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Abstract. We consider the problem of verifying finite precision imple-
mentation of linear time-invariant controllers against mathematical spec-
ifications. A specification may have multiple correct implementations
which are different from each other in controller state representation,
but equivalent from a perspective of input-output behavior (e.g., due
to optimization in a code generator). The implementations may use fi-
nite precision computations (e.g. floating-point arithmetic) which cause
quantization (i.e., roundoff) errors. To address these challenges, we first
extract a controller’s mathematical model from the implementation via
symbolic execution and floating-point error analysis, and then check ap-
proximate input-output equivalence between the extracted model and
the specification by similarity checking. We show how to automatically
verify the correctness of floating-point controller implementation in C
language using the combination of techniques such as symbolic execution
and convex optimization problem solving. We demonstrate the scalability
of our approach through evaluation with randomly generated controller
specifications of realistic size.

1 Introduction

Most modern safety- and life-critical embedded applications rely on software-
based control for their operation. When reasoning about safety of these systems,
it is extremely important to ensure that control software is correctly imple-
mented. In this paper, we study the problem of whether a given piece of software
is a faithful representation of an abstract specification of the control function.

We assume a commonly used development approach, where control systems
are developed in a model-driven fashion. The model captures both the dynamics
of the “plant”, the entity to be controlled, and the controller itself, as mathe-
matical expressions using well established tools, such as Simulink and Stateflow.
Control theory offers a rich set of techniques to determine these expressions, de-
termine their parameters, and perform analysis of the model to conclude whether
the plant model adequately describes the system to be controlled and whether
the controller achieves the desired goals of the control system. In this work, we



assume that such control design activities have been performed, achieving the
acceptable degree of assurance for the control design. In other words, we as-
sume that the mathematical model of the controller is correct with respect to
any higher-level requirements and can be used as the specification for a software
implementation of the controller.

Typically, control software is obtained by code generation from the mathe-
matical model. Code generation tools such as Embedded Coder are widely used.
Ideally, we would like to have these code generation tools to be verified, that is,
to offer guarantees that generated code correctly computes the control function.
In this case, no verification of the control code would be needed. However, com-
mercially available code generators are complex black-box tools and are generally
not amenable to formal verification. Subtle bugs have been found in commer-
cially available code generators in the past [25]. In the absence of verified code
generators, we would like to be able to verify instances of generated code with
respect to their mathematical specification.

In our past work [26, 28], we explored several approaches to the verification
of implementations of linear time invariant (LTI) controllers. In LTI controllers,
the relationships between the values of inputs and state variables, and between
state variables and outputs, are captured as linear functions, and coefficients
of these functions are constant (i.e., time-invariant). The main limitation in
all of these approaches is the assumption that the calculations are performed
using real numbers. Of course, real numbers are a mathematical abstraction. In
practice, software performs calculations using a limited-precision representation
of numbers, such as the floating-point representation. The use of floating-point
numbers introduces errors into the computation, which have to be accounted for
in the verification process.

In this paper, we build on the work of [28], which follows an equivalence
checking approach. We apply symbolic execution to the generated code, which
calculates symbolic expressions for the values of state and output variables in
the code at the completion of the invocation of the controller. We use these sym-
bolic values to reconstruct a mathematical representation of the control function.
We introduce error terms into this representation that characterize the effects
of numerical errors. The verification step then tries to establish the approxi-
mate equivalence between the specification of the control function and the re-
constructed representation. In [28], we considered two promising alternatives for
assessing the equivalence: one based on SMT solving and the other one based on
convex optimization. Somewhat surprisingly, when the error terms that account
for floating-point calculations are added, the SMT-solving approach becomes
impractical, while the optimization-based approach suffers minimal degradation
in performance.

The paper is organized as follows: Section 2 provides background of LTI
systems. Section 3 describes how to extract a model from the controller code.
Section 4 presents the approximate equivalence checking. Section 5 evaluates the
scalability of our approach. Section 6 and 7 provide an overview of related work
and conclude the paper.



2 Preliminaries

This section presents preliminaries on LTI controllers and their software im-
plementations. We also introduce two real-world examples that motivate the
problem considered in this paper, as well as the problem statement.

