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Abstract—Several recent incidents have clearly illustrated the
susceptibility of cyberphysical systems (CPS) to attacks, raising
attention to security challenges in these systems. The tight inter-
action between information technology and the physical world has
introduced new vulnerabilities that cannot be addressed with the
use of standard cryptographic security techniques. Accordingly,
the problem of state estimation in the presence of sensor and actu-
ator attacks has attracted significant attention in the past. Unlike
the existing work, in this paper, we consider the problem of attack-
resilient state estimation in the presence of bounded-size noise.
We focus on the most general model for sensor attacks where any
signal can be injected via compromised sensors. Specifically, we
present an l0 -based state estimator that can be formulated as a
mixed-integer linear program and its convex relaxation based on
the l1 norm. For both attack-resilient state estimators, we derive
rigorous analytic bounds on the state-estimation errors caused by
the presence of noise. Our analysis shows that the worst-case error
is linear with the size of the noise and, thus, the attacker cannot
exploit the noise to introduce unbounded state-estimation errors.
Finally, we show how the l0 and l1 -based attack-resilient state
estimators can be used for sound attack detection and identifica-
tion; we provide conditions on the size of attack vectors that ensure
correct identification of compromised sensors.

Index Terms—Attack-resilient state estimation, robustness of
state estimators, cyberphysical systems security, linear systems.

I. INTRODUCTION

MOST EXISTING control systems have not been built
with security in mind. Even with the proliferation of dif-

ferent networking technologies and the use of more open control
architectures, until recently, security of control systems has usu-
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ally been an afterthought. Yet, with the advance of cyberphys-
ical systems (CPS), the tight interaction between information
technology and the physical world has made control components
of CPS vulnerable to attack vectors well beyond the standard
cyberattacks [1]. In the last few years, several incidents have
clearly illustrated susceptibility of CPS to attacks and raised
attention to security challenges in these systems. These include
attacks on large-scale systems, such as the Maroochy Water
breach [2] and the StuxNet virus attack on an industrial super-
visory control and data acquisition (SCADA) system [3], [4].
In addition, attacks on modern vehicles [5]–[7] and the RQ-170
Sentinel U.S. drone that was captured in Iran [8], [9]show that
even widely used, safety-critical automotive and avionics CPS
can be compromised by malicious attackers.

A typical CPS contains an internal network, or multiple net-
works, connected by a gateway to external communications net-
work. In many cases, such as in the automotive industry, systems
rely on perimeter security where internal networks are resource
constrained, mostly depending on the security of the gateway
and external communication channels. However, the gateway
may be compromised, becoming a threat to the system’s op-
eration [5], [6]. In addition, some of the internal components
might be tampered with, allowing the attacker to access the
internal communication network [7]. From the control of the
CPS perspective, attacks on the internal network, where the at-
tacker inserts messages anywhere in the sensors-to-controllers-
to-actuators pathway, can be modeled as additional signals
injected into the control loop via system sensors and actuators
[10]. While some of these attacks can be avoided with the use
of standard cryptographic tools that guarantee data integrity and
authentication, this incurs a significant design, computational,
and operational overhead for these usually resource-constrained
systems.

On the other hand, unlike standard cybersystems, reported
CPS vulnerabilities include noninvasive attacks on system sen-
sors, where an adversarial signal is injected into the measured
data by modifying a sensor’s physical environment. This has
been illustrated with several noninvasive attacks on global po-
sitioning system (GPS)-based navigation systems [9], [11],
[12], and antilock braking systems [13] in vehicles. These
attacks show that the use of standard encryption and data-
authentication-based network security techniques does not guar-
antee secure control of CPS. In such cases, even if the stream of
sensor data is properly encrypted, it would still contain incorrect
values. Consequently, there is a need to focus on attack-resilient
control of CPS, to ensure safety in such scenarios.

2325-5870 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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A. Related Work

In recent years, significant efforts have been invested into the
development of control techniques that exploit some knowledge
of system dynamics for attack detection and attack-resilient
control (e.g., [10], [14]–[20]). One line of work has focused on
attack detection, [19]–[22] based on the use of standard residual
probability-based detectors (e.g., the chi-square detector). For
example, in [19], the authors illustrate how these detectors can
be used to detect integrity attacks on SCADA systems, while
in [20], the authors focus on the design of watermarked control
inputs for active attack detection.

In addition to attack detection, the problem of state estima-
tion in the presence of sensor and actuator attacks has attracted
significant attention due to the fact that the CPS is capable of cor-
rectly estimating the plant’s state from corrupted measurements
and would be able to continue operating even under attack. For
noiseless linear time-invariant (LTI) systems for which the exact
plant model is known, the attack-resilient state estimation prob-
lem has been formulated as an l0 optimization problem [15],
[16]. In addition, in [23], the authors present an SMT-based
state estimation technique.

However, it is unclear how robust these state estimators are to
noise and modeling errors; specifically, what kind of guarantees
can be provided for performance of attack-resilient state estima-
tors for noisy dynamical systems. To the best of our knowledge,
the first work on this topic was [24]. In that paper, we introduced
an l0-based attack-resilient state estimator for systems with
bounded noise that can be formulated as a mixed-integer lin-
ear program (MILP). We also showed its robustness to noise
and modeling errors, and provided a complex design-time pro-
cedure to bound the worst-case state estimation error in the
presence of attacks.

It is worth noting that our work exploits some of the
ideas initially introduced in the domain of compressed sensing
(e.g., see [25] and the references within), starting from the
problem considered in [26] and [27] where a sparse state was
to be extracted for noisy nondynamical systems with a pre-
defined measurement matrix and without any structured in-
terference. These works were extended to the problem of the
extraction of block-sparse signals for these systems in the pres-
ence of noise (e.g., [28]). On the other hand, error bounds
for the estimation of (nonblock) sparse signals in the pres-
ence of structured interference for noisy nondynamical systems
have been recently addressed in [29] and [30]. Specifically, [29]
considers systems with Gaussian measurement matrices, while
[30] provides a very conservative error bound due to the fact
that the authors assume that state and interference are sparse.

B. Contributions of This Work

In this paper, we focus on the problem of attack-resilient
state estimation for linear dynamical systems with bounded-size
noise. We consider the most general model for sensor attacks
where any signals can be injected via the compromised sensors
[10]. We start from the l0-based state estimation procedure intro-
duced in [16], and show how it can be adapted for systems with
noise. The main limitation of the l0-based state estimators is
that solving them is NP hard in general. Therefore, by exploit-

ing properties of the l1 norm, we provide a computationally
efficient, convex optimization-based state estimation procedure
for noisy dynamical systems.

