
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

LCV: A Verification Tool for Linear Controller
Software

Junkil Park1, Miroslav Pajic2,
Oleg Sokolsky1, and Insup Lee1

1 Department of Computer and Information Science,
University of Pennsylvania, PA, USA

{park11, sokolsky, lee}@cis.upenn.edu
2 Department of Electrical and Computer Engineering,

Duke University, NC, USA
miroslav.pajic@duke.edu

Abstract. In the model-based development of controller software, the
use of an unverified code generator/transformer may result in introduc-
ing unintended bugs in the controller implementation. To assure the cor-
rectness of controller software in the absence of verified code genera-
tor/transformer, we develop Linear Controller Verifier (LCV), a tool to
verify a linear controller implementation against its original linear con-
troller model. LCV takes as input a Simulink block diagram model and a
C code implementation, represents them as linear time-invariant system
models respectively, and verifies an input-output equivalence between
them. We demonstrate that LCV successfully detects a known bug of a
widely used code generator and an unknown bug of a code transformer.
We also demonstrate the scalability of LCV and a real-world case study
with the controller of a quadrotor system.

1 Introduction

Most safety-critical embedded and cyber-physical systems have a software-based
controller at their core. The safety of these systems rely on the correct operation
of the controller. Thus, in order to have a high assurance for such systems, it is
imperative to ensure that controller software is correctly implemented.

Nowadays, controller software is developed in a model-based fashion, using
industry-standard tools such as Simulink [31] and Stateflow [36]. In this devel-
opment process, first of all, the controller model is designed and analyzed. Con-
troller design is performed using a mathematical model of the control system
that captures both the dynamics of the “plant”, the entity to be controlled, and
the controller itself. With this model, analysis is performed to conclude whether
the plant model adequately describes the system to be controlled, and whether
the controller achieves the desired goals of the control system. Once the control
engineer is satisfied with the design, a software implementation is automatically
produced by code generation from the mathematical model of the controller.
Code generation tools such as Embedded Coder [30] and Simulink Coder [32]

are widely used. The generated controller implementation is either used as it is
in the control system, or sometimes transformed into another code before used
for various reasons such as numerical accuracy improvement [8, 9] and code pro-
tection [5, 4, 2]. For simplicity’s sake herein, we will call code generation even
when code generation is potentially followed by code transformation.

To assure the correctness of the controller implementation, it is necessary
to check that code generation is done correctly. Ideally, we would like to have
verified tools for code generation. In this case, no verification of the controller
implementation would be needed because the tools would guarantee that any
produced controller correctly implements its model. In practice, however, com-
mercial code generators are complex black-box software that are generally not
amenable to formal verification. Subtle bugs have been found in commercially
available code generators that consequently generate incorrect code [29]. Unver-
ified code transformers may introduce unintended bugs in the output code.

In the absence of verified code generators, it is desirable to verify instances
of implementations against their original models. Therefore, this work consid-
ers the problem of such instance verification for a given controller model and
software implementation. To properly address this verification problem, the fol-
lowing challenges should be considered: First of all, such verification should be
performed from the input-output perspective (i.e., input-output conformance).
Correct implementations may have different state representations to each other
for several possible reasons (e.g., code generator’s choice of state representation,
optimization used in the code generation process). In other words, the original
controller model and a correct implementation of the model may be different from
each other in state representation, while being functionally equivalent from the
input-output perspective. Thus, it is necessary to develop the verification tech-
nique that is not sensitive to the state representation of the controller. Moreover,
there is an inherent discrepancy between controller models and their implemen-
tations. The controller software for embedded systems uses a finite precision
arithmetic (e.g., floating-point arithmetic) which introduces rounding errors in
the computation. In addition to these rounding errors, the implementations may
be inexact in the numeric representation of controller parameters due to the
potential rounding errors in the code generation/optimization process. Thus, it
is reasonable to allow a tolerance in the conformance verification as long as the
implementation has the same desired property to the model’s. Finally, such ver-
ification is desired to be automatic and scalable because verification needs to be
followed by each instance of code generation.

