

= 0 if
s
j

/2 N
vi , and g

ij

= 0 if v
j

/2 N
ai . Thus, the matrices W,H

and G are structured, with sparsity constraints imposed by
the underlying network topology. Throughout the rest of the
paper, we will also use  as in (2) to denote the set of all
tuples (W,H,G) 2 RN⇥N⇥RN⇥p⇥Rm⇥N that satisfy the
aforementioned sparsity constraints. Consequently, the WCN
scheme causes the network to act as a structured dynamical
compensator.

The WCN scheme has several benefits; it imposes low
computation and communication overhead to the nodes in
the network, allows easy scheduling of wireless transmis-
sions, and enables compositional design (that effectively
decouples the design and analysis of several control loops
implemented on the same network). In [1], [15], WCN
synthesis procedures were proposed, which ensure system
stability/optimality for a provided network topology. On the
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Fig. 1: A multi-hop Wireless Control Network, where the
network itself acts as a distributed controller [15].

other hand, in [16] a set of topological conditions for the
existence of a stabilizing WCN configuration was derived.1

In the above model of the WCN we assumed a scenario
where each node maintains a scalar state. As shown in [1],
the more general case, where each node can maintain a vector
state with possibly different dimensions, can also be covered
with the model from (5). In this case, z

i

2 Rni and the size

of the network’s state vector is Z =
NP
i=1

n
i

. In addition, for

every pair of nodes v
i

, v
j

, the weight w
ij

2 Rni⇥nj , while
sparsity pattern  describes the constraints on the weight
matrices (for example, w

ij

= 0 2 Rni⇥nj if v
j

/2 N
vi [

{v
i

}).

A. Mapping Discrete-Time Controllers into the WCN

The fact that the WCN acts as a structured dynamical
controller allows for the use of the network as computational
resource. Compositionality of the WCN makes it suitable
for control of large-scale systems, such as industrial process
control and building automation systems. Thus, a procedure
to map existing controllers into this computational substrate
would enable a direct utilization of the well-known con-
trollers already deployed in practice. In addition, it would
allow for the use of WCNs in hierarchical control systems,
where upper levels of control implement optimization based
procedures (e.g., Model Predictive Control) to determine set
points for the low level controllers that, in our case, would be
implemented using the WCN. This way, the implementation
and compositional benefits of the WCN would be married
with the performance benefits of pre-designed centralized
controllers (e.g., the use of the existing controller tuning
algorithms for WCN configurations).

Although the WCN acts as a linear dynamical con-
troller (5), the challenge is that the sparsity constraints
imposed by the network topology prevent the controller from
being mapped directly to the WCN. However, this constraint
is counteracted by the fact that the state vector of the WCN
is of the size Z, which may be significantly larger than the
size of the state vector for the original controller. We will
leverage these additional degrees of freedom to perform the
mapping (see Section V). As shown in the next section, to
find a configuration (i.e., matrices W,G and H) that causes

1In this work, the link weights wij , hij and gij for all nodes in the
network are referred to as a WCN configuration.



the WCN to mimic the behavior of a given controller, we
will first define appropriate metrics to measure ‘closeness’.
In this work, our goal is to minimize the widely applied H1
metric, and map the problem into optimization of structured
linear controllers [12].

III. STRUCTURED LINEAR CONTROLLER REALIZATION

In this section we present an approach to formulate our
design problem as an optimization problem. We focus on
control of discrete-time LTI plants of the form:

x[k + 1] = Ax[k] +Bu[k] +B
d

u
d

[k]

y[k] = Cx[k],
(6)

where u[k] 2 Rm denotes plant inputs (provided by actu-
ators a1, ..., am), u

d

[k] 2 Rm specifies disturbance inputs,
y[k] 2 Rp denotes measurements of the plant state vector
x 2 Rn (provided by the sensors s1, ..., sp), while matrices
A,B,Bd,C have appropriate dimensions.

In this work, we investigate the problem of approximating
any discrete LTI controller ⌃1 = (A1,B1,C1,D1), with a
structured linear controller ⌃2 = (A2,B2,C2,D2) that may
have a higher order. Note that for the structured linear con-
troller we assume that the new controller has to satisfy struc-
tural constraints  2 imposed by the computational substrate.
With ⌃1

c

,⌃2
c

we specify the closed-loop systems, where the
plant is controlled by the controller ⌃1 and ⌃2, respectively.
By denoting its state as xi

c

[k] =
⇥
x[k]T x

i

[k]T
⇤
T , the

closed loop system ⌃i

c

(i = 1, 2) can be described as:

xi

c

[k + 1] =


A+BD

i

C BC
i

B
i

C A
i

�
xi

c

[k] +


Bd

0

�
ud[k]