2.1 Linear Feedback Controller

The goal of feedback controllers is to ensure that the closed-loop systems have
certain desired behaviors. In general, these controllers derive suitable control
inputs to the plants (i.e., systems to control) based on previously obtained mea-
surements of the plant outputs. In this paper, we consider a general class of
feedback controllers that can be specified as linear time-invariant (LTI) con-
trollers in the standard state-space representation form:

zk+1 = Azk + Buk

yk = Czk + Duk.
(1)

where uk ∈ Rp, yk ∈ Rm and zk ∈ Rn are the input vector, the output
vector and the state vector at time k respectively. The matrices A ∈ Rn×n,
B ∈ Rn×p, C ∈ Rm×n and D ∈ Rm×p together with the initial controller
state z0 completely specify an LTI controller. Thus, we use Σ(A,B,C,D, z0) to
denote an LTI controller, or just use Σ(A,B,C,D) when the initial controller
state z0 is zero.

During the control-design phase, controller Σ(A,B,C,D, z0) is derived to
guarantee the desired closed-loop performance, while taking into account avail-
able computation and communication resources (e.g., finite-precision arithmetic
logic units). This model (i.e., controller specification) is then usually ‘mapped’
into a software implementation of a step function that: (1) maintains the state of
the controller, and updates it every time new sensor measurements are available
(i.e., when it’s invoked); and (2) computes control outputs (i.e., inputs applied
to the plant) from the the current controller’s state and incoming sensor mea-
surements. In most embedded control systems, the step function is periodically
invoked, or whenever new sensor measurements arrive. In this work, as in our
previous work [28], we assume that data is exchanged with the step function
through global variables.3 In other words, the input, output and state variables
are declared in the global scope, and the step function reads both input and
state variables, and updates both output and state variables as the effect of its
execution. It is worth noting however that this assumption does not critically
limit our approach because it can be easily extended to support a different code
interface for the step function.

2.2 Motivating Examples

To motivate our work, we introduce two examples from [26, 28]. These examples
illustrate limitations of the standard verification techniques that directly utilize

3 This convention is used by Embedded Coder, a code generation toolbox for Mat-
lab/Simulink.



the mathematical model from (1), in cases when controller software is generated
by a code generator whose optimizations potentially violate the model while still
ensuring the desired control functionality.

A Scalar Linear Integrator. Consider a simple controller that computes
control input uk as a scaled sum of all previous sensor data yi ∈ R, i = 0, ..., k−1
– i.e.,

uk =

k−1∑
i=0

αyi, k > 1, and, u0 = 0. (2)

Now, if we use the Simulink Integrator block with Forward Euler integration to
implement this controller, the resulting controller model will be Σ(1, α, 1, 0), –
i.e., zk+1 = zk + αyk, uk = zk. On the other hand, a realization Σ̂(1, 1, α, 0) –
i.e., zk+1 = zk + yk, uk = αzk, of the controller would introduce a reduced com-
putational error when finite precision arithmetics is used [10]. Thus, controller
specification (2) may result in two different software implementations due to the
use of different code generation tools. Still, it is important to highlight that these
two implementations would have identical input-output behavior – the only dif-
ference is whether they maintain a scaled or unscaled sum of the previous sensor
measurements.

Multiple-Input-Multiple-Output Controllers. Now, consider a more gen-
eral Multiple-Input-Multiple-Output (MIMO) controller with two inputs and
two outputs which maintains five states

zk+1 =


−0.500311 0.16751 0.028029 −0.395599 −0.652079
0.850942 0.181639 −0.29276 0.481277 0.638183
−0.458583 −0.002389 −0.154281 −0.578708 −0.769495

1.01855 0.638926 −0.668256 −0.258506 0.119959
0.100383 −0.432501 0.122727 0.82634 0.892296


︸ ︷︷ ︸

A

zk+

+


1.1149 0.164423
−1.56592 0.634384
1.04856 −0.196914
1.96066 3.11571
−3.02046 −1.96087


︸ ︷︷ ︸

B

uk (3)

yk =

[
0.283441 0.032612 −0.75658 0.085468 0.161088
−0.528786 0.050734 −0.681773 −0.432334 −1.17988

]
︸ ︷︷ ︸

C

zk (4)

The controller has to perform 25 + 10 = 35 multiplications as part of the
state z update in every invocation of the step function. On the other hand, the



following controller requires only 5 + 10 = 15 multiplications for state update.

