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R
ecent years have wit-
nessed a signi�cant  
increase in the num-
ber of security-
related incidents 

in control systems. These 
include high-pro�le attacks 
in a wide range of applica-
tion domains, from attacks 
on critical infrastructure, as 
in the case of the Maroochy 
Water breach [1], and indus-
trial systems (such as the 
StuxNet virus attack on an in-
dustrial supervisory control and 
data acquisition system [2], [3] 
and the German Steel Mill cyber-
attack [4], [5]), to attacks on modern 
vehicles [6]�[8]. Even high-assurance 
military systems were shown to be vul-
nerable to attacks, as illustrated in the highly 
publicized downing of the RQ-170 Sentinel U.S. 
drone [9]�[11]. These incidents have greatly raised 
awareness of the need for security in cyberphysical sys-
tems (CPSs), which feature tight coupling of computation and 
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communication substrates with sensing and actuation components. However, the complexity and 
heterogeneity of this next generation of safety-critical, networked, and embedded control systems 
have challenged the existing design methods in which security is usually consider as an afterthought.

This is well illustrated in modern vehicles, which present a complex interaction of a large number 
of embedded electronic control units, communicating over an internal network or multiple networks. 
On the one hand, there is a current shift in vehicle architectures, from isolated control systems to 
more open automotive architectures with services such as remote diagnostics and code updates and 
vehicle-to-vehicle communication. On the other hand, this increasing set of functionalities, network 
interoperability, and system design complexity may introduce security vulnerabilities that are easily 
exploitable. Security guarantees for these systems are usually based on perimeter security where 
internal networks are resource constrained, mostly depending on the security of the gateway and 
external communication channels. Thus, any successful attacks on the gateway or external commu-
nication, or physical attacks on components connected to an internal network, could completely 
compromise the system; using simple methods an attacker can disrupt the operation of a car, even 
taking complete control over it, as shown in [6]�[8].

In general, attacks on a CPS may affect all of its components; computational nodes and com-
munication networks are subject to intrusions, and the physical environment may be mali-

ciously altered. Thus, control-specific CPS security challenges arise from two 
perspectives. On the one hand, conventional information-security approaches can 

be used to prevent intrusions, but attackers can still affect the system noninva-
sively via the physical environment. For instance, noninvasive attacks on 

GPS-based navigation systems [11]�[13] and antilock braking systems 
[14] in vehicles illustrate how an adversarial signal can be injected into 

the control loop using the sensor measurements. This highlights 
limitations of the standard cyber-based security mechanisms 

since, even if employed communication protocols over the 
internal networks ensure data integrity, they alone do not 

guarantee resilience of control systems to attacks on the sys-
tem�s physical components. On the other hand, getting 
access to an internal network would allow the attacker to 
compromise sensors to controller to actuators communica-
tion; from the control perspective, these attacks can also 
be modeled as additional adversary signals introduced 
via the sensors and actuators [15]. Although these types 
of attacks could be addressed with the use of crypto-
graphic tools that guarantee data integrity, resource con-
straints inherent in many CPS domains may prevent 
heavy-duty security approaches from being deployed.

Therefore, it is necessary to address the security chal-
lenge related to the attacks against the control system, where 

the attacker can 1) take over a sensor and supply wrong or 
delayed sensor readings or 2) disrupt actuation. These attacks 

manifest themselves to the controller as malicious interference 
signals, and the defenses against them have to be introduced in 

the control-design phase. Specifically, resilience against these at-
tacks is built into the control algorithm under the assumption that the 

controller itself executes according to its specification. This approach has 
attracted a lot of attention, with several efforts focused on the use of control-

level techniques that exploit a model of the �normal� system behavior, for at-
tack detection and identification in CPS (see, for instance, [15]�[22]). Methods for 

attack detection based on the use of standard residual-probability-based detectors were 
presented in [21]�[24], while the problem of state estimation in the presence of sensors at-