,Ai

c

xi

c

[k] +Bi

c

ud[k],

yi

c

[k] =
⇥
C 0

⇤
xi

c

[k] , Ci

c

xi

c

[k]

Now, we can formulate the problem as synthesis of a con-
troller (A2,B2,C2,D2) 2  2 that minimizes the difference
between the performances of the closed-loop systems ⌃1

c

and ⌃2
c

(i.e., when the plant is controlled by the initial or
the structured controller). To evaluate the error or distance
between the two closed-loop systems we employ the standard
H1-norm, which is widely used in model reduction. This
allows us to formulate the mapping problem as minimization
of the approximation error between two systems. Exploiting
the similarities between our problem and the model reduction
problem, we start by using the similar approach as in [9] to
construct the error system ⌃

ce

. This system is described by

the state x
ce

=
h
x1
c

T

x2
c

T

i
T

and transfer function H
ce

(z) =

H1
c

(z) � H2
c

(z), where H1
c

(z) and H2
c

(z) are the transfer
functions of ⌃1

c

and ⌃2
c

, respectively. The error system ⌃
ce

evolves as:

x
ce

[k + 1] = A
ce

x
ce

[k] +B
ce

ud[k]

y
ce

[k] = C
ce

x
ce

[k],
(7)

where

Ace =


A1

c 0
0 A2

c

�
,Bce =


B1

c
B2

c

�
,Cce =

⇥
C1

c �C2
c

⇤
. (8)

The H1 norm of a stable discrete time system is defined
as k⌃cekH1 = sup �̄(Hce(ej!)), where �̄ is the maximum
singular value of the matrix Hce(ej!). Note that the error
system parameters described as ⌃

ce

= (A
ce

,B
ce

,C
ce

,0)
present a linear mapping of the structured controller param-
eters ⌃2 = (A2,B2,C2,D2).

Consequently, the problem of deriving feasible controller
variables (A2, B2, C2, D2) 2  2, while minimizing the
H1 norm of the error system can be specified as the
following optimization problem:

minimize �

subject to k⌃cekH1 6 �,

(A2, B2, C2, D2) 2  2

(9)

IV. APPROXIMATION ALGORITHMS

Since we have been able to formulate the problem of
mapping discrete-time controllers into structured substrates
as an optimization problem, in this section we continue by
transforming the constraint for H1 norm of the error system
to an LMI. We start by introducing the following result:

Lemma 1 ([17]): For asymptotically stable system (8),
the following statements are equivalent:

(i) There exist matrices X ,⌥ and (A2, B2, C2, D2) 2
 2 such that

X �A
ce

XAT

ce

+B
ce

BT

ce

⌥ �C
ce

XCT

ce

(10)

(ii) There exist matrices X ,⌥,Z and
(A2, B2, C2, D2) 2  2 such that


X Z
Z ⌥

�
�


A

ce

B
ce

C
ce

0

� 
X 0
0 I

� 
A

ce

B
ce

C
ce

0

�
T

(11)

From Lemma 1, we construct the bound of the ’perfor-
mance’ of the error system.

Theorem 1 ([17]): Suppose that ⌥ � �I, where � � 0,
then k⌃cekH1 6 p

� if and only if there exist X � 0,
⌥ � 0, Z = 0 such that (11) holds, which is equivalent to:

R(X ,0,⌥,X�1) =

2

664

X 0 Ace Bce

0 ⌥ Cce 0
AT

ce CT
ce X�1 0

BT
ce 0 0 I

3

775 � 0 (12)

Therefore, our objective is to derive (A2, B2, C2, D2) 2
 2, along with feasible X , ⌥ that minimize the scalar
variable � under the constraints specified in Theorem 1.

A. Linearization Algorithm

From Theorem 1, the obtained optimization problem has
only one non-convex term (X�1), which is used to specify
the constraint in (12). To be able to solve the problem, we
approximate the term with a suitable convex expression. One
convexifying, and more specifically, a linearization method
‘around’ any matrix X

k

(described in [14], [12]) is:

LIN(X�1,Xk) = Xk
�1 �Xk

�1(X�Xk)Xk
�1. (13)



This linearization provides a sufficient (and conservative)
condition for the optimal solution, while enabling us to
specify the constraint (12) as an LMI. Furthermore, we
can now extend the approach from [12] to define iterative
algorithms for embedding linear controllers into structured
substrates.