Furthermore, unlike our work in [24] for the l0 estimator, we
derive rigorous analytic bounds on the state-estimation errors
for l0 and l1-based state estimation procedures. We show that
the worst-case error is linear with the size of the noise, and
when the number of attacked sensors is not higher than a pre-
defined number (that depends on the properties of the system’s
observability matrix), the attacker cannot exploit noise and mod-
eling errors to introduce unbounded state estimation errors. In
addition, we introduce a method that utilizes the presented
attack-resilient state estimators for sound attack detection and
identification, using the estimates of attack vectors provided by
the estimators.

Preliminary versions of some of the results from the paper
have been presented in [24] and [31]. This paper is significantly
expanded from the conference papers, providing full proofs of
all theorems from [31] as well as showing the boundedness of
the state estimation error when the l1-based estimation proce-
dure is used. In addition, we provide a comprehensive view of
the unique challenges for secure control of CPS, and unlike the
conference paper, present a thorough evaluation of the state-
estimation bounds introduced in this paper.

The rest of this paper is organized as follows. Section II intro-
duces the problem formulation, while in Section III, we present
attack-resilient state estimation procedures based on the l0 and
l1 norms. In Sections IV and V, we present robustness analysis
of the l0 and l1-based state estimators, respectfully. Finally, in
Section VI, we show how the presented state estimators can be
used for sound attack detection and identification, followed by
evaluation of the introduced robustness bounds (Section VII)
and some concluding remarks in Section VIII.

C. Notation and Terminology

For a set S, |S| denotes the cardinality (i.e., size) of the set. In
addition, for a set K ⊂ S, with K� we denote the complement
set of K with respect to S, that is K� = S \ K.

We use AT to indicate the transpose of matrix A, while the
ith element of a vector xk is denoted by xk,i . For vector x
and matrix A, we denote by |x| and |A| the vector and matrix
whose elements are absolute values of the initial vector and
matrix, respectively. Also, for matrices P and Q, by P ≤ Q we
specify that the matrix P is element-wise smaller than the matrix
Q. In addition, for a symmetric matrix Q, Q � 0 denotes that
the matrix is positive semidefinite.

We use R to denote the set of reals. In addition, Ip denotes
the identity matrix of size p, while I(·) denotes the indicator
function. Finally, for a vector e ∈ Rp , the support of the vector
is the set

supp(e) = {i | ei �= 0} ⊆ {1, 2, . . . , p},
while l0 norm of vector e is the cardinality of supp(e), that is
‖e‖l0 = |supp(e)|.1

1Although the l0 -norm is not formally a norm, in this paper, we will abuse
the terminology and refer to it as a norm in order to use consistent terminology
with the one used in previous work on this topic (e.g., [16]).
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II. PROBLEM DESCRIPTION

We consider LTI systems of the form

xk+1 = Axk

yk = Cxk + wk + ek . (1)

The plant’s output vector y ∈ Rp contains measurements of
the plant’s state x ∈ Rn provided by p sensors from the set
S = {s1 , s2 , . . . , sp}. We assume the measurement noise vector
w ∈ Rp to be bounded; specifically, we assume that |wk | ≤
δwk

, for all k ≥ 0. Finally, the sparse vectore ∈ Rp with support
in the setK ⊆ S denotes the attack vector injected by a malicious
attacker using sensors from the set K.2

The attack-resilient state estimation problem focuses on re-
construction of the initial system state x0 from a set of N output
observations3 y0 ,y1 , . . . ,yN −1 . These observations are poten-
tially corrupted by an attacker with access to the sensors from
the set K, that is

yk = CAkx0 + ek + wk .

One additional goal is to provide identification of the com-
promised sensors (i.e., identify sensors from K), since the ac-
tual set K of compromised sensors is not known before the
estimation.

A. Model Motivation

The aforementioned attack-resilient state estimation problem
can be also used for the general form of LTI systems

xk+1 = Axk + Buk + vp
k

yk = Cxk + vm
k + ek . (2)

Here, A ∈ Rn×n ,B ∈ Rn×m , and C ∈ Rp×n , while process
and measurement noise vp ∈ Rn and vm ∈ Rp , respectively,
are bounded in size. In this general case, to obtain the plant’s
state at any time step t (i.e., xt), the goal is to utilize the
previous N sensor measurement vectors (yt−N +1 , . . . ,yt)
and actuator inputs (ut−N +1 , . . . ,ut−1) to evaluate the
state xt−N +1 .

For dynamical systems without noise, the state can be ob-
tained as the minimization argument of the following optimiza-
tion problem [16], [24]

min
E t , N ∈Rp ×N , x∈Rn

‖Et,N ‖l0

s. t. Et,N = Yt,N − ΦN (x). (3)

Here, the matrix Et,N = [et−N +1 |et−N +2 | · · · |et ] cap-
tures the last N attacks vectors. In addition, Yt,N =
[ỹt−N +1 |ỹt−N +2 | · · · |ỹt ] maintains the last N sensor measure-
ments compensated for the impact of the inputs applied during

2In this work, we sometimes abuse the notation by using K to denote the set
of compromised sensors and the set of indices of the compromised sensors.

3We consider the measurement history size N as an input parameter to the
state-estimation procedure

that interval, that is

ỹk = yk , k = t − N + 1

ỹk = yk −
k−t+N −2∑

i=0

CAiBuk−1−i , ˜k = t − N + 2, . . . , N.

Finally, linear mapping ΦN : Rn → Rp×N defined as ΦN (x) =[
Cx|CAx| . . . |CAN −1x

]
specifies the observed system evo-

lution, due to its dynamics, from initial state x.
Consequently, even for the general form of LTI systems as

in (2), the problem of state estimation can be mapped into
the state estimation for systems from (1), where control inputs
are discarded. Furthermore, as shown in [24], the bounds on the
size of measurement noise in (1) can be related to the bounds on
the size of process and measurement noise vectors vp and vm .
It is worth noting, however, that these bounds on measurement
noise in problem formulation (1), which are caused by the pro-
cess noise from (2), can be very conservative in the case where
the system (i.e., matrix A) is unstable. In general, the trans-
formation of the process and measurement noise bounds from
the model (2) to only measurement noise in (1) is conservative
since it has to capture the worst-case system (including noise)
behavior.