We, therefore, present LCV (shown in Fig. 1), a tool that automatically
verifies controller implementations against their models from the input-output
perspective with given tolerance thresholds.3 The verification technique behind
this tool is based on the work of [24]. LCV uses the state-space representation
form of the linear time-invariant (LTI) system to represent both the Simulink

3 We assume that a threshold value 󰂃 is given by a control engineer as a result of the
robustness analysis that guarantees the desired properties of the control system in
the presence of uncertain disturbances.

Physical System Model

Control Design

Robustness Analysis

Linear Controller Model
(State-Space Representation
or Simulink Block Diagram)

Code Generation

Controller Implementation
(Step Function C Code)

Tolerance Threshold !

Linear Controller
Verifier (LCV)

Verification Result
(Yes/No)

Fig. 1. LCV in the model-based development process.

block diagram (i.e., controller model) and the C code (i.e., controller implemen-
tation). LCV checks the input-output equivalence relation between the two LTI
models by similarity checking. The contribution of this work compared to the
previous work [24] is as follows: As controller specifications are often given in
the form of block diagrams, LCV extends the preliminary prototype [18] to take
not only the state-space representation of an LTI system but also the Simulink
block diagram as an input specification model. As a result, a real-world case
study, where the controller specification of a quadrotor called Erle-Copter [11]
is given as a Simulink block diagram, was conducted using LCV and demon-
strated in this paper. In the case study with a proportional-integral-derivative
(PID) controller, we demonstrate that LCV successfully detects a known (re-
produced) bug of Embedded Coder as well as an unknown bug of Salsa [8], a
code transformation method/tool for numerical accuracy.4 Moreover, LCV has
been enhanced in many ways such as improving in scalability, supporting fully
automatic verification procedures, providing informative output messages and
handling customized user inputs.

2 Related Work

To ensure the correctness of the controller implementation against the controller
model, a typically used method in practice is equivalence testing (or back-to-
back testing) [28, 6, 7] which compares the outputs of the executable model
and code for the common input sequence. The limitation of this testing-based
method is that it does not provide a thorough verification. Static analysis-based
approaches [3, 12, 14] have been used to analyze the controller code, but fo-
cuses on checking common properties such as numerical stability, the absence of

4 This bug has been confirmed by the author of the tool.

Simulink Block Diagram
(Controller Model)

C Code (Controller
Implementation)

Tolerance Threshold

LTI Representation
for Model

LTI Representation
for Implementation

Verification Result
(Yes/No)

Model
Conversion

Model
Extraction

Input-Output
Equivalence

Checking

Fig. 2. The verification flow of LCV.

buffer overflow or arithmetic exceptions rather than verifying the code against
the model. The work of [27, 17] proposes translation validation techniques for
Simulink diagrams and the generated codes. The verification relies on the struc-
ture of the block diagram and the code, thus being sensitive to the controller
state while our method verifies code against the model from the input-output
perspective, not being sensitive to the controller state. Due to optimization and
transformation during a code generation process, a generated code which is cor-
rect, may have a different state representation than the models. In this case, our
method can verify that the code is correct w.r.t. the model, but the state-sensitive
methods [27, 17] cannot. [13, 16, 38, 37] present a control software verification ap-
proach based on the concept of proof-carrying code. In their approach, the code
annotation based on the Lyapunov function and its proof are produced at the
time of code generation. The annotation asserts control theory related proper-
ties such as stability and convergence, but not equivalence between the controller
specifications and the implementations. In addition, their approach requires the
internal knowledge and control of the code generator to use, and may not be
applicable to the off-the-shelf black-box code generators. The work of [19, 24,
25] presents methods to verify controller implementations against LTI models,
but does not relate the block diagram models with the implementation code.

3 Verification Flow of Linear Controller Verifier

The goal of LCV is to verify linear controller software. Controllers are generally
specified as a function that, given the current state of the controller and a set of
input sensor values, computes control output that is sent to the system actuators
and the new state of the controller. In this work, we focus on linear-time invariant
(LTI) controllers [26], since these are the most commonly used controllers in
control systems. In software, controllers are implemented as a subroutine (or a
function in the C language). This function is known as the step function (see [23]
for an example). The step function is invoked by the control system periodically,
or upon arrival of new sensor data (i.e., measurements).