ẑk+1 =


0.87224 0 0 0 0

0 0.366378 0 0 0
0 0 −0.540795 0 0
0 0 0 −0.332664 0
0 0 0 0 −0.204322


︸ ︷︷ ︸

Â

ẑk+

+


0.822174 −0.438008
−0.278536 −0.824313
0.874484 0.858857
−0.117628 −0.506362
−0.955459 −0.622498


︸ ︷︷ ︸

B̂

uk, (5)

yk =

[
−0.793176 0.154365 −0.377883 −0.360608 −0.142123
0.503767 −0.573538 0.170245 −0.583312 −0.56603

]
︸ ︷︷ ︸

Ĉ

ẑk (6)

The above controllers Σ and Σ̂ are similar,4 which means that the same input
sequences yk delivered to both controllers, would result in identical outputs of
the controllers. Note that the controller’s states will likely differ. Consequently,
the ‘diagonalized’ controller Σ̂ results in the same control performance and thus
provides the same control functionality as Σ, while violating the state evolution
model of the initial controller Σ. The motivation for the use of the diagonalized
controller comes from a significantly reduced computational cost that allow for
the utilization of resource constrained embedded platforms. In general, any con-
troller (1), would require n2 +np = n(n+ p) multiplications to update its state.
This can be significantly reduced when matrix A in (1) is diagonal – in this case
only n+ np = n(p+ 1) multiplications are needed.

2.3 Problem Statements

As illustrated with the motivating examples, the initial controller model and its
implementation (i.e., step function) may be different from each other in represen-
tation (i.e., controller parameters, state representation) due to the optimization
of code generators, while being functionally equivalent from the input-output
perspective. Thus, we would like to develop the verification technique that is
not sensitive to the state representation of the controller. Moreover, the con-
troller software for embedded systems uses a finite precision arithmetic which
introduces rounding errors in the computation. Thus, it is necessary to analyze
the effect of rounding errors in the verification process. This work focuses on
the controller implementations using floating-point arithmetic, but can be eas-
ily extended to the setup for fixed-point arithmetic. Consequently, our problem

4 Similarity transform is formally defined in Section 4.



statements are as follows: given an LTI model, a step function using floating-
point arithmetic and an approximate equivalence precision, verify if the step
function is approximately equivalent to the initial LTI model from the input-
output perspective.

3 Extracting Model from Floating-Point Controller
Implementation

Our approach to the verification of a controller implementation against its math-
ematical model takes two steps: we first extract a model from the finite precision
implementation (i.e., step function using floating-point arithmetic), and then
compare it with the original model. This approach is an extension of [28] to con-
sider the quantization error in the finite-precision implementation. To obtain a
model from the step function, we employ the symbolic execution technique [7, 21],
which allows us to identify the computation of the step function (i.e., the big-step
transition relation on global states between before and after the execution of the
step function). From the transition relation, we extract a mathematical model
for the controller implementation. Since the implementation has floating-point
quantization (i.e., roundoff) errors, the representation of the extracted model
includes roundoff error terms, thus being different from the representation of the
initial LTI model (1). We will describe the representation of extracted models in
the next subsection.

3.1 Quantized Controller Model

A finite precision computation (e.g., floating-point arithmetic) involves rounding
errors, which makes the computation result slightly deviated from the exact value
that might be computed with the infinite precision computation. The floating-
point rounding error can be modeled with the notions of both absolute error
and relative error. The absolute error is defined as the difference between an
exact number and its rounded number. The relative error defines such difference
relative to the exact number. To model quantized controller implementations,
we extend the representation of LTI model (1) with the new terms of absolute
errors and relative errors, and obtain the following representation of quantized
controller model:

