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Abstract— We consider the problem of stabilizing a plant
with a network of resource constrained wireless nodes. In
a companion paper, we developed a protocol where each
node repeatedly transmits an appropriate (stabilizing) linear
combination of the values in its neighborhood. In this paper,
we design an Intrusion Detection System (IDS) for this control
scheme, which observes the transmissions of certain nodes and
uses that information to (a) recover the plant outputs (for data-
logging and diagnostic purposes) and (b) identify malicious
behavior by any of the wireless nodes in the network. We show
that if the connectivity of the network is sufficiently high, the
IDS only needs to observe a subset of the nodes in the network
in order to achieve this objective. Our approach provides a
characterization of the set of nodes that should be observed, a
systematic procedure for the IDS to use to identify the malicious
nodes and recover the outputs of the plant, and an upper bound
on the delay required to obtain the necessary information.

I. I NTRODUCTION

The advent of low-cost and reliable wireless networks
holds great promise for large, spatially distributed industrial
control systems. The topic of control over networks (wireless
or otherwise) has been intensively studied by researchers
over the past decade, leading to design procedures for
controllers that are tolerant to network imperfections such
as packet dropouts and transmission delays [1], [2], [3].
In the companion paper [4], we introduced theWireless
Control Network (WCN), where the networkitself acts
as the controller (instead of having a specially designated
node performing this task). Specifically, we considered a
wireless network consisting of simple nodes that are able
to exchange information only with their direct neighbors.
We devised a protocol where each node transmits, at each
time-step, a single value that is a linear combination of
the values in its neighborhood. This scheme causes the
wireless network to behave as a linear system with sparsity
constraints on the system matrices (corresponding to the
topology of the network). We provided a numerical design
procedure (based on linear matrix inequalities) to determine
the appropriate linear combinations for each node to use
in order to stabilize the plant. As discussed in [4], this
scheme has several benefits, including simple scheduling,
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low computational requirements, and the ability to handle
geographically dispersed sensing and actuation points.

Recently, the need for a rigorous theory ofsecurity in
industrial control systems has started to gain attention [5],
[6], [7], [8]. In domains such as chemical process industries,
aviation and critical infrastructure, attacks on the control
systems could have disastrous consequences. The report [9]
makes several key recommendations for designing secure
control systems, including the need to maintain accurate
logs of plant behavior, and to analyze this information to
quickly detect and isolate anomalies. In traditional (data)
networks, this is performed with anIntrusion Detection
System(IDS), which raises an alarm if the observed traffic
flow in the network deviates from expected patterns [10]. The
paper [11] suggests an IDS for wireless networks in process
control industries, capturing (at a policy level) attacks such
as jamming, denial of service attacks, and corruptions in the
formatting of data transmitted by certain nodes.

A more dangerous (and difficult to detect) attack in control
networks is that of datamodification, where malicious nodes
subtly change the contents of messages that they are passing
through the network, but otherwise follow the normal rules
of transmission. In this paper, we describe how to design
an IDS to detect data modification attacks in the control
scheme proposed in [4]. The IDS will be responsible for
observing the transmissions of certain nodes in the network
in order to (a) recover the outputs of the plant (e.g., for
data-logging purposes), and (b) identify data modification
attacks; the overall architecture of the plant, control network
and IDS is shown in Fig. 1. We show that the wireless control
scheme from [4] allows malicious behavior to be identified
by examining the transmissions of only asubsetof the nodes
in the network, provided that the network topology satisfies
certain conditions. We provide an explicit characterization of
the subset of nodes that needs to be monitored, along with
a procedure for the IDS to follow in order to extract the
required information from the transmissions of these nodes.
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Fig. 1. Architecture of the wireless control network with anIDS.



II. N OTATION AND BACKGROUND ON GRAPH THEORY

We useei to denote the column vector (of appropriate
size) with a1 in its i-th position and0’s elsewhere, and1 to
denote the column vector (of appropriate size) consisting of
all 1’s. The symbolIN denotes theN ×N identity matrix,
andA′ indicates the transpose of matrixA. The cardinality
of a setS is denoted by|S|, and for two setsS andR, we
useS \R to denote the set of elements inS that are not in
R. The set of nonnegative integers is denoted byN.

A graph is an ordered pairG = {V , E}, where V =
{v1, v2, . . . , vN} is a set of vertices (or nodes), andE is
a set of ordered pairs of different vertices, called directed
edges. The vertices in the setNvi = {vj |(vj , vi) ∈ E}
are the neighbors of vertexvi. A subgraphof G is a graph
H = {V̄, Ē}, with V̄ ⊆ V and Ē ⊆ E (where all edges in̄E
are between vertices in̄V).