III. ATTACK-RESILIENT STATE ESTIMATORS

We start by introducing the following notation. We use PK to
denote the projection from the set S to set K by keeping only
rows of C with indices that correspond to sensors from K. For-

mally, PK =
[
ik1 | · · · |ik |K|

]T
, where K = {sk1 , . . . , sk |K|} ⊆ S

and k1 < k2 < · · · < k|K|, and iTj denotes the row vector (of
the appropriate size) with a 1 in its jth position being the only
nonzero element of the vector. Furthermore, for any sensor si

and set K we define the matrices Osi
and OK as

Osi
=

⎡

⎢⎢⎢⎢⎣

P{si }C

P{si }CA
...

P{si }CAN −1

⎤

⎥⎥⎥⎥⎦
OK =

⎡

⎢⎢⎢⎢⎣

Osi 1

Osi 2

...

Osi |K|

⎤

⎥⎥⎥⎥⎦
. (4)

We will also slightly abuse the notation by using Oi to denote
Osi

for each sensor si .

In addition, we use ẽi =
[
e0,i |e1,i | · · · |eN −1,i

]T ∈ RN for
all i ∈ {1, . . . , p} to denote the values injected via sensor si

(i.e., attack signals on sensor si) at time steps 0, . . . , N − 1.4

From the definition, if si /∈ K, then ẽi = 0 ∈ RN . Similarly,
for all i ∈ {1, . . . , p}, we use ỹi =

[
y0,i |y1,i | · · · |yN −1,i

]T ∈
RN and w̃i =

[
w0,i |w1,i | · · · |wN −1,i

]T ∈ RN to denote all
measurements obtained by the sensor si and measurement noise
at the sensor, respectively, at time steps 0, . . . , N − 1. Hence,
we have that for all 1 ≤ i ≤ p:

ỹi = Oix0 + ẽi + w̃i (5)

4It is worth nothing that the vector ẽi corresponds to the ith row of the matrix
E from (3).



PAJIC et al.: ATTACK-RESILIENT STATE ESTIMATION FOR NOISY DYNAMICAL SYSTEMS 85

Finally, we define block vectors ỹ, ẽ, w̃ ∈ RpN

as ỹ =
[
ỹT

1 | · · · |ỹT
p

]T
, ẽ =

[
ẽT

1 | · · · |ẽT
p

]T
, and w̃ =

[
w̃T

1 | · · · |w̃T
p

]T
, and matrix O =

[
OT

1 | · · · |OT
p

]T
.5 Since

each element of the measurement noise vectors w0 , . . . ,wN −1
is bounded (i.e., |wk,i | ≤ δwk , i

, 0 ≤ k ≤ N − 1, 1 ≤ i ≤ p),
we denote by Ω ⊂ RpN the feasible set of noise vectors w̃.
In addition, for any set R ⊂ S, we define w̃R to be the block
vector obtained by concatenating w̃si

for all si ∈ R starting
from the smallest i to the largest, while the corresponding
ΩR ⊂ R|R|N denotes the feasible set of vectors w̃R. We
similarly define the matrix OR to be obtained by concatenating
matrices Oi for all si ∈ R.

Now, from (5), it follows that:

ỹ = Ox0 + ẽ + w̃. (6)

For block vectors obtained by concatenating p vectors, such
as ẽ and ỹ, we also use the notation from [28]

‖ẽ‖l2 ,l0 =
p∑

i=1

I(‖ẽi‖l2 > 0)

‖ẽ‖l2 ,l1 =
p∑

i=1

‖ẽi‖l2 (7)

Note that for any block vector ẽ it holds that ‖ẽ‖l2 ,l0 = ‖ẽ‖lt ,l0

for any t ≥ 1. This allows us to define block q-sparse vector
ẽ as a vector that satisfies ‖ẽ‖l2 ,l0 = q, meaning that it has q
nonzero subvectors. Hence, if the set of compromised sensors
K has q elements (i.e., |K| = q), then vector ẽ is q-block sparse.

Using the above notation, the optimization problem (3) can
be represented as

P0 : min
ẽ,x

‖ẽ‖l2 ,l0

s. t. ỹ − Ox0 − ẽ = 0. (8)

Now, consider the measurement vector ỹ for a noiseless system’s
(i.e., when Ω = 0 ∈ RpN ) evolution due to the initial state x0
and attack vector ẽ∗. If the number of attacked sensors q = |K|
is not higher than a certain number qmax ,6 The minimization
arguments of the problem P0 are exactly the initial state x0 and
the attack vector ẽ∗ [16]. Thus, in this case, the estimator P0 also
correctly identifies the set of attacked sensors K. Furthermore,
for noiseless systems, P0 is optimal in the sense that if another
estimator can recover the initial state (which would also result in
identification of the attacked sensors), the attack-resilient state
estimator based on P0 can as well [16].

On the other hand, P0 cannot be used when noisy sensor
measurements are available (i.e., when Ω �= 0 ∈ RpN ). For in-
stance, in this case, the point (x0 , ẽ∗) might not even be feasible.
Thus, there is need to adapt problem P0 to nonideal models that
capture system noise. To achieve this, we consider the follow-
ing problem that relaxes the equality constraint from (8) by

5 The matrix O is obtained by reordering rows of the standard observability
matrix for the system (A, C) and, thus, it has the same rank as the observability
matrix.

6 The number qm ax depends on the properties of the observability matrix of
the system. We will address this in more detail in Section IV.

including a noise allowance:

P0,ω : min
ẽ,x

‖ẽ‖l2 ,l0

s. t. ỹ − Ox0 − ẽ = w̃

w̃ ∈ Ω. (9)

The problem P0,ω involves combinatorial optimization that
can be solved using MILP solvers. However, solving P0,ω is
NP-hard in the general case, which limits its use on smaller size
systems. A common approach used in compressed sensing is to
replace the l0 norm by the l1 norm, which effectively convex-
ifies the problem and reduces its computational requirements.
Consequently, to perform the attack-resilient state estimation,
we also consider the following optimization problem:

P1,ω : min
ẽ,x

‖ẽ‖l2 ,l1

s. t. ỹ − Ox0 − ẽ = w̃

w̃ ∈ Ω (10)

However, it is unclear what guarantees can be provided re-
garding the performance of the attack-resilient state estimators
P0,ω and P1,ω . Specifically, we are interested in obtaining worst-
case bounds on the state estimation errors caused by noise and
attacks on sensors, and answering the question whether the at-
tacker can exploit the noise to introduce an unbounded state
estimation error. We will also investigate conditions that en-
sure that the presented state estimators can be used to correctly
identify the set of attacked sensors.