B. Initialization and Optimal Algorithms

According to (8), the set of eigenvalues of A
ce

is the
union of eigenvalues of A1

c

and A2
c

. Thus, ⌃
ce

is stable
if and only both A1

c

and A2
c

are stable. We assume that
the initial controller guarantees stability of the closed-loop
system ⌃1

c

, and that there exists a stable configuration for
the imposed structural constraints.2 Therefore, there exist
feasible X ,⌥, and (A2, B2, C2, D2) 2  2, such thatp
� = k⌃ckH1 is the optimal solution (i.e., cost) of the

problem (9).
To solve the optimization problem we define the fol-

lowing iterative algorithms (Algorithm 1 and 2). Since the
linearization LIN(X�1, Xk) provides a sufficient problem
constraint, the iterative optimization procedure specified in
Algorithm 1 may not work with a randomly generated initial
point Xk (i.e., for k = 0). Therefore, to obtain a feasible
initial point for Algorithm 1, we replace X�1 in (12) with
a new variable (Y), and relax the constraint first. This
relaxation results in the initialization Algorithm 2 that starts
from a random selected matrix X0 (i.e., X0 = I + RTR,
where R is a random matrix with appropriate dimensions).

Algorithm 1 Mapping linear controllers into structured
substrate
1) Set ✏ > 0, k

stop

> 0, and k = 0.
2) Solve the following convex optimization problem.
minimize �

subject to R(X ,0,⌥, LIN(X�1, X
k

) � 0,

X � 0,⌥ � 0,⌥ � �I, (A2, B2, C2, D2) 2  2,

3) If � < ✏ or k > k
stop

, stop. Otherwise, set k = k + 1,
X

k+1 = X and go back to step 2.

The convexifying and linearization method ensures that
at each iteration k, the optimal solution �

k+1 satisfies that
0  �

k+1  �
k

, so the sequence converges to a local optimal
solution [12].

It is worth noting here that the problem formulation and
algorithms derived in this paper have been based on the
closed-loop system model. Another possible approach would
be to reduce the distance between the two controller systems
directly. However, this would require that the initial (i.e.,
given) controller is stable.

V. APPROXIMATING PID WITH THE WCN
PID controllers are the most commonly used type of linear

controllers. Therefore, in this section, we illustrate how to

2A set of topological conditions for the WCN such that there exists a
stabilizing WCN configuration is specified in [16].

3�Ace represents eigenvalues of Ace.

Algorithm 2 Iterative algorithm used to obtain a feasible
initial point
1) Set ✏ > 0, and k = 0.
2) Solve the following convex optimization problem.

minimize �

subject to R(X ,0,⌥,Y) � 0,

X I
I Y

�
⌫ 0,⌥ � �I,X � 0,Y � 0,⌥ � 0,

Y � LIN(X�1, X
k

) + �I,

(A2, B2, C2, D2) 2  2,

3) If � < ✏, k�Acek < 1,3stop. Otherwise, set k = k + 1,
X

k+1 = X and go back to step 2.

     Plant
S1 S2A1A2

WCNv2v4

v3v5

v6

v1

Fig. 2: An example of the WCN topology with 6 nodes,
where each node can maintain a scalar or vector state.

employ the algorithms from the previous section to synthe-
size WCN configurations. The goal is to minimize the error
between initial Multiple-Input Multiple-Output (MIMO) PID
controllers and the derived WCNs. We consider the case
when the initial linear PID controller has states x1 2 R4,
while the WCN scheme is implemented on the network with
the topology shown in Figure 2. Furthermore, the controlled
plant has states x 2 R4, two inputs and two outputs.

Initially, we consider the scalar WCN setup where each
node in the WCN maintains a scalar state, i.e., z

i

[k] 2
R in (3). Consequently, in this case the WCN acts as a
structured dynamical controller with z[k] 2 R6 in (5). Using
Algorithms 1 and 2, which were implemented using CVX,
a package for specifying and solving convex optimization
programs [18], after less than 60 iterations we obtained
� = 0.1294, meaning that k⌃cekH1 =

p
� ⇡ 0.3597 (see

Figure 3). In addition, we compared the step (Figure 4(a))
and frequency (Figure 4(b)) responses for the closed-loop
systems controlled by the initial PID and the obtained WCN
configuration.

From the above results, we can conclude that the structural
constraints for a scalar state WCN (from Figure 2) imposed
a significant limitation on our capabilities to approximate
behavior of the initial MIMO PID controller. However, the
error between these closed-loop systems (i.e., ⌃1

c

and ⌃2
c

) can
be decreased if each node in the WCN maintains a larger
state (i.e., a vector state). We will refer to these systems
as vector WCNs. By incorporating different memory and
computing capabilities to each node, the vector WCN where
each node v

i

maintains a (vector) state from Rni can be
modeled as in (3), (4), where zi 2 Rni , n

i

> 1, wij 2
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at each iteration step of
Algorithm 1, when each node in the WCN from Figure 2
maintains a scalar state.