A path P from vertexvi0 to vertexvit is a sequence of
verticesvi0vi1 · · ·vit such that(vij , vij+1

) ∈ E for 0 ≤ j ≤
t−1. The nonnegative integert is thelengthof the path. We
will call a graphdisconnectedif there exists at least one pair
of verticesvi, vj ∈ V such that there is no path fromvj to
vi. The connectivityof the graph is the smallest number of
vertices that must be removed to disconnect the graph, and
is denoted byκ. A set of pathsP1, P2, . . . , Pr are vertex
disjoint if no vertex appears in more than one path. Given
two subsetsV1,V2 ⊂ V , anr-linking from V1 to V2 is a set
of r vertex disjoint paths, each with start vertex inV1 and
end vertex inV2. Note that ifV1 andV2 are not disjoint, we
will take their common vertices to be vertex disjoint paths
betweenV1 andV2 of length zero.

Lemma 1 ([12]): Let G = {V , E} have connectivityκ,
and letV1 andV2 be subsets ofV , each of size at leastκ.
Then there is aκ-linking from V1 to V2 (and vice versa).

III. T HE WIRELESSCONTROL NETWORK

Consider a plant of the form:

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k], (1)

with A ∈ R
n×n,B ∈ R

n×m and C ∈ R
p×n. The

output vector y[k] =
[
y1[k] y2[k] . . . yp[k]

]′
con-

tains measurements of the plant state vectorx[k] pro-
vided by the sensorss1, . . . , sp. The input vectoru[k] =[
u1[k] u2[k] . . . um[k]

]′
corresponds to the signals ap-

plied to the plant by actuatorsa1, . . . , am.
The plant is to be controlled using a wireless network

consisting of a set of nodes that interact with each other
and with the sensors and actuators installed on the plant.
The network is described by a graphG = {V , E}, where
V = {v1, v2, . . . , vN} is the set ofN nodes andE ⊆ V × V
represents the radio connectivity (communication topology)
in the network (i.e., edge(vj , vi) ∈ E if nodevi can receive
information directly from nodevj). In addition, we define
VS ⊂ V as the set of nodes that can receive information
directly from at least one sensor, andVA ⊂ V as the
set of nodes whose transmissions can be heard by at least
one actuator. We will refer toVS as the source nodes

in the network. We will also assume that there are some
malicious nodesin the network, given by the setF ⊂ V .
These malicious nodes will transmit false values (perhaps
by conspiring with each other) in an attempt to damage the
system in some way. Note that the setF is unknowna priori.

We will find it convenient to consider a new graph̄G that
captures how the plant outputs enter into the wireless control
network. This graph is obtained by taking the network graph
G and addingp new verticesS = {s1, s2, . . . , sp}, which
correspond to the sensors on the plant. Define the edge set

EI =

{
(sl, vj)

sl ∈ S, vj ∈ VS ,
sl’s value is available to nodevj

}
.

We then obtainḠ = {V ∪ S, E ∪ EI}.
The proposed control scheme (introduced in [4]) consists

of having each node in the network update its value to be a
linear combination of its previous value and the values of its
neighbors. In addition, each source node will include a linear
combination of the sensor measurements (i.e., plant outputs)
that it receives at each time-step. Finally, the malicious
nodes will update their values arbitrarily at each time-step.
Mathematically, if we letzi[k] denote nodevi’s value at
time-stepk, we obtain the update equations:1

zi[k + 1] = (2)



wiizi[k] +
∑

vj∈Nvi
wijzj[k]

+
∑

sj∈Nvi
hijyj [k] if vi ∈ VS \ F ,

wiizi[k] +
∑

vj∈Nvi
wijzj[k]

+
∑

sj∈Nvi
hijyj [k] + fi[k] if vi ∈ VS ∩ F ,

wiizi[k] +
∑

vj∈Nvi
wijzj[k] + fi[k] if vi ∈ F \ VS ,

wiizi[k] +
∑

vj∈Nvi
wijzj[k] if vi /∈ VS ∪ F .

The scalarswij and hij specify the linear combina-
tions that are computed by each node in the network. The
scalar fi[k] is an (arbitrary) additive error committed by
node vi at time-stepk if it is malicious. If we let F =
{vj1 , vj2 , . . . , vj|F|

} denote the set of malicious nodes, and
aggregate the values transmitted by all nodes at time-stepk
into the value vectorz[k] =

[
z1[k] z2[k] · · · zN [k]

]′
,

the transmission strategy for the entire system can be repre-
sented as

z[k + 1] = Wz[k] +
[
H EF

]
︸ ︷︷ ︸

BF

[
y[k]
f [k]

]

︸ ︷︷ ︸
v[k]

, (3)

for all k ∈ N. In the above equation,EF =[
ej1 ej2 · · · ej|F|

]
, and the vectorf [k] contains all of

the additive errors injected by the malicious nodes at time-
stepk. Furthermore, the(i, j) entry ofW satisfieswij = 0
if vj /∈ Nvi ∪{vi}, and the(i, j) entry ofH satisfieshij = 0
if sj /∈ Nvi . We assume thatz[0] (i.e., the initial state of the
WCN) is known to the IDS.