tacks was addressed in [17], [18], [25], and [26].
In contrast, attacks on the execution platform prevent the correct operation of the control system, 

as in the cases where the attacker can disrupt the execution of control tasks. Defense against such 
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attacks cannot rely on the control algorithm, which may not 
be running correctly. Instead, it requires security and perfor-
mance guarantees that the platform components provide to 
the control system, which have to be incorporated into the 
design of control-based security techniques. For example, the 
attacker may try to affect control performance by dramati-
cally slowing down the controller task; one way to achieve 
this is by introducing a higher-priority, computationally 
intensive task into the operating system. The key to address-
ing these types of attacks is to explicitly specify the assump-
tions made about the platform during the control design. 
Real-time issues, such as sampling and actuation jitter, and 
synchronization errors between system components, directly 
affect quality of control and the level of guarantees provided 
by control-based security mechanisms. For instance, execu-
tion timing directly affects the controlled plant�s model that 
should be used for control-level security techniques; control 
engineers may determine that the controller guarantees the 
required resiliency levels (for instance, attack detection) and 
the desired control performance, as long as the worst-case 
execution time of the control task is, for example, 20 ms and 
output jitter is no more than 2 ms.

For attack-resilient control in CPSs, it is necessary to be 
able to capture platform effects on the control-level security 
guarantees by providing robust security-aware control 
methods that can deal with noise and modeling errors. This 
will enable the extraction of system-level requirements 
imposed by control algorithms on the underlaying operat-
ing system (OS) and network and facilitate reasoning about 
attack resilience across different implementation layers.

This article describes efforts on the development of an 
attack-resilient CPS. Specifically, a case study is considered, 
the design of a resilient cruise controller for an autonomous 
ground vehicle, focusing on one component of the system, 
namely an attack-resilient state estimator and the perfor-
mance guarantees in the presence of attacks. The article 
starts by addressing the problem of attack-resilient state es-
timation, before providing robustness guarantees for the 
implemented attack-resilient state estimator (building on 
[25]). It is shown that the maximal performance loss im-
posed by a smart attacker, exploiting the difference between 
the model used for state estimation and the real physical dy-
namics of the system, is bounded and linear with the size of 
the noise and modeling errors. Furthermore, this article de-
scribes how implementation issues such as jitter, latency, 
and synchronization errors can be mapped to parameters of 
the state-estimation procedure, which effectively enables 
mapping control performance requirements to real time 

(that is, timing related) specifications imposed on the un-
derlying platform. Finally, how to construct an assurance 
case for the system that covers both a mathematical model 
of the state estimator and the physical environment is pre-
sented as well as a software implementation of the control-
ler. While the models considered in the case study are 
specific to the control system and its intended deployment 
platform, the modeling, robustness analysis, and assump-
tions encountered on each level in this case study are typical 
of many other CPS control problems.

ATTACK-RESILIENT STATE ESTIMATION  
WITH NOISE AND MODELING ERRORS
The problem of state estimation in the presence of sensor 
and actuator attacks has attracted significant attention in 
recent years. One motivation is that the same controllers can 
be used when there is no attack, provided that the controller 
can obtain a reasonable estimate of the state of the physical 
process even if some of the sensor measurements and actua-
tor commands have been compromised. For deterministic 
(that is, noiseless) linear time-invariant (LTI) systems, the 
correct state estimate in the presence of sensor attacks can 
be obtained as the solution of l0  optimization problems [17], 
[18]. In addition, there are estimation techniques for linear 
[26] and differentially flat systems [27] based on the use of 
satisfiability modulo theories solvers.

However, the initially proposed techniques for state esti-
mation in the presence of attacks focus on noiseless systems 
for which the exact model of the system�s dynamics is 
known. Hence, these techniques have limited applicability 
to real systems since it is unclear what level of resiliency can 
be guaranteed with more realistic sensing, actuation, and 
execution models. Therefore, the focus of this section is on 
attack-resilient state estimation for dynamical systems with 
bounded noise and modeling errors and the derivation of a 
worst-case bound for performance degradation in the pres-
ence of attacks. First, the system model and how some 
implementation effects can be mapped into the model�s 
parameters are presented. Next, the estimator and the pro-
cedure to bound the worst-case estimation error in the pres-
ence of attacks is introduced.