ẑk+1 = (Â + EA)ẑk + (B̂ + EB)uk + ez

yk = (Ĉ + EC)ẑk + (D̂ + ED)uk + ey.
(7)

where Â, B̂, Ĉ and D̂ are controller parameters. EA, EB, EC and ED are the
relative errors regarding the state and input variables which are bounded by the
relative error bound brel such that ‖EA‖ , ‖EB‖ , ‖EC‖ , ‖ED‖ ≤ brel where ‖·‖
is the L∞ norm operator. In addition, ez and ey are the absolute errors which
are bounded by the absolute error bound babs such that ‖ex‖ , ‖ey‖ ≤ babs.
In the rest of this section, we explain how to extract a quantized controller
model (Â, B̂, Ĉ, D̂, brel, babs) from the floating-point controller implementation
via symbolic execution and floating-point error analysis techniques.



3.2 Symbolic Execution of Floating-Point Controller
Implementation

In our approach, the symbolic execution technique [7, 21] is employed to analyze
the step function C code. We symbolically execute the step function with sym-
bolic values such as symbolic inputs and symbolic controller states, and examine
the change of the program’s global state where the output and new controller
state are updated with symbolic expressions in terms of the symbolic values. The
goal of the symbolic execution in our approach is to find symbolic formulas that
concisely represent the computation of the step function C code that originally
has loops and pointer arithmetic operations. The idea behind this symbolic ex-
ecution process is that the linear controller implementations that we consider
in this work have simple control flows for the sake of deterministic real-time
behaviors (e.g., fixed upper bound of loops), thus being amenable to our sym-
bolic execution process. Consequently, the symbolic execution of linear controller
implementations yield finite and deterministic symbolic execution paths [28].

However, unlike [28], our work herein newly considers the effect of floating-
point rounding errors in the step function. Thus it is necessary to pay special
attention (e.g., normalization [6]) to the floating-point computation in symbolic
execution. When symbolic expressions are constructed with floating-point oper-
ators in the course of symbolic execution, the evaluation order of floating-point
operations should be preserved according to the floating-point program seman-
tics, because floating-point arithmetic does not hold basic algebraic properties
such as associativity and distributivity in general.

Once the symbolic execution is completed, symbolic formulas are produced.
The symbolic formulas represent the computation of the step function in a con-
cise way (i.e., in the arithmetic expression form without loops, function calls and
side effects). The produced symbolic formula has the following form, which we
call transition equation:

v(new) = f(v1, v2, . . . , vt) (8)

where v(new) is a global variable which is updated with the symbolic expression,
vi are the initial symbolic values of the corresponding variables before the sym-
bolic execution of the step function. f(v1, v2, . . . , vt) is the symbolic expression
that consists of floating-point operations where t is the number of variables used
in f . This expression should preserve the correct order of evaluation according
to the floating-point semantics of the step function C code.

For example, consider the step function in [27] , which is generated by Em-
bedded Coder (the code generator of MATLAB/Simulink) for the LTI controller
models (5)(6). We illustrate one of the transition equations obtained from the
symbolic execution of the step function as follows:

y[1](new) = (((((0.503767⊗ x[0])⊕ (−0.573538⊗ x[1]))⊕ (0.170245⊗ x[2]))
⊕(−0.583312⊗ x[3]))⊕ (−0.56603⊗ x[4])).

(9)

where x is the shortened name for LTIS DW.Internal DSTATE, and y is the
shortened name for LTIS Y.y for presentation purposes only, and ⊕, 	 and ⊗
are floating-point operators corresponding to +, − and × respectively. In the



next subsection, we explain how to extract the quantized model (17) from the
symbolic expressions.

3.3 Quantization Error Analysis and Model Extraction

This subsection explains how to extract the quantized controller model (17) from
a set of symbolic expressions (8) obtained from the step function. The symbolic
expression consists of floating-point operations of symbolic values and numeric
constants. We first describe how to analyze the floating-point quantization (i.e.,
roundoff) error in the symbolic expression evaluation. Since we only consider
linear controller implementations rejecting nonlinear cases in the symbolic exe-
cution phase, the symbolic expression f obtained from the step function has the
the following syntax, thus guaranteeing the linearity:

f := v | f ⊕ f | f 	 f | f ~ fc | fc ~ f

fc := c | fc ~ fc

where v is a variable (i.e., the initial symbolic value of the variable), c is a
constant, and ~ ∈ {⊕,	,⊗}. fc is a sub-expression which contains no variable,
thus being evaluated to a constant, while f contains at least one variable. The
multiplication operation ⊗ appears only when at least one operand is a constant-
expression fc, thus preventing the expression from being nonlinear (i.e., the
product of two symbolic values).