This section describes the verification flow (shown in Fig. 2) and the imple-
mentation details of LCV. LCV takes as input a Simulink block diagram (i.e.,
controller model), a C code (i.e., controller implementation) and a tolerance

threshold as a real number. In addition, LCV requires the following information
to be given as input: the name of the step function and the interface of the
step function. LCV assumes that the step function interfaces through the given
input and output global variables. In other words, the input(output) variables
are declared in the global scope, and are written(read) before(after) the execu-
tion of the step function.5 Thus, the step function interface comprises the list
of input (and output) variables of the step function in the same order of the
corresponding input (and output) ports of the block diagram model. Since LCV
verifies controllers from the input-output perspective, LCV does not require any
state related information (i.e., the dimension of the controller state, or the list
of state variables of the step function).

A restriction on this work is that LCV only focuses on verifying linear con-
troller software. Thus, the scope of inputs of LCV is limited as follows: the input
C program is limited to be a step function that only has a deterministic and
finite execution path for a symbolic input, which is often found to be true for
many embedded linear controllers. Moreover, the input Simulink block diagram
is limited to be essentially an LTI system model (i.e., satisfying the superpo-
sition property). The block diagram that LCV can handle may include basic
blocks (e.g., constant block, gain block, sum block), subsystem blocks (i.e., hier-
archy) and series/parallel/feedback connections of those blocks. Extending LCV
to verify a broader class of controllers is an avenue for future work.

The key idea in the verification flow (shown in Fig. 2) is that LCV represents
both the Simulink block diagram and the C code in the same form of mathemat-
ical representation (i.e., the state space representation of an LTI system), and
compares the two LTI models from the input-output perspective. Thus, the first
step of the verification is to transform the Simulink block diagram into a state
space representation of an LTI system, which is defined as follows:

zk+1 = Azk +Buk

yk = Czk +Duk.
(1)

where uk, yk and zk are the input vector, the output vector and the state vector
at time k respectively. The matrices A, B, C and D are controller parameters.
We convert the Simulink block diagram into the LTI model employing the ‘ex-
act linearization’ (or block-by-block linearization) feature of Simulink Control
Design [33] which is implemented in the built-in Matlab function linearize. In
this step, each individual block is linearized first and then combined together
with others to produce the overall block diagram’s LTI model.

This step assumes that the block diagram represents a linear controller model.
A systematic procedure6 can remove this assumption: one can check whether a

5 This convention is used by Embedded Coder, a code generation toolbox for Mat-
lab/Simulink

6 This procedure is currently not implemented in LCV because the required tools such
as Simulink Design Verifier and Simulink Test mostly provide their features through
GUIs rather than APIs. Thus, this procedure will be implemented in the future work
once such APIs are available. Until then, this procedure can be performed manually.

11

0

2

In Out

controller_wrapper

In Out

controller_wrapper1

In Out

controller_wrapper2

Fig. 3. The simulink block diagram for checking the additivity of the controller

given Simulink block diagram is linear (i.e., both additive and homogeneous)
using Simulink Design Verifier [34], a model checker for Simulink. For exam-
ple, to check if a controller block in Simulink is additive or not, as shown in
Figure 3, one can create two additional duplicates of the controller block, gen-
erate two different input sequences, and exhaustively check if the output of
the controller in response to the sum of two inputs is equal to the sum of two
outputs of the controllers in response the two inputs respectively. In Figure 3,
controller wrapper wraps the actual controller under test, and internally per-
forms multiplexing and demultiplexing to handle the multiple inputs and outputs
of the controller. Simulink Design Verifier serves checking if this holds for all pos-
sible input sequences. However, a limitation of the current version of Simulink
Design Verifier is that it does not support all Simulink blocks and does not prop-
erly handle non-linear cases. In these cases, alternatively, one can validate the
linearity of controllers using simulation-based testing instead of model checking,
which can be systematically done by Simulink Test [35]. This method is not lim-
ited by any types of Simulink blocks, and can effectively disprove the linearity of
controllers for non-linear cases. However, this alternative method using Simulink
Test may not be as rigorous as the model-checking based method using Simulink
Design Verifier because not all possible input cases are considered.