IV. PERFORMANCE GUARANTEES FOR P0,ω ESTIMATOR

In this section, we focus on the performance degradation of
the P0,ω state estimator due to the existence of noise. Specif-
ically, we are interested in providing bounds on Δxl0 that is
defined as

(xl0 ,ω , ẽl0 ) = arg min P0,ω , q0,ω = ‖ẽl0 ‖l2 ,l0 (11)

Δxl0 = xl0 ,ω − x0 , Δẽl0 = ẽl0 − ẽ∗. (12)

We will also denote ith blocks of Δxl0 ,Δẽl0 , and ẽl0 as
Δxl0

i ,Δẽl0
i , and ẽl0

i , respectively.
We consider systems where the number of compromised sen-

sors q = |K| is not higher than qmax—the maximal number of
attacked sensors for which the system’s state can be recovered
in the noiseless case. Thus, before we proceed with our analy-
sis, we first characterize conditions under which it is possible
to perform the state estimation even for noiseless systems. We
start with the following definition.

Definition 1 [32]: An LTI system with the form as in (1) is
said to be s-sparse observable if for every set K ⊂ S of size s
(i.e., |K| = s), the pair (A, PK�C) is observable. �

From the analysis in [16], the following holds.
Lemma 1: qmax is equal to the maximal s for which the

system is 2s-sparse observable.
For considered systems, the following theorem provides a

bound on the maximal state estimation error caused by the ex-
istence of noise.
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Theorem 1: If q sensors have been attacked, where q ≤ qmax ,
then the error Δxl0 of the state estimate obtained from optimiza-
tion problem P0,ω satisfies

‖Δxl0 ‖l2 ≤ 2 · max
R ⊂ S,

|R| = p − 2qmax

(
‖O†

R‖l2 · max
w̃R∈ΩR

‖w̃R‖l2

)

(13)
where O†

R denotes the pseudoinverse of OR (i.e., O†
R =

(OT
ROR)−1OT

R). �
Proof 1: From (12) and the definition of P0,ω , it follows

that: ‖Δẽl0 + ẽ∗‖l2 ,l0 ≤ ‖ẽ∗‖l2 ,l0 . Since for all vectors a,b,
I(‖a + b‖l2 > 0) ≥ I(‖a‖l2 < 0) − I(‖b‖l2 > 0),7 we have
that ‖Δẽl0 + ẽ∗‖l2 ,l0 ≥ ‖Δẽl0 ‖l2 ,l0 − ‖ẽ∗‖l2 ,l0 . Therefore

‖Δẽl0 ‖l2 ,l0 ≤ 2‖ẽ∗‖l2 ,l0

r1≤ 2qmax , (14)

where r1 holds because ‖ẽ∗‖l2 ,l0 = q and the number of at-
tacked sensors q is bounded by qmax .

From (6), we have that ẽ∗ = ỹ − Ox0 − w̃∗. Similarly, from
the constraint (9) it follows that: ẽl0 = ỹ − Oxl0 ,ω − w̃l0 ,
which implies

Δẽl0 = −OΔxl0 − Δw̃. (15)

Here, Δw̃ = w̃l0 − w̃∗, with w̃l0 , w̃∗ ∈ Ω.
Therefore, from (14) and (15), there exists an, at most, 2qmax -

sparse block vector z̃ ∈ RpN (z̃ = −Δẽl0 ) with, at most, 2qmax
nonzero N -size blocks (since ‖z̃‖l2 ,l0 ≤ 2qmax )—such that

OΔxl0 = −Δw̃ + z̃.

This implies that at least f = p − 2qmax blocks of z̃ are zero
subvectors. Let us denote their indices as i1 , . . . if , such that
i1 < · · · < if and the set of sensors corresponding to these
indices as R (i.e., R =

{
si1 , . . . , sif

}
). Hence, we have

ORΔxl0 = −Δw̃R (16)

where Δw̃R = w̃l0
R − w̃∗

R, with w̃l0
R , w̃∗

R ∈ ΩR.
Note that the set R has f = p − 2qmax elements, and since

the system is 2qmax -sparse observable (from Lemma 1), the pair
(A, PRC) is observable (and f ≥ 1). Thus, the matrix OR is
full (column) rank and we can define the pseudoinverse matrix
O†

R = (OT
ROR)−1OT

R, from which it follows that:

Δxl0 = −O†
RΔw̃R ⇒ ‖Δxl0 ‖l2 ≤ ‖O†

R‖l2 · ‖Δw̃R‖l2 ⇒

‖Δxl0 ‖l2 ≤ max
R ⊂ S, |R| = p − 2qmax

w̃l0
R , w̃∗

R ∈ ΩR

(
‖O†

R‖l2 ·‖w̃∗
R − w̃l0

R‖l2

)

≤ max
R ⊂ S,

|R| = p − 2qmax

(
‖O†

R‖l2 · max
w̃ l 0

R ,w̃ ∗
R∈ΩR

‖w̃∗
R − w̃l0

R‖l2

)

7Note that although l0 is not convex (and thus not a norm), it satisfies the
triangular inequality.

Since

max
w̃ l 0

R ,w̃ ∗
R∈ΩR

‖w̃∗
R − w̃l0

R‖l2 ≤ 2 max
w̃R∈ΩR

‖w̃R‖l2 ,

we have that (13) is satisfied, which concludes the proof.
It is important to highlight that the bound on the right-hand

side of (13) is linear in the size of noise. Furthermore, the
above theorem states that if, at most, qmax sensors have been
compromised, the attacker cannot exploit the noise to introduce
an unbounded state estimation error. Another thing to consider
is the complexity of computing the term in (13). To determine
the state estimation bound, we need to check

(
p

p−2qm a x

)
different

subsets R of the set S, and for each R compute

‖O†
R‖l2 · max

w̃∈ΩR
‖w̃‖l2 = λ

O †
R

max · max
w̃R∈ΩR

‖w̃R‖l2 ,

where λ
O †

R
max denotes the largest singular value of O†

R, and

max
w̃R∈ΩR

‖w̃R‖l2 =

√√√√∑

si ∈R

N −1∑

k=0

(δwk , i
)2

for ΩR defined as in Section III.8 This is significantly lower
than the required computational cost for the robustness analysis
from [24].

Finally, it is worth noting that for almost all systems (i.e.,
for almost all pairs of matrices A,C), we have that qmax =
p/2 − 1� [16], meaning that 1 ≤ p − 2qmax ≤ 2. Thus, for
almost all systems, to obtain the bound, we would need to eval-
uate the above term for either p or p(p − 1)/2 sets R only.