Notation and Terminology
In this article, �  denotes the cardinality (size) of the set .�  
For two sets �  and � , S R  denotes the set of elements in 
�  that are not in .�  For a set ,K S K� �  specifies the com-
plement set of �  with respect to ,�  that is, .S KK ��

Also, �  is used to denote the set of reals and 1N�  to denote 

The problem of state estimation in the presence of sensor and actuator 
attacks has attracted significant attention in recent years.
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the row vector of size N  containing all ones. Finally, for any 
sequence of ,  ,i 0i ��  since the sum i0

1
�

��  contains no ele-
ments, to simplify the notation it is assumed that it is equal 
to zero, that is, .0i0

1
� =

-�
The ith element of a vector xk  is denoted by x ,k i. For 

vector x and matrix ,A  x  and A  denote the vector and 
matrix whose elements are absolute values of the initial 
vector and matrix, respectively. Also, for matrices P and ,Q  
P Q�  is used to specify that the matrix P  is element wise 
smaller than the matrix Q. For a vector ,e �p�  the support of 
the vector is set

( ) ,e e 0p � �� } , , ...,p1 2{ { }sup i i

while the l0  norm of vector e is the size of ( ),epsup  that is, 
( )ep .e l0

� sup  Note that, although l0  is not formally a 
norm, in this article we will abuse the terminology and refer 
to it as a norm to maintain consistency with the  terminology 
used in previous work on this topic (for example, [18]). Also, 
for a matrix , , , ...,E e e e�p N

N1 2� �  is used to denote its col-
umns and , , ...,E E Ep1 2� � �  to denote its rows. The row support of 
matrix E is defined as the set

( ) , , ..., .E Ei p0 1 2rowsupp i � �� �� �� �

As for vectors, the l0  norm for a matrix E  is defined as 
p .( )E Esuprowl0

�

SYSTEM MODEL
This article considers an LTI system

 
,
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1 = + +

= + +
+

 
(1)

where x �n�  and u �m�  denote the plant�s state and in-
put vectors, respectively, while y �p�  is the plant�s output 
vector obtained from measurements of p sensors from the 
set , , ..., .p1 2� � � �  Accordingly, the matrices , ,A B  and C
have suitable dimensions. Furthermore, v �n�  and 
w �p�  denote the process and measurement noise vec-
tors, while e �p�  denotes the attack vector. The set 

, , ..., ,p1 2� � � �  containing sensors under attack, is used to 
model attacks on plant sensors. This means that e 0,k i �  
for all i K C�  and ,k 0�  where ,K S KC �  and therefore 

( )ep ��sup k  for all .k 0�  This work assumes that the 
noise vectors are constrained in certain ways. Further-
more, v and w are used to capture different types of model-
ing errors that may be caused by some implementation 
(such as real-time) issues.

Note that the setup presented in this article can be easily 
extended to include attacks on the system�s actuators. In this 
case, an additional vector ek

a is added to the plant input at 
each step k 0� . As shown in [18], the same technique used 
for resilient-state estimation in the presence of attacks on 
sensors can be used to obtain the plant�s state when subsets 

of the plant�s sensors and actuators are both compromised. 
Consequently, the analysis and results presented here can be 
easily extended to the case when a subset of the actuators is 
also under attack. It is important to highlight that, in cases 
where a small enough subsets of plant actuators and sensors 
are compromised (that is, enabling the resilient state estima-
tion), even with accurate estimates of the plant�s state, stabil-
ity cannot be guaranteed due to attacks on actuators, and the 
attacker could effectively gain complete control over the 
plant. This is consistent with the results from [16].