Rni⇥nj , hij 2 Rni , gij 2 R1⇥nj .
Algorithms 1 and 2 can be easily extended to cover this

vector state scenario, as in this case only the structural
constraints have to be generalized. A straightforward ex-
tension would require running both Algorithms 2 and 1 to
obtain initial (feasible) and optimal points. However, it is
possible to significantly speed up the initialization procedure
for vector WCNs. This is achieved by running Algorithm 2
for the scalar WCN with the same topology, and then
expanding the obtained feasible configuration to derive an
initialization point for the vector WCN. More precisely,
assume Algorithm 2 provides a scalar WCN configuration
(W0,H0,G0) with closed-loop transfer function H . Then,
an initial feasible vector WCN configuration with closed-
loop transfer function H , and where nodes maintain states
of size ñ, can be derived from the vector weights defined
using the initial scalar weights as:

w1
ij

= w0
ij

I
ñ

,h1
ij

= c
ñ

(h0
ij

),g1
ij

=
1

ñ
r
ñ

(g0
ij

). (14)

Here, c
ñ

(a) (r
ñ

(b)) denotes a size ñ column (row) vector
where every element equals to a (b), while I

ñ

is the identity
matrix of size ñ. From (14), a new feasible error system
⌃

ne

= (A
ne

,B
ne

,C
ne

) (from (7), (8)) can be obtained.
Therefore, by solving a single convex optimization prob-

lem (15), instead of a sequence of optimization problems
(Algorithm 2), we can obtain a feasible initial point X1 for

the Algorithm 1 of vector WCN
minimize �0

subject to X1 ⌫ A
ne

X1A
T

ne

+B
ne

BT

ne

,

⌥ ⌫ C
ne

X1C
T

ne

,

X1 � 0,⌥ � �0I.

(15)

To summarize, the speed up is obtained by avoiding to
directly use Algorithm 2 to derive a feasible vector WCN
configuration, as this would require solving a large convex
optimization problem at each iteration. Instead, we iteratively
solve a smaller problem (for scalar WCN configurations).

Note that the result �0 of the optimization problem (15) is
an upper bound for the approximation error when a vector
WCN is used, since the Algorithm 1 provides a decreasing
sequence of �

k

’s after the initialization step. Table 1 presents
a comparison of the times required to compute the initial
points for Algorithm 1 when each node maintains a state
z
i

2 R3 in the WCN from Figure 2. We compared the
following methods: 1) when the Algorithm 2 is used to obtain
a scalar WCN configuration, then extended into the ’vector’
WCN by (14), (15); or 2) when Algorithm 2 is used to
directly compute a feasible vector configuration. As can be
seen, both the time of every iteration step and the number of
iteration steps are significantly increased when the ’vector’
(i.e., direct) form of Algorithm 2 is used. This is caused
by the fact that the size of the problem directly affects the
performance of the LMI solver (i.e., CVX).

Finally, we showed that this more powerful, vector WCN,
can reduce the approximation error. Figure 5(a) and Fig-
ure 5(b) show comparisons of the closed-loop system per-
formances when the plant is controlled by the initial PID
controller and the WCN where each node maintains a state
z
i

2 R3. In this case, using the aforementioned procedure
we obtained � = 0.0823, thus reducing the approximation
error by almost 50%.

VI. CONCLUSION

In this paper, we have presented a method for mapping
discrete-time linear controllers into structured computation
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Fig. 5: Comparison of the closed-loop systems controlled by the initial PID and the WCN, where each node in the network
from Figure 2 maintains a state from R3. Algorithm 1 gets � = 0.0823, and the approximation error between two closed
loop systems are smaller than what we get from the scalar state WCN (each node maintains a state from R).

Method to derive the initial Number of Time for
vector WCN configuration iteration steps each step

Expand a feasible ’scalar’ configuration 58 1s
Direct use of Algorithm 2 675 9s
TABLE I: comparison of computation speed

substrates. This problem has been motivated by the Wireless
Control Network, a recently introduced distributed scheme
for control over multi-hop wireless networks. By exploiting
the similarities with the model reduction problem, we have
formulated the structured approximation problem as an opti-
mal design of structured linear controllers, and specified the
algorithms that can be used for the networked system realiza-
tion. In addition, we have illustrated their use on the mapping
of MIMO PID controllers into the WCN, and showed how to
reduce the computation overhead of the mapping when the
WCN nodes maintain vector states. Finally, we have shown
that an increase in sizes of the states maintained by the nodes
in the WCN, decreases the approximation error. However, it
would be beneficial to provide a way to estimate mapping
improvements with the increase of the nodes’ state sizes.
This is an avenue for future work.
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