In order to simplify a certain program analysis problem, a common assump-
tion is often made in the literature [14, 28] that the floating-point operations
(e.g., ⊕, 	 and ⊗) behave the same way as the real operations (e.g., +, − and
×) with no rounding. Under this assumption, the equation (8) can be represented
in the following canonical form [28]:

v(new) =

t∑
i=1

civi (10)

where t is the number of product terms, v,vi are variables, and ci is the coeffi-
cient. In reality, however, floating-point numbers have limited precision, and the
floating-point operations involve rounding errors. In this work, we consider the
effect of such floating-point rounding errors in the verification.

The IEEE 754 standard [1] views a finite precision floating-point operation
as the corresponding real operation followed by a rounding operation:

x1 ~ x2 = rnd(x1 ∗ x2) (11)

where ~ ∈ {⊕,	,⊗} and ∗ is the corresponding real arithmetic operation to
~. A rounding operator rnd is a function that takes a real number as input
and returns as output a floating-point number that is closest to the input real
number, thus causes a quantization error (i.e., rounding error) in the floating-
point operation. There are multiple common rounding operators (e.g. round to
the nearest, ties to even) defined in the IEEE 754 standard [1]. A rounding
operator can be modeled as follows [15]:

rnd(x) = x(1 + e) + d (12)



for some e and d where e is a relative error, d is an absolute error, and |e| ≤ ε
and |d| ≤ δ. ε and δ can be determined according to the rounding mode and
the precision (i.e., the number of bits) of the system. For example, ε = 2−53 and
δ = 2−1075 for the double precision (i.e., 64 bits) rounding to the nearest [33].
Combining the two equations (11) and (12), we have the following model for the
floating-point operations:

x1 ~ x2 = (x1 ∗ x2)(1 + e) + d (13)

After rewriting the symbolic expression of the transition equation (8) applying
the equation (13), suppose that we have the following equation form:

v(new) =
∑

civi + errrel + errabs (14)

where
∑
civi is the exact expression as (10), and errabs is the absolute error

term bounded by babs such that |errabs| ≤ babs. errrel is the relative error term
which is related to the variables {vi} (i.e., symbolic values). We rewrite errrel
as
∑
errivi where erri is the relative error term specific to the variable vi, and

bi is the upper bound for erri such that |erri| ≤ bi. We relax the equation by
over-approximating each erri as follows:

v(new) =
∑

civi +
∑

errivi + errabs

=
∑

civi + err
∑

vi + errabs (15)

where err is bounded by brel such that |err| ≤ brel where brel is defined as
brel = max{bi}.

We now rearrange and group the product terms by variable names such
as the state variables and the input variables. We assume that the names of
input and output variables are given as the interface of the step function. The
state variables can be identified as the variables appearing in the transition
equations which are not input variables nor output variables. In addition to
the rearrangement, by transforming the sum of products into a form of scalar
product of vectors, we have:

v(new) =[c1, c2, ..., cn]x + [err, err, ..., err]x (16)

+ [c′1, c
′
2, ..., c

′
p]u + [err, err, ..., err]u + errabs

where x is the vector of state variables, and u is the vector of input variables.
Finally, we rewrite the transition equations as two matrix equations as fol-

lows:

x(new) = (Â + EA)x + (B̂ + EB)u + ex

y(new) = (Ĉ + EC)x + (D̂ + ED)u + ey.
(17)

where Â ∈ Rn×n, B̂ ∈ Rn×p, Ĉ ∈ Rm×n and D̂ ∈ Rm×p. The matrices for the
relative errors are bounded by b∗rel such that ‖EA‖ , ‖EB‖ , ‖EC‖ , ‖ED‖ ≤ b∗rel.
The absolute error vectors ex and ey are bounded by b∗abs such that ‖ex‖ , ‖ey‖ ≤
b∗abs. Note that b∗rel and b∗abs can be easily determined using brel and babs obtained
from the floating-point error analysis for each transition equation.