V. ROBUSTNESS OF P1,ω ESTIMATOR TO NOISE

In this section, we provide a bound on the error of the P1,ω

estimator due to noise. We start by introducing notation similar
to the one used in the previous section:

(xl1 ,ω , ẽl1 ) = arg minP1,ω (17)

Δxl1 = xl1 ,ω − x0 , Δẽl1 = ẽl1 − ẽ∗ (18)

Specifically, we are interested in obtaining a bound on Δxl1 .
Theorem 2: When sensors from setK ⊂ S are attacked, state

estimation error Δxl1 satisfies the following constraint
∑

si ∈K�

‖OiΔxl1 ‖l2 ≤
∑

si ∈K
‖OiΔxl1 ‖l2 + 2σΩ , (19)

where σΩ = maxw̃∈Ω ‖w̃‖l2 ,l1 . �
Proof 2: Since ẽl1 is a minimizer of the problem P1,ω , it

follows that ‖ẽl1 ‖l2 ,l1 ≤ ‖ẽ∗‖l2 ,l1 . Thus, to find a bound on the
Δẽl1 we consider a set that contains all feasible Δẽl1 , which is
defined as:

{
Δẽl1 ∈ RpN | ‖Δẽl1 + ẽ∗‖l2 ,l1 ≤ ‖ẽ∗‖l2 ,l1

}
. (20)

8On the other hand, if the noise bounds in Ω are defined as bounds on the l2
norm of noise for each sensor at each time step, this term would be equal to the
sum of the squared norms.
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By starting from the the above feasibility condition, it follows
that:

p∑

i=1

‖Δẽl1
i + ẽ∗i ‖l2 ≤

p∑

i=1

‖ẽ∗i ‖l2 ⇒

0 ≥
p∑

i=1

‖Δẽl1
i + ẽ∗i ‖l2 −

p∑

i=1

‖ẽ∗i ‖l2 =

r1=
∑

si ∈K
‖Δẽl1

i + ẽ∗i ‖l2 +
∑

si ∈K�

‖Δẽl1
i ‖l2 −

∑

si ∈K
‖ẽ∗i ‖l2 ≥

r2≥
∑

si ∈K
‖ẽ∗i ‖l2 −

∑

si ∈K
‖Δẽl1

i ‖l2

+
∑

si ∈K�

‖Δẽl1
i ‖l2 −

∑

si ∈K
‖ẽ∗i ‖l2 =

=
∑

si ∈K�

‖Δẽl1
i ‖l2 −

∑

si ∈K
‖Δẽl1

i ‖l2 =

=
p∑

i=1

‖Δẽl1
i ‖l2 − 2

∑

si ∈K
‖Δẽl1

i ‖l2 .

Here, r1 is satisfied by the fact that only sensors from the
set K are attacked—i.e., all other blocks of the attack vector
ẽ∗ are zero. Relation r2 follows from the fact that ‖a + b‖ ≥
‖a‖ − ‖b‖, for any a, b.9

Thus, the set from (20) can be overapproximated by the set
{

Δẽl1 ∈ RpN | ‖Δẽl1 ‖l2 ,l1 ≤ 2
∑

si ∈K
‖Δẽl1

i ‖l2

}
(21)

From (5), we have that ẽ∗i = ỹi − Oix0 − w̃∗
i .

Similarly, from (10) it follows that ẽl1
i = ỹi − Oixl1 ,ω − w̃l1

i ,
which implies

Δẽl1
i = −OiΔxl1 − Δw̃i (22)

where Δw̃i = w̃l1 − w̃∗
i with w̃l1

i , w̃∗
i ∈ Ω{si }.

Hence, the constraint from the set definition in (21) can be
represented as:

p∑

i=1

‖Δẽl1
i ‖l2 ≤ 2

∑

si ∈K
‖Δẽl1

i ‖l2 ⇔

∑

si ∈K�

‖OiΔxl1 + Δw̃i‖l2 ≤
∑

si ∈K
‖OiΔxl1 + Δw̃i‖l2 (23)

Again, using properties of norms we have

‖OiΔxl1 + Δw̃i‖l2 ≥ ‖OiΔxl1 ‖l2 − ‖Δw̃i‖l2

‖OiΔxl1 + Δw̃i‖l2 ≤ ‖OiΔxl1 ‖l2 + ‖Δw̃i‖l2 ,

and thus, from (23) it follows that the set constraint from (21)
can be additionally relaxed to

∑

si ∈K�

‖OiΔxl1 ‖l2 ≤
∑

si ∈K
‖OiΔxl1 ‖l2 + δw , (24)

9 In this paper, when a norm is not clearly specified we imply that a statement
is valid for any norm.

where

δw =
p∑

i=1

‖Δw̃i‖l2 ≤ 2 max
w̃ i ∈Ω{s i }

p∑

i=1

‖w̃i‖l2 = 2max
w̃∈Ω

‖w̃‖l2 ,l1 ,

which concludes the proof.
Remark 1: Proposition 6 from [16] states that P1,ω can cor-

rectly estimate the state for noiseless systems (Ω = 0) if and
only if for all K such that |K| = q, it holds that:

∑

si ∈K�

‖Oix‖l2 >
∑

si ∈K
‖Oix‖l2 , ∀x ∈ Rn \ {0}. (25)

This means that (19) is tight for noiseless systems, since
for Ω = 0 (19) takes the form

∑
si ∈K� ‖OiΔxl1 ‖l2 ≤∑

si ∈K ‖OiΔxl1 ‖l2 ; this constraint when combined with (25)
implies that for noiseless systems Δxl1 = 0, meaning that the
state is correctly reconstructed.

Finally, if we consider systems that can deal with up to q
attacks when there is no noise, from (19) and (25) it follows
that the feasible set for the state estimation vector Δxl1 can be
described as the set where Δxl1 = 0 or it satisfies

∑

si ∈K
‖OiΔxl1 ‖l2 <

∑

si ∈K�

‖OiΔxl1 ‖l2

≤
∑

si ∈K
‖OiΔxl1 ‖l2 + 2σΩ (26)

for all K ⊂ S, such that |K| = q.
Now, consider any vector v ∈ Rn . From (25), there exists

ε > 0 such that
∑

si ∈K ‖Oiv‖l2 + ε =
∑

si ∈K� ‖Oiv‖l2 , and
thus all vectors of the form αv, where α ∈ (0, 2σΩ/ε] satisfy
(26), while for all α > 2σΩ/ε, αv does not belong to the feasi-
bility region (26). This implies that starting from 0 and moving
in any direction, a point will be reached after which all new
points along that direction do not satisfy (26). Therefore, when
the condition (25) for correct estimation for noiseless systems
is satisfied, then there exists a bounded solution of (26)—i.e.,
the maximal state estimation error Δxl1 is bounded.