Attack-Resilient State Estimation  
for Noiseless Dynamical Systems
For linear systems without noise (that is, systems in the 
form (1) where w 0k �  and v 0k � , for all k 0� ), an l0 -norm-
based method to extract state estimates in the presence of 
attacks is introduced in [18]. To obtain the plant�s state at 
any time-step t  (that is, xt ), the proposed procedure uses 
the previous N  sensor measurement vectors ,...,y yt N t1- +� �  
and actuator inputs ,...,u ut N t1 1- + -� �  to evaluate the state 
xt N 1- + . The state xt  is then computed using the history of 
actuator inputs ,...,u ut N t1 1- + -� �  by applying the system 
evolution from (1) for N 1�  steps. Specifically, the state 
xt N 1- +  is computed as the minimization argument of the 
following optimization problem

 ( ) .xYmin ,
x

N lt N
�n 0

��
�

 (2)

Here, Y y y y �,t N t N t N t
p N

1 2 f �= �
- + - +u u u6 @  aggregates the 

last N  sensor measurements while taking into account the 
inputs applied during that interval

, ,

, ,..., .
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Furthermore, :� �N
n p N�� �  is a linear mapping defined as 

( ) | | |x Cx CAx CA xN
N 1�� = -6 @ that captures the sys-

tem�s evolution over N  steps caused by the initial state x.
The rationale behind problem (2) is that the matrix 

( )E Y x, ,t N t N N t N 1�= - - +  presents the history of the last N  
attack vectors ,..., ,e et N t1- +  that is,

 .E e e e �,t N t N t N t
p N

1 2 � �= �
- + - +6 @  (3)

The critical observation here is that for a noiseless LTI 
system there is a pattern of zeros (that is, zero rows) in the 
matrix E ,t N  that corresponds to the nonattacked  sensors 
and which remains constant over time. If �  is the set of 
compromised sensors, then, for all ,N  t  such that ,N 0�  

p, ( ) .Et N 1 rowsup �,t N$ 3�
As shown in [18], for noiseless systems, the state estima-

tor from (2) is optimal in the sense that if another estimator 
can recover ,xt N 1- +  then the one defined in (2) can as well. 
In addition, the estimator from (2) can extract the system�s 
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the encoders (which can be translated into rotational 
velocity and finally into linear velocity). Note that other 
sensors can be used to estimate the state of the vehicle, for 
instance, linear acceleration measurements obtained from 
an inertial measurement unit (IMU), or visual odometry 
estimates computed by optical flow algorithms from a 
camera feed. However, to illustrate the use (and robust-
ness) of the attack-resilient state estimator, only the encod-
ers and GPS are employed.

The above model presents a high-level one of the vehicle, 
describing only the motion equations. The forces Fl  and Fr, 
which can be considered as inputs to the model, are derived 
from the vehicle�s electromotors and are affected by the 
motors, gearbox, and wheels. Thus, a six-state linear model 
of this low-level electromechanical system based on the 
model from [36] was derived, which is then used to obtain a 
local state (that is, velocity) feedback controller that pro-
vides the desired Fl , Fr  levels.

System Architecture
All sensors on the LandShark vehicle are connected to the 
CPU, which implements the state estimator and controller 
through independent serial buses, while the motors are 
connected to the CPU via motor drivers [as presented in 
Figure 4(c)]. Since the speed of the vehicle is bounded, the 
attack-resilient state-estimator from (14) can be formulated 
as a mixed-integer linear programming problem

·
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where E j�  and ek  denote the jth row and kth column of the 
matrix ,E �p N� �  respectively. Here, [ , , ] { , }0 1p

p
1 � �� � ��  

are binary optimization variables representing, for each 
sensor j, whether the sensor is considered attacked ( 1j� � ) 
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FIGURE 4 The LandShark unmanned ground vehicle. (a) The vehicle, (b) the coordinate system and variables used to derive the model, 
and (c) the control system diagram used for cruise control. IMU: intertial measurement unit.