For example, consider the transition equation (9), from which via the floating-
point error analysis, we have:

y[1](new) = (((((0.503767⊗ x[0])⊕ (−0.573538⊗ x[1]))⊕ (0.170245⊗ x[2]))
⊕(−0.583312⊗ x[3]))⊕ (−0.56603⊗ x[4]))

= 0.503767 · x[0] +−0.573538 · x[1] + 0.170245 · x[2]
+− 0.583312 · x[3] +−0.56603 · x[4] + errrel + errabs

= 0.503767 · x[0] +−0.573538 · x[1] + 0.170245 · x[2]
+− 0.583312 · x[3] +−0.56603 · x[4]
+err(x[0] + x[1] + x[2] + x[3] + x[4]) + errabs

(18)

where |err| ≤ 988331
250000ε ÷ (1 − 4ε) = brel, and |errabs| ≤ 4 · (1 + ε)4 · δ = babs.

For the double precision (i.e., 64 bits) rounding to nearest (i.e., ε = 2−53 and
δ = 2−1075), brel ≈ 4.389071× 10−16 and babs ≈ 1.235164× 10−323.

4 Approximate Input-Output Equivalence Checking

In order to verify a finite precision implementation of the linear controller, the
previous section described how to extract the quantized controller model from
the implementation. In this section, we introduce how to compare the extracted
model (17) and the initial model (1) with a notion of approximate input-output
(IO) equivalence.

4.1 Approximate Input-Output Equivalence

This subsection defines an approximate IO equivalence relation, inspired by the
similarity transformation of LTI systems [30]. In order for two LTI systems to
be IO equivalent to each other, there must exist an invertible linear mapping
T from one system’s state z to another system’s state ẑ such that z = Tẑ
and ẑ = T−1z. The matrix T is referred to as the similarity transformation
matrix [30]. Assuming that a proper T is given, we substitute zk by Tẑ in the
initial LTI model (1), thus having:

Tẑk+1 = ATẑk + Buk, yk = CTẑk + Duk.

or
ẑk+1 = (T−1AT)ẑk + (T−1B)uk, yk = (CT)ẑk + Duk. (19)

By the similarity transformation, two LTI systems (1) and (19) are similar,
meaning that they are IO equivalent. We now compare the transformed initial
LTI model (19) and the quantized controller model (17) that is extracted from
the step function. Equating the corresponding coefficient matrices of the two
models (19) and (17), we have:

T−1AT = Â + EA, T−1B = B̂ + EB, CT = Ĉ + EC, D = D̂ + ED

or

AT = TÂ + TEA, B = TB̂ + TEB, CT = Ĉ + EC, D = D̂ + ED (20)



However, the equality of the exact equivalence condition (20) will never hold
because of the floating-point error terms (e.g., EA) and the numerical errors

in the implementation’s controller parameters (e.g., Â) due to the optimiza-
tion of the code generator. To overcome this problem, we define and use an
approximate equivalence relation ≈ρ on matrices such that M ≈ρ M̂ if and only

if
∥∥∥M− M̂

∥∥∥ ≤ ρ where ρ is a given precision (i.e., threshold for approximate

equivalence). Note that the approximate equivalence relation ≈ρ is not transi-
tive, thus not an equivalence relation unless ρ = 0. With ≈ρ for a precision ρ,
the equations (20) are relaxed as follows:

AT ≈ρ TÂ + TEA, B ≈ρ TB̂ + TEB, CT ≈ρ Ĉ + EC, D ≈ρ D̂ + ED (21)

Finally, we say that the initial LTI model (1) and the quantized model (17)
extracted from the implementation are approximately IO equivalent with preci-
sion ρ if there exists a similarity transformation matrix T which satisfies (21),
and the absolute errors of the floating-point computations are negligible (i.e.,
ez ≈ρ 0 and ey ≈ρ 0). Note that the problem of checking the approximate IO
equivalence is the problem of finding a proper similarity transformation matrix.
In the rest of this section, we explain how to find the similarity transforma-
tion matrix using a satisfiability problem formulation and a convex optimization
problem formulation.