Finally, it is worth noting that the condition (25) corresponds
to the Null-Space Property commonly used in compressed sens-
ing literature. When (25) holds, if Δxl1 is the maximization
point for noise level σΩ , then for noise level σ̃Ω = kσΩ , k > 0,
error vector kΔxl1 satisfies (19) for the new noise level σ̃Ω .
The scaled vector is also a maximization point of the new
problem (with noise level σ̃Ω ), since otherwise there would
exist a state error vector with a larger l2 norm for the initial
problem (with noise level σΩ ). Consequently, in this case, the
estimation error bound obtained by maximization of ‖Δxl1 ‖2
over the set described by (19) depends linearly on the size of the
noise. �

From the relationship between l2 and l1 norms where

‖α‖l1 ≥ ‖α‖l2 ≥ 1√
n
‖α‖l1 , ∀α ∈ Rn , (27)
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it follows that ‖OiΔxl1 ‖l1 ≥ ‖OiΔxl1 ‖l2 ≥ 1√
N
‖OiΔxl1 ‖l1 .

Therefore,

∑

si ∈K�

‖OiΔxl1 ‖l2 ≥ 1√
N

∑

si ∈K�

‖OiΔxl1 ‖l1 =
‖OK�Δxl1 ‖l1√

N

∑

si ∈K
‖OiΔxl1 ‖l2 ≤

∑

si ∈K
‖OiΔxl1 ‖l1 = ‖OKΔxl1 ‖l1 .

The above inequalities along with Theorem 2 prove the
following corollary.

Corollary 1: When sensors from set K ⊂ S are attacked, the
state estimation error Δxl1 satisfies

‖OK�Δxl1 ‖l1 ≤
√

N‖OKΔxl1 ‖l1 + 2
√

NσΩ , (28)

where σΩ = maxw̃∈Ω ‖w̃‖l2 ,l1 .
Both conditions from Theorem 2 and Corollary 1 define sets

that contain all feasible Δxl1 when less than or equal to q sen-
sors are attacked; the case where q1 < q sensors are attacked
is covered by the scenario where |K| = q sensors are compro-
mised, but q − q1 sensors are inserting zero signals. However,
maximization problems over these sets may be hard to solve in
the general case. Thus, we introduce the following theorem that
for a special class of systems provides an analytic formula for
‖Δxl1 ‖l2 .

Theorem 3: Suppose that for allK ⊂ S with |K| = q it holds

OT
K�OK� − qN 2OT

KOK � λIn (29)

for some λ > 0. Then if at most q nodes are compromised the
following condition holds:

‖Δxl1 ‖l2 ≤ 2
√

NσΩ

λ
· max
K⊂S,|K|=q

(‖OK�‖l2 +
√

qN‖OK‖l2 )

(30)
�

Proof 3: We start by assuming that the set of compromised
sensors K has q elements. From (28) and (27) it follows that

‖OK�Δxl1 ‖l2 ≤ √
qN‖OKΔxl1 ‖l2 + 2

√
NσΩ . (31)

Let’s denote T = ‖OK�Δxl1 ‖l2 −
√

qN‖OKΔxl1 ‖l2 . Then, it
holds that for Δxl1 �= 0:

T =
‖OK�Δxl1 ‖2

l2
− qN 2‖OKΔxl1 ‖2

l2

‖OK�Δxl1 ‖l2 +
√

qN‖OKΔxl1 ‖l2

=
(Δxl1 )T

(
OT

K�OK� − qN 2OT
KOK

)
Δxl1

‖OK�Δxl1 ‖l2 +
√

qN‖OKΔxl1 ‖l2

r1≥ λ‖Δxl1 ‖2
l2

‖OK�Δxl1 ‖l2 +
√

qN‖OKΔxl1 ‖l2

r2≥ λ‖Δxl1 ‖2
l2

(‖OK�‖l2 +
√

qN‖OK‖l2 )‖Δxl1 ‖l2

=
λ

(‖OK�‖l2 +
√

qN‖OK‖l2 )
‖Δxl1 ‖l2 (32)

Here, r1 holds due to (29), while r2 is caused by the fact that
‖Ax‖l2 ≤ ‖A‖l2 ‖x‖l2 for any matrix A and vector x.

Therefore, from (31) and (32), Δxl1 satisfies

λ

(‖OK�‖l2 +
√

qN‖OK‖l2 )
‖Δxl1 ‖l2 ≤ 2

√
NσΩ (33)

which implies (30).
On the other hand, consider a set K1 ⊂ S with |K1 | < q. If

(29) is satisfied for all K with exactly q sensors, then it also
holds for K1 . This case is also covered by the scenario where q
sensors including the sensors from K1 are compromised, while
the injected attack signals on q − |K1 | sensors that are not in
K1 are equal to zero. The error signal in this case satisfies (30),
although effectively only |K1 | < q are used to inject attacks,
which concludes the proof.

Although Theorem 3 provides an analytic bound for the
worst-case state estimation error obtained by P1,ω for a cer-
tain class of systems, it is worth noting that it could heavily
overapproximate the error due to the gains caused by the con-
versions between the norms (i.e., factor

√
qN ). Still, along with

Theorem 2 and Corollary 1, it provides the first analytic relation
showing that the worst-case error is linear with the size of the
noise, as in the case for the P0,ω estimator.

Finally, when N = 1, the state estimation does not consider
previous sensor measurements—i.e., only sensor measurements
from the current time-step are taken into account. Thus, in this
case, any knowledge of the system’s dynamics is not utilized,
and the problem if effectively mapped into the problem of esti-
mating the state of a non-dynamical system from a single set of
potentially compromised sensor measurements. This problem
has drawn considerable attention in some CPS domains, mainly
in the smart-grids community (e.g., [33]). In this case, the suffi-
cient condition (29) for the analytic bound (30) from Theorem 3
can be specified as

(PK�C)T PK�C − q(PKC)T PKC � λIn (34)

for some λ > 0. In addition to considerably reducing the con-
servativeness of (30) for N = 1, the condition from (34) is
significantly less restrictive, which enables the use of the bound
(30) (where N = 1) for a large class of systems.

VI. ATTACK IDENTIFICATION IN PRESENCE OF NOISE

In addition to computing a state estimate, the presented attack-
resilient state estimation procedures also estimate attack vectors
injected at time steps k = 0, 1, . . . , N − 1 (i.e., vectors ẽlt , t =
0, 1). Thus, in this section we consider conditions for which the
attack vectors estimates can be used for sound identification of
compromised sensors; here, by sound identification we refer to
methods that ensure that no uncompromised (i.e., valid) sensors
would be identified as under attack. To simplify the notation, we
will use the lt notation (instead of l0 or l1) whenever we describe
results that hold for both P0,ω and P1,ω obtained estimates.