The next step in the LCV’s verification flow is to extract the LTI model from
the controller implementation C code. The idea behind this step is to exploit
the fact that linear controller codes (i.e., step function) used for embedded sys-
tems generally have simple control flows for the sake of deterministic real-time
behaviors (e.g., fixed upper bound of loops). Thus, the semantics of such linear
controller codes can be represented as a set of mathematical functions that are
loop-free, which can be further transformed into the form of an LTI model. To
do this specifically, LCV uses the symbolic execution technique which is capa-
ble of identifying the computation of the step function (i.e., C function which
implements the controller). By the computation, we mean the big-step transi-
tion relation on global states between before and after the execution of the step
function. The big-step transition relation is represented as symbolic formulas
that describe how the global variables change as the effect of the step function
execution. The symbolic formulas associate each global variable representing the

controller’s state and output with the symbolic expression to be newly assigned
to the global variable, where the symbolic expression consists of the old val-
ues of the global variables representing the controller’s state and input. Then,
LCV transforms the set of equations (i.e., symbolic formulas) that represent the
transition relation into a form of matrix equation, from which an LTI model for
the controller implementation is extracted [24]. LCV employs the off-the-shelf
symbolic execution tool PathCrawler [39], which outputs the symbolic execution
paths and the path conditions of a given C program in an extensible markup
language (XML) file format.

Finally, LCV performs the input-output equivalence checking between the
LTI model obtained from the block diagram and the LTI model extracted from
the C code implementation. To do this, we employ the notion of similarity trans-
formation [26], which implies that two minimal LTI models Σ(A,B,C,D) and
Σ̂(Â, B̂, Ĉ, D̂) are input-output equivalent if and only if they are similar to each
other, meaning that there exists a non-singular matrix T such that

Â = TAT−1, B̂ = TB, Ĉ = CT−1, and D̂ = D (2)

where T is referred to as the similarity transformation matrix [26].

Given the extracted LTI model (from the C Code) and the original LTI model
(obtained from the Simulink block diagram), we first minimize both LTI models
via Kalman Decomposition [26] (Matlab function minreal). Then, the input-
output equivalence checking problem is reduced to the problem of finding the
existence of T (i.e., similarity checking problem). LCV formulates the similarity
checking problem as a convex optimization problem7, and employs CVX [15], a
convex optimization solver to find T. In the formulation, the equality relation
is relaxed up to a given tolerance threshold 󰂃 in order to tolerate the numeri-
cal errors that come from multiple sources (e.g., the controller parameters, the
computation of the implementation, the verification process). We assume that
the tolerance threshold 󰂃 is given by a control engineer as the result of robust-
ness analysis so that the verified controller implementation preserves the certain
desired properties of the original controller model (e.g., stability). 󰂃 is chosen to
be 10−5 for the case study that we performed in the next section.

The output of LCV is as follows: First of all, when LCV fails to extract an
LTI model from code, it tells the reason (e.g., non-deterministic execution paths
for a symbolic input due to branching over a symbolic expression condition,
non-linear arithmetic computation due to the use of trigonometric functions).
Moreover, for the case of non-equivalent model and code, LCV provides the
LTI models obtained from the Simulink block diagram model and the C code
respectively, so that the user can simulate both of the models and easily find
an input sequence that leads to a discrepancy between their output behaviors.8

Finally, for the case of equivalent model and code, LCV additionally provides a

7 Please refer [24] for the details of the formulation.
8 This feature to generate counterexamples will be implemented in a future version of
LCV.

Sum

kp

Proportional Gain

ki

Integral Gain

kd

Derivative Gain

K Ts

z-1

Integrator

(z-1)
Ts z

Differentiator

Sum2

1

r

2

y

1

u

Fig. 4. The block diagram of the PID controller.

similarity transformation matrix T between the two LTI models, which is the
key evidence to prove the input-output equivalence between the model and code.

4 Evaluation

We evaluate LCV through conducting a case study using a standard PID con-
troller and a controller used in a quadrotor. We also evaluate the scalability of
LCV in the subsequent subsection.