4.2 Satisfiability Problem Formulation

This section discusses the satisfiability problem formulation for the approximate
IO equivalence checking. To find the similarity transformation matrix using ex-
isting SMT solvers, the problem can be formulated roughly as follows:

∃T : ∀EA,EB,EC,ED : ‖EA‖ , ‖EB‖ , ‖EC‖ , ‖ED‖ ≤ brel =⇒ (21) holds

In this formulation, the variable T and the relative error variables (e.g., EA) are
quantified alternately, thus requiring exists/forall (EF) problem solving. More-
over, the formula involves the non-linear real arithmetic (NRA) due to the
terms TEA and TEB in (21). For these reasons, the scalability of this SMT
formulation-based approach is questionable because the current SMT solvers
rarely supports EF-NRA problem solving with scalability. In the next subsec-
tion, we describe a more efficient approach based on convex optimization as an
alternative method.

4.3 Convex Optimization Formulation

This subsection describes the convex optimization-based approach to the approx-
imate IO equivalence checking. Since the relative error variables EA make the
condition (21) inappropriate to be formulated as a convex optimization problem,
our approach is to derive a sufficient condition for (21). By over-approximating
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the error terms and removing the error variables, we derive such a sufficient con-
dition for (21) which is formulated as a convex optimization problem as follows:

variables e ∈ R,T ∈ Rn×n

minimize e

subject to
∥∥∥ÂT−TA

∥∥∥
∞

+ n2 ‖T‖∞ brel ≤ e∥∥∥B̂−TB
∥∥∥
∞

+ n2 ‖T‖∞ brel ≤ e∥∥∥ĈT−C
∥∥∥
∞

+ n · brel ≤ e,
∥∥∥D̂−D

∥∥∥
∞

+ n · brel ≤ e

(22)

The idea behind this formulation is to use convex optimization to find the
minimum precision e and then check whether e ≤ ρ where ρ is the given precision.

Remark 1. Our verification method is sound (i.e., no false positive) but not
complete. Due to the relaxations both in the floating-point error approximation
and the approximate IO equivalence checking, there might be a case with a
model and a correct implementation where our method remains indecisive in
the equivalence decision. This can be potentially improved by tightening the
relaxations in future work. In addition, a larger ρ can make the approximate
equivalence decision positive, which is not with a smaller ρ. The IO equivalence
with a large ρ may not guarantee the controller’s well-behavedness. Relating the
approximate equivalence precision ρ and the performance of the controller (e.g.,
robustness) is an avenue of future work.

5 Evaluation

This section presents our toolchain for the verification of finite precision con-
troller implementations, and evaluates its scalability. We also evaluate computa-
tional overhead (i.e., running time) over our own earlier work [28] which assumes
that the computations of controller implementations have no rounding errors.

5.1 Toolchain

This subsection presents the verification toolchain (shown in Fig. 1) that we
implemented based on our method described in this paper. The toolchain is an
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extension of [28] to consider the floating-point error of step function in verifi-
cation. The toolchain takes as input a step function C code and an LTI model
specification. We use the off-the-shelf symbolic execution tool PathCrawler [37]
to symbolically execute the step function and produce the transition equations
for the step function. From the transition equations, the model extractor based
on Section 3.3 extracts the quantized controller model using the floating-point
error analysis tool PolyFP [2]. Finally, the extracted quantized model is com-
pared with the given specification (i.e., LTI model) based on the approximate
IO relation defined in Section 4. The approximate IO equivalence checker uses
the convex optimization solver CVX [17] to solve the formulas in Section 4.3.

5.2 Scalability Analysis

This subsection evaluates the scalability of our approach/toolchain presented in
this paper. To evaluate, we use the Matlab function drss to randomly generate
discrete stable linear controller specifications (i.e., the elements of Σ(A,B,C,D))
varying the controller dimension n from 2 to 14. To obtain an IO equivalent
implementation, we perform an arbitrary similarity transformation on Σ, and
yield the transformed model Σ̂. We use an LTI system block of Simulink to al-
low the Embedded Coder (i.e., code generator of Matlab/Simulink) to generate
a floating-point implementation (i.e., step function in C) for Σ̂. Note that the
generated step function has multiple loops and pointer arithmetic operations as
illustrated in the step function in [27]. We employ our toolchain to verify that the
generated step function correctly implements the original controller model. We
pick the precision ρ to be 10−6 to tolerate both numerical errors in the similarity
transformation and the floating-point controller implementation.