An obvious candidate for identification procedure would be
to use the policy that classifies sensor si as attacked if and only
if I(ẽlt

i �= 0). Note that, unless we can guarantee that the set
of identified attacked sensors is a subset of the actual set of
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attacked sensors K (which is not known in advance), we cannot
guarantee soundness of this identification procedure.10

On the other hand, we can use the state estimation guarantees
presented in the previous two sections to provide a sound attack
identification procedure. Consider the vector Δẽlt . If ẽ∗i = 0
(i.e., sensor si is not attacked), then Δẽlt

i = ẽlt
i . Consequently,

if there is a bound on the values for Δẽlt

i (i.e., error of the
attack vector estimation for sensor si), we can guarantee that
all attack vector estimates ẽlt

i that violate the bound effectively
correspond to scenarios where sensor si is attacked.

To determine this bound, referred to as Dẽ l t

i , we use that from
(15): Δẽlt

i = −OiΔxlt − Δw̃i . Thus,

‖Δẽlt
i ‖l2 ≤ ‖Oi‖l2 ‖Δxlt ‖l2 + ‖Δw̃i‖l2

≤ ‖Oi‖l2 ‖Δxlt ‖l2 + 2 max
w̃ i ∈Ω{s i }

‖w̃i‖l2 . (35)

Therefore, the bounds for ‖Δxlt ‖l2 , which we will refer to as
Dx l t , can be used to compute a bound for ‖Δẽlt

i ‖l2 as follows

Dẽ l t

i = ‖Oi‖l2 D
x l t + 2 max

w̃ i ∈Ω{s i }
‖w̃i‖l2 .

For instance, when P0,ω is used, the bound Dẽ l 0
i on ‖Δẽlt

i ‖l2 is

Dẽ l 0

i = 2‖Oi‖l2 · max
R ⊂ S,

|R| = p − 2qmax

(
‖O†

R‖l2 · max
w̃R∈ΩR

‖w̃R‖l2

)

+ 2 max
w̃ i ∈Ω{s i }

‖w̃i‖l2 (36)

Now we can define a Pt,ω -based (t = 0, 1) attack identifica-
tion scheme as:

Attackedlt (si) = I(‖ẽlt
i ‖l2 > Dẽ l t

i ), i = 1, . . . , p. (37)

The following theorem shows soundness of the proposed at-
tack identification scheme.

Theorem 4: If Attackedlt (si) = 1 then sensor si ∈ K.
Furthermore, for all attack vectors ẽ∗ for which ‖ẽ∗i ‖l2 >

2Dẽ l t

i , the attack on sensor si will be correctly detected (i.e.,
Attackedlt (si) = 1). �

Proof 4: Suppose Attackedlt (si) = 1, implying that
‖ẽlt

i ‖l2 > Dẽ l t

i . Thus,

Dẽ l t

i < ‖Δẽlt
i + ẽ∗i ‖l2 ≤ ‖Δẽlt

i ‖l2 + ‖ẽ∗i ‖l2 ≤ Dẽ l t

i + ‖ẽ∗i ‖l2 .

Thus, ‖ẽ∗i ‖l2 > 0 (i.e., the actual attack vector on si is non-zero),
which means that sensor s1 ∈ K.

On the other hand, let’s assume that ‖ẽ∗i ‖l2 > 2Dẽ l t

i . This
implies the following:

2Dẽ l t

i < ‖ẽlt
i −Δẽlt

i ‖l2 ≤ ‖ẽlt
i ‖l2 +‖Δẽlt

i ‖l2 ≤ ‖ẽlt
i ‖l2 +Dẽ l t

i .

Hence, ‖ẽlt
i ‖l2 > Dẽ l t

i , and Attackedlt (si) = 1.

10 To the best of our knowledge, even for a simpler problem of estimation of
sparse signals α0 from noisy measurements z obtained using an overcomplete
dictionary Φ (i.e., z = Φα0 + v), the l0 based solution [26], [27] does not
guarantee correct support recovery for α0 .

VII. EVALUATION

To evaluate conservativeness of the state-estimation error
bounds presented in this work, we exploit the evaluation ap-
proach from [24]. We randomly generated 100 systems with
n = 10 states and p = 5 sensors, and 100 systems with n = 20
states and p = 11 sensors. Each of these systems had measure-
ment models satisfying that the rows of the C matrix have unit
magnitude, while all noise-bound vectors δwk

, k ≥ 0, had ele-
ments between 0 and 2. For each of the generated 200 systems,
with 10 or 20 states, we evaluated the state-estimation error
Δxl0 in 1000 experiments for various attack and noise realiza-
tions, where the number of attacked sensors was less than or
equal to 2 for the systems with p = 5 sensors, and less than
or equal to 5 for systems with p = 11 sensors, while noise re-
alizations were bounded by the noise bounds specified by the
system’s δwk

.
The focus of our evaluation was the comparison between the

state-estimation bounds and the observed state estimation errors
due to the presence of noise. In both simulations and calculations
of the error bounds we considered the case when the window
size N is equal to the number of system states (i.e., N = n). The
results of our evaluation are presented in Figs. 1 and 2. Figs. 1(a)
and 2(a) present histograms of Δxl0 errors for all 1000 attack
scenarios for two randomly selected system with n = 10 and
n = 20 states. As can be seen, the bound from Theorem 1 is
an order of magnitude larger than the average state-estimation
error for each system.

Furthermore, we investigated the ratio between the worst-case
observed state estimation error for all 1000 simulations of each
system S—i.e., maxi=1:1000 ‖Δxl0

S‖2 , and the system’s error
bounds Dx l 0

S from Theorem 1

Rel errorS =
maxi=1:1000 ‖Δxl0

S‖2

Dx l 0
S

.

Histograms of the relative errors for both types of systems are
shown in Fig. 1(b) and 2(b). As can be observed, the maximal
observed state estimation error reaches 16% of the computed
bound for smaller systems (n = 10 states), while for larger sys-
tems (with n = 20 states) the maximal relative error reaches
1.5% of the computed bounds.

Conservativeness of the presented results was partially caused
by the fact that we only simulated random initial points and ran-
dom attack vectors, where sensor attacks are generated indepen-
dently for each attacked sensor and noise profiles. As a result, the
considered scenarios clearly do not capture worst-case attacks
(i.e., attacks that could maximize the state estimation errors);
for each system, to obtain scenarios that result in the worst-case
estimation errors it is necessary to derive the corresponding at-
tack vectors (and the initial states), which is beyond the scope
of this paper.