4.1 Case Study

PID Controller In our case study, we first consider a proportional-integral-
derivative (PID) controller, which is a closed-loop feedback controller commonly
used in various control systems (e.g., industrial control systems, robotics, au-
tomotive). A PID controller attempts to minimize the error value et over time
which is defined as the difference between a reference point rt (i.e., desired value)
and a measurement value yt (i.e., et = rt−yt). To do this, the PID controller ad-
justs a control input ut computing the sum of the proportion term kpet, integral

term kiT
󰁓t

i=1 et and derivative term kd
et−et−1

T so that

ut = kpet + kiT

t󰁛

i=1

et + kd
et − et−1

T
. (3)

where kp, ki and kd are gain constants for the corresponding term, and T is the
sampling time. Fig. 4 shows the Simulink block diagram for the PID controller,
where the gain constants are defined as kp = 9.4514, ki = 0.69006, kd = 2.8454,
and the sampling period is 0.2 s.

For the PID controller model, we check various different versions of imple-
mentations such as PID1, PID2, PID3, PID3’ and PID4 (summarized in Table 1).
PID1 is obtained by code generation from the model using Embedded Coder.

Table 1. Summary of the case study with the PID controller (Fig. 4) and its different
versions of implementation

Impl. Description Buggy? LCV output

PID1 Generated by Embedded Coder No Equivalent

PID2 Optimized from PID1 by Salsa (Level 1) No Equivalent

PID3 Optimized from PID1 by Salsa (Level 2)
Yes (due to a
bug in Salsa)

Not equivalent

PID3’ Corrected from PID3 manually No Equivalent

PID4
Generated by Embedded Coder with
a buggy option triggered

Yes (due to a bug in
Embedded Coder)

Not equivalent

PID2 is obtained from PID1 by the transformation (or optimization) of Salsa [8]
to improve the numerical accuracy (using the first transformation technique (re-
ferred to as Level 1) presented in [8]). In a similar way, PID3 is obtained by
the transformation from PID1 for an even better numerical accuracy (follow-
ing the second transformation technique (referred to as Level 2) as Listing 3
in [8]). However, this transformation for PID3 contains an unintended bug by
mistake that has been confirmed by the authors of the paper (i.e., variable s is
not computed correctly, and the integral term is redundantly added to the out-
put), which makes PID3 incorrect. PID3’ is an implementation that manually
corrects PID3. Using LCV, we can verify that PID1, PID2 and PID3’ are correct
implementations, but PID3 is not (see the verification result for PID3 [21]).

Moreover, PID4 is obtained by injecting a known bug of Embedded Coder
into the implementation PID1. The bug with the ID 1658667 [29] that exists in
the Embedded Coder version from 2015a through 2017b (7 consecutive versions)
causes the generated code to have state variable declarations in a wrong scope.
The state variables which are affected by the bug are mistakenly declared as local
variables inside the step function instead of being declared as global variables.
Thus, those state variables affected by the bug are unable to preserve their values
throughout the consecutive step function executions. LCV can successfully detect
the injected bug by identifying that the extracted model from the controller
code does not match the original controller model (see the verification result for
PID4 [22]).

Quadrotor Controller The second and more complex application in our case
study is a controller of the quadrotor called Erle-Copter. The quadrotor con-
troller controls the quadrotor to be in certain desired angles in roll, yaw and
pitch. The quadrotor uses the controller software from the open source project
Ardupilot [1]. Inspired by the controller software, we obtained the Simulink block
diagram shown in Fig. 5. In the names of the inport blocks, the suffix d indicates
the desired angle, d, the measured angle, and rate y, the angular speed. Each
component of the coordinate of the quadrotor is separately controlled by its own
cascade PID controller [18]. A cascade of PID controller is a sequential connec-
tion of two PID controllers such that one PID controller controls the reference

PID(z)
Ref

pitch_rate_PID

PID(z)
Ref

yaw_rate_PID

PID(z)
Ref

roll_PID

PID(z)
Ref

yaw_PID

PI(z)
Ref

pitch_PID

PID(z)
Ref

roll_rate_PID

3

roll_y

6

pitch_y

2

roll_d

9

yaw_y

4

roll_rate_y

7

pitch_rate_y

10

yaw_rate_y

5

pitch_d

8

yaw_d

2

roll_rate_u

3

pitch_rate_u

4

yaw_rate_u

1

thrust_d

1

thrust_u

Fig. 5. Our quadrotor platform (Left). The quadrotor controller block diagram (Right).

point of another. In Fig. 5, there are three cascade controllers for the controls
of roll, pitch and yaw. For example, for the roll control, roll pid controls the
angle of roll, while roll rate PID controls the rate of roll using the output of
roll PID as the reference point. The sampling time T of each PID controller is
2.5 ms. This model uses the built-in PID controller block of Simulink to enable
the PID auto-tuning software in Matlab (i.e, pidtune()). The required physical
quantities for controlling roll and pitch are identified by physical experiments
[10]. We use Embedded Coder to generate the controller code for the model, and
verify that the generated controller code correctly implements the controller
model using LCV (see the verification result for the quadrotor controller [20]).