We now evaluate the scalability of our approach running our toolchain with
the random controller specifications and their implementations generated. We
measure the running time of the front-end and the back-end of our approach
separately. The front-end refers to the process of symbolic execution of the step
function (using PathCrawler) and model extraction using the floating-point anal-
ysis (using PolyFP). The back-end refers to the approximate IO equivalence
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checking using convex optimization problem solving (using CVX). The scalabil-
ity analysis result is shown in Fig. 2, which demonstrates that our approach is
scalable for the realistic size of controller dimension.

We now evaluate the overhead of our approach compared to the previous
work [28] where the verification problem is simpler than our verification prob-
lem herein because the previous work [28] assumes that the computation of step
function C code is exact without having any roundoff error. Our approach herein
provides a higher assurance for the finite precision controller implementations
considering the rounding errors in computation. Fig. 3 shows the computational
overhead (i.e., the increase of running time) in our approach as a result of consid-
ering the floating-point roundoff error in controller implementation verification.
We observe that the overhead of the floating-point error analysis in the front-
end is marginal. The running time of the back-end increases because the convex
optimization problem formulation for approximate IO equivalence requires more
computations to solve. Finally, the total running time only increases marginally
from 0.4% to 7.5% over the previous work [28] at a cost of providing higher
assurance for the correctness of the finite precision computations of controller
implementations.

6 Related Work

High-assurance control software for cyber physical systems has received much
attention recently (e.g., [32, 3, 24, 23, 22, 10, 12]). Focusing on robust controller
implementation, [32] and [22] provide simulation-based robustness analysis tools,
while [3, 24, 10, 12] studies issues related to fixed-point controller design. [4]
presents a theorem proving method to verify the control related properties of
Simulink models.

Moreover, there also has been work focusing on the code-level verification of
controller implementation. [31, 23] propose methods to check a Simulink diagram
and the generated code based on the structure of the diagram and the code, in-
stead of input-output equivalence checking. [14, 18, 36, 35] apply the concept of
proof-carrying code to control software verification. Their approach is to anno-
tate the code based on Lyapunov function, and prove the properties using the



PVS linear algebra library [18]. However, they only consider stability and con-
vergence properties rather than the equivalence between controller specifications
and the implementations. Moreover, their verification approach may not be ap-
plicable to the code generated by existing off-the-shelf code generators because
it requires the internal control of the code generators. Our own earlier work [26,
28] presents methods to verify controller implementations against mathematical
models, yet ignores the rounding errors in the finite precision computations of
controller software implementations. There has been static analysis techniques
(e.g., [5, 13, 16]) developed for the analysis of finite precision numerical programs,
but they focus on verifying properties such as numerical stability, the absence
of buffer overflow and the absence of arithmetic exception rather than verifying
the equivalence between code and a dynamical system model as the specifica-
tion of the controller. Finally, there has been software verification work using
the model extraction technique [8, 19, 20, 34, 29], and the floating-point roundoff
error estimation has been studied in [11, 9, 33].

7 Conclusion

We have presented an approach for the verification of finite precision imple-
mentations of linear controllers against mathematical specifications. We have
proposed the use of a combination of techniques such as symbolic execution
and floating point error analysis in order to extract the quantized controller
model from finite precision linear controller implementations. We have defined an
approximate input-output equivalence relation between the specification model
(i.e., linear time-invariant model) and the extracted model (i.e., quantized con-
troller model), and presented a method to check the approximate equivalence
relation using the convex optimization formulation. We have evaluated our ap-
proach using randomly generated controller specifications and implementations
by MATLAB/Simulink/Embedded Coder. The evaluation result shows that our
approach is scalable for the realistic controller size, and the computational over-
head to analyze the effect of floating-point error is negligible compared to our
own earlier work. Future work includes the verification of a broader class of
controller implementations.
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