This has been highlighted in the discrepancy of the relative
estimation errors for systems with different size, as illustrated in
the histograms in Figs. 1(b) and 2(b). While simulating different
attack and noise realizations, we observed that the obtained
maximal relative estimation error reduces with an increase in
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Fig. 1. Simulation results for 1000 runs of 100 randomly selected systems with n = 10 states and p = 5 sensors. (a) Histogram for a system with the precomputed
error bound equal to 28.6, (b) Histogram of the maximal relative state-estimation errors for all 100 systems.

Fig. 2. Simulation results for 1000 runs of 100 randomly selected systems with n = 20 states and p = 11 sensors. (a) Histogram for a system with the
precomputed error bound equal to 217.4, (b) Histogram of the maximal relative state-estimation errors for all 100 systems.

the system size n and hence the window size (since we analyzed
systems for N = n). This can be explained by the fact that with
the increase of the window size N , the number of attack vectors
is also increased, meaning that due to the random attack vector
selections, the probabilities to incorporate a worst-case attack is
significantly reduced.

However, for small systems (e.g., n = 1, 2 states) we were
able to generate initial states and attack vectors for which
the obtained bounds were tight—i.e., the error ‖Δxl0 ‖2 is
equal to the obtained bounds. For instance, consider a dy-
namical system with scalar state x0 , noise vector bound δw =
[δw,1 δw,2 δw,3 ]

T , sensor output vector c = [c1 c2 c3 ]
T , where

c1
δw , 1

≥ c2
δw , 2

≥ c3
δw , 3

, and let’s assume that either sensor s2 or
s3 has been compromised (e.g., sensor s2 , making attack vec-
tors e∗0,1 = e∗0,3 = 0). Note that in this case the window size is
N = 1. For this example, if the obtained sensor measurement on
sensor s1 is y0,1 = c1 · x0 − δw,1 and the attack signal inserted
via the second sensor is e∗0,2 = −2 c2

c1
δw,1 , then state estimate

xl0 ,ω = x0 − 2 δw , 1
c1

and attack vector with ẽl0
0,1 = ẽl0

0,2 = 0 is
one of the solutions of the problem P0,ω from (9) because it

would satisfy that

y0,1 − c1 · xl0 ,ω − ẽl0
0,1 = δw,1 ≤ δw,1

y0,2 − c2 · xl0 ,ω − ẽl0
0,2 = w0,2 ≤ δw,2 .

Thus, in this case, Δxl0 = −2 δw , 1
c1

making the state estimation
error bound from (13) tight (i.e., equal to the bound from (13)).
Also, it is worth noting that the estimated attack signal ẽl0

0,3
satisfies that

|ẽl0
0,3 | ≤ 2δw,3 + 2

c3

c1
δw,1 = Dẽ l 0

3 ,

for Dẽ l 0
3 defined as in (36). Thus, even if computed ẽl0

0,3 is
nonzero, the attack identification method from (37) does not
misclassify sensor s3 as compromised (i.e., Attackedl0 (s3) =
0). Finally, a similar approach can be used to generate exam-
ples with simple second order plant dynamics for which tight
estimation bounds will be achieved.

Note that the obtained bounds from Theorem 1 are only
slightly more conservative then the bounds obtained using the
procedure we introduced in [24]; for instance, for the systems
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TABLE I
PERCENTAGE OF 1000 RANDOMLY GENERATED NON-DYNAMICAL SYSTEMS

WITH q = 1 COMPROMISED SENSOR THAT SATISFY THE CONDITION FROM (34);
HERE, qm ax = � p−n

2 � IS THE MAXIMAL NUMBER OF COMPROMISED SENSORS

FOR WHICH THE STATE CAN BE RECOVERED WITH l0 ESTIMATOR

Max. number of attacked sensors % of systems
for which estimation is possible satisfying (34)

p = 9, n = 1 qm a x = 4 100%
p = 9, n = 2 qm a x = 3 70.4%
p = 9, n = 3 qm a x = 3 17.8%
p = 9, n = 4 qm a x = 2 0.4%

with n = 10 states, the maximal relative error was 20%. On
the other hand, the complexity of the error bounding algorithm
from [24] limits its use to systems with smaller number of states,
while the bound from Theorem 1 can be computed for systems
with n = 20 states and p = 11 sensors in seconds.

Finally, we evaluate how often the condition from (34) is
satisfied, which allows for the use of the very computationally
efficient bounding procedure (30) for the l1-based state estima-
tors. We considered random systems with p = 9 sensors and a
different number of states n. For each type of systems (i.e., n and
p) we randomly generated 1000 systems and for each system we
checked if there exists α > 0 such that (34) is satisfied. Table I
summarizes the results; for reference, in the table we also spec-
ify the value for qmax—the maximal number of compromised
sensors for which the state can be always recovered for systems
without noise and any (optimal) state estimator (e.g., l0-based
estimator). As can be seen, with the increase in the number of
states, the percentage of systems for which the bound (30) can
be used significantly decreases. This has been caused by the fact
that with the increase in n, the values for qmax decrease, mean-
ing that even l0-based estimator can deal with a lower number
of compromised sensors. Furthermore, for these systems the
worst-case recorded relative error was 2 · 10−4 . As described in
Section V, the reason for the heavy overapproximations are the
use of l1-based convexification and the conversions between the
norms. While this paper provides the first analytic bound for
l1-based state estimation and shows that the worst-case error is
linear with the size of the noise, an avenue for future work will
be to provide a tighter bound for the convex-optimization based
approach to attack-resilient state estimation.

VIII. CONCLUSION

In this paper, we have considered the problem of state esti-
mation when some of the sensors are attacked by a malicious
attacker. Unlike existing work on this topic, we have investi-
gated the case when there is bounded-size noise in the system’s
dynamics. We have shown how to use two estimators that in-
corporate noise allowance in its constraints (i.e., P0,ω and P1,ω )
and proved that the worst-case state estimation error is linear
with the size of the noise present in the system. The provided
bounds illustrate that l0 based state estimation results in signif-
icantly more accurate state estimation. However, the penalty is
paid in the complexity of the procedure—P0,ω can be solved

as a mixed integer linear program, which are NP hard in gen-
eral, while P1,ω can be efficiently solved using standard convex
solvers and is more suited for embedded control applications.

Finally, we have derived attack identification procedures,
based on these estimators, that exploit the fact that besides
state estimates, estimations of attack vectors are also provided.
We have shown that the proposed attack identification schemes
are sound, and derived conditions on signals injected via an
attacked sensor that would guarantee identification of the com-
promised sensor. An avenue for future work would be to deter-
mine conditions when the support of estimated attack vectors is
a subset of the set of attacked vectors.
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