4.2 Scalability

To evaluate the scalability of LCV, we measure the running time of LCV ver-
ifying the controllers of different dimensions (i.e., the size of the LTI model).
We randomly generate LTI controller models using Matlab function drss vary-
ing the controller dimension n from 2 to 50. The range of controller sizes was
chosen based on our observation of controller systems in practice. We construct
Simulink models with LTI system blocks that contain the generated LTI models,
and use Embedded Coder to generate the implementations for the controllers.
The running time of LCV for verifying the controllers with different dimensions
is presented in Fig. 6, which shows that LCV is scalable for the realistic size
of controller dimension. Compared to the previous version (or the preliminary
prototype) of LCV [24], the new version of LCV has been much improved in scal-
ability by tighter integration with the symbolic execution engine PathCrawler
(i.e., in the model extraction phase, the invocation of constraint solver along
with symbolic execution has been significantly reduced).

5 Conclusion

We have presented our tool LCV which verifies the equivalence between a given
Simulink block diagram and a given C implementation from the input-output

The running time of LCV

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
controller dimension n

0

50

100

150

200
tim

e(
s)

Previous version
New version

Fig. 6. The running time of LCV for verifying controllers with dimension n.

perspective. Through an evaluation, we have demonstrated that LCV is appli-
cable to the verification of a real-world system’s controller and scalable for the
realistic controller size. Our current/future development work includes: relating
the equivalence precision and the controller’s performance, and handling nonlin-
ear controllers.

Acknowledgments. This work is sponsored in part by the ONR under agree-
ment N00014-17-1-2504, as well as the NSF CNS-1652544 grant. This research
was supported in part by ONR N000141712012, Global Research Laboratory
Program (2013K1A1A2A02078326) through NRF, and the DGIST Research and
Development Program (CPS Global Center) funded by the Ministry of Science,
ICT & Future Planning, and NSF CNS-1505799 and the Intel-NSF Partnership
for Cyber-Physical Systems Security and Privacy.

References

1. Ardupilot Dev Team: Ardupilot. http://ardupilot.org/ (Sep 2018)
2. Behera, C.K., Bhaskari, D.L.: Different obfuscation techniques for code protection.

Procedia Computer Science 70, 757–763 (2015)
3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Mon-

niaux, D., Rival, X.: A static analyzer for large safety-critical software. In: ACM
SIGPLAN Notices. vol. 38, pp. 196–207. ACM (2003)

4. Cappaert, J.: Code obfuscation techniques for software protection. Katholieke Uni-
versiteit Leuven pp. 1–112 (2012)

5. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Tech. rep., Department of Computer Science, The University of Auckland,
New Zealand (1997)

6. Conrad, M.: Testing-based translation validation of generated code in the context
of iec 61508. Formal Methods in System Design 35(3), 389–401 (2009)

7. Conrad, M.: Verification and validation according to iso 26262: A workflow to fa-
cilitate the development of high-integrity software. Embedded Real Time Software
and Systems (ERTS2 2012) (2012)

8. Damouche, N., Martel, M., Chapoutot, A.: Transformation of a pid controller for
numerical accuracy. Electronic Notes in Theoretical Computer Science 317, 47–54
(2015)

9. Damouche, N., Martel, M., Chapoutot, A.: Improving the numerical accuracy of
programs by automatic transformation. International Journal on Software Tools
for Technology Transfer pp. 1–22 (2016)

10. Derafa, L., Madani, T., Benallegue, A.: Dynamic modelling and experimental iden-
tification of four rotors helicopter parameters. In: 2006 IEEE International Con-
ference on Industrial Technology (2006)

11. Erle Robotics: Erle-copter. http://erlerobotics.com/blog/erle-copter/ (Sep
2018)

12. Feret, J.: Static analysis of digital filters. In: European Symposium on Program-
ming. pp. 33–48. Springer (2004)

13. Feron, E.: From control systems to control software. Control Systems, IEEE 30(6),
50–71 (2010)

14. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Inter-
national Workshop on Verification, Model Checking, and Abstract Interpretation.
pp. 232–247. Springer (2011)

15. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx (Mar 2014)

16. Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.L., Feron, E., Perez,
G., Ascariz, P.: PVS linear algebra libraries for verification of control software
algorithms in C/ACSL. In: NASA Formal Methods, pp. 147–161 (2012)

17. Majumdar, R., Saha, I., Ueda, K., Yazarel, H.: Compositional equivalence checking
for models and code of control systems. In: 52nd Annual IEEE Conference on
Decision and Control (CDC). pp. 1564–1571 (2013)

18. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-uav
test bed. IEEE Robotics & Automation Magazine 17(3), 56–65 (2010)

19. Pajic, M., Park, J., Lee, I., Pappas, G.J., Sokolsky, O.: Automatic verification of
linear controller software. In: 12th International Conference on Embedded Software
(EMSOFT). pp. 217–226. IEEE Press (2015)

20. Park, J.: Erle-copter verification result, http://doi.org/10.5281/zenodo.

2565035

21. Park, J.: Pid3 verification result, https://doi.org/10.5281/zenodo.2565023
22. Park, J.: Pid4 verification result, https://doi.org/10.5281/zenodo.2565030
23. Park, J.: Step function example, http://dx.doi.org/10.5281/zenodo.44338
24. Park, J., Pajic, M., Lee, I., Sokolsky, O.: Scalable verification of linear controller

software. In: International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 662–679. Springer (2016)

25. Park, J., Pajic, M., Sokolsky, O., Lee, I.: Automatic verification of finite precision
implementations of linear controllers. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 153–169. Springer
(2017)

26. Rugh, W.J.: Linear system theory. Prentice Hall (1996)
27. Ryabtsev, M., Strichman, O.: Translation validation: From simulink to c. In: Com-

puter Aided Verification. pp. 696–701. Springer (2009)
28. Stuermer, I., Conrad, M., Doerr, H., Pepper, P.: Systematic testing of model-based

code generators. IEEE Transactions on Software Engineering 33(9), 622–634 (2007)
29. The Mathworks, Inc.: Bug Reports for Incorrect Code Generation.

http://www.mathworks.com/support/bugreports/?product=ALL&release=

R2015b&keyword=Incorrect+Code+Generation

30. The Mathworks, Inc.: Embedded coder. https://www.mathworks.com/products/
embedded-coder.html (Sep 2017)

31. The Mathworks, Inc.: Simulink. https://www.mathworks.com/products/

simulink.html (Sep 2018)
32. The Mathworks, Inc.: Simulink coder. https://www.mathworks.com/products/

simulink-coder.html (Sep 2018)
33. The Mathworks, Inc.: Simulink control design. https://www.mathworks.com/

products/simcontrol.html (Sep 2018)
34. The Mathworks, Inc.: Simulink design verifier. https://www.mathworks.com/

products/sldesignverifier.html (Sep 2018)
35. The Mathworks, Inc.: Simulink test. https://www.mathworks.com/products/

simulink-test.html (Sep 2018)
36. The Mathworks, Inc.: Stateflow. https://www.mathworks.com/products/

stateflow.html (Sep 2018)
37. Wang, T., Jobredeaux, R., Herencia, H., Garoche, P.L., Dieumegard, A., Feron,

E., Pantel, M.: From design to implementation: an automated, credible autocoding
chain for control systems. arXiv preprint arXiv:1307.2641 (2013)

38. Wang, T.E., Ashari, A.E., Jobredeaux, R.J., Feron, E.M.: Credible autocoding of
fault detection observers. In: American Control Conference (ACC). pp. 672–677
(2014)

39. Williams, N., Marre, B., Mouy, P., Roger, M.: Pathcrawler: Automatic gener-
ation of path tests by combining static and dynamic analysis. In: Dependable
Computing-EDCC 5, pp. 281–292. Springer (2005)