At each actuatorl ∈ {1, 2, . . . ,m}, we apply the input
ul[k] = glz[k], wheregl is a vector that specifies a linear
combination of the values transmitted by the nodes inVA

1The neighborhoodNv of a vertexv is with respect to the graph̄G.



that can be heard by that actuator. Thus, the entire input
applied to the system can be written asu[k] = Gz[k], where
the sparsity pattern inG adheres to the network topology.
When there are no malicious nodes (i.e.,F = ∅), the overall
closed loop system evolves as:

[
x[k + 1]
z[k + 1]

]
=

[
A BG

HC W

] [
x[k]
z[k]

]
, Â

[
x[k]
z[k]

]
.

Let Ψs denote the set of all tuples(W,H,G) that satisfy
the required sparsity patterns and that cause the matrixÂ to
be stable. In [4], a numerical procedure was provided to find
an element ofΨs (if one exists).

In this paper, we consider the problem of data collection
and analysis in this network for the purpose of identifying
malicious behavior by a nonempty subsetF of nodes. Specif-
ically, we will describe the design of an IDS whose task is to
collect data from the network in order to (a) recover the plant
outputs2 y[k] and (b) detect and isolate anomalous behavior
in the WCN. Clearly, one trivial option would be for the IDS
to listen to the transmissions ofeverynode and sensor in the
network, and double-check that all nodes are computing the
proper linear combinations at each time-step. However, this
is not a satisfactory solution, since the entire point of the
WCN is to avoid the communication infrastructure required
for a centralized solution of this kind. Instead, we will show
that it is possible to identify the malicious nodes and obtain
the plant outputs by monitoring the transmissions of just
a subsetT ⊂ V of the nodes (provided that the network
topology satisfies certain conditions).

IV. A NALYSIS ALGORITHM FOR THE INTRUSION

DETECTION SYSTEM

For any setT ⊂ V , denote the vector of transmissions of
the nodes in that set at time-stepk by t[k]. We can write

t[k] = Tz[k] , (4)

where T is a |T | × N matrix with a single1 in each
row capturing the positions of the vectorz[k] that are in
the setT , and zeros elsewhere. We will also find it useful
to consider a slightly more general version of the system
model (3). For any subsetQ = {vq1 , vq2 , . . . , vq|Q|

} ⊂ V

of nodes, letEQ =
[
eq1 eq2 · · · eq|Q|

]
, and define

BQ =
[
H EQ

]
(whereH is the matrix from (3) specifying

the linear combinations of the plant outputs that are used by
the source nodes). Note thatBQ hasp+ |Q| columns. The
values transmitted by the monitored nodesT over L + 1
time-steps (for some nonnegative integerL) for the system

z[k + 1] = Wz[k] +BQv[k], t[k] = Tz[k] (5)
are given by


t[k]
t[k + 1]
t[k + 2]

...
t[k + L]




︸ ︷︷ ︸
t[k:k+L]

=




T

TW

TW2

...
TWL




︸ ︷︷ ︸
ΘL

z[k] +MQ
L




v[k]
v[k + 1]
v[k + 2]

...
v[k + L− 1]




︸ ︷︷ ︸
v[k:k+L−1]

, (6)

2This information can be used for plant monitoring and data logging.

where

MQ
L ,




0 0 · · · 0

TBQ 0 · · · 0

TWBQ TBQ · · · 0
...

...
. . .

...
TWL−1BQ TWL−2BQ · · · TBQ



. (7)

The following theorem shows that the IDS can recover
the desired quantities from the transmissions of nodes in
T , provided that a certain algebraic condition holds. We
will later relate this algebraic condition to conditions onthe
network topology and choices of the monitored nodesT .

Theorem 1:Suppose that there exists an integerD such
that, for all possible setsQ of 2f nodes, the matrixMQ

D

satisfies

rank
(
MQ

D

)
= p+ |Q|+ rank

(
MQ

D−1

)
. (8)

Then, as long as there are no more thanf malicious nodes in
the network during any set ofD contiguous time-steps, the
IDS can uniquely recover the plant outputsy[k] and identify
all of the malicious nodes with a delay ofD time-steps,
based on the transmissions of the nodes inT .

Before proceeding with the proof of the above theorem,
we provide a more detailed explanation of condition (8).
Specifically, note from (7) that for any setQ, the last(L−1)

block-columns ofMQ
L have the form

[
0

M
Q
L−1

]
, and thus have

rank equal to the rank ofMQ
L−1. Condition (8) is therefore

equivalent to saying that the firstp + |Q| columns ofMQ
D

must be linearly independent of each other, and of all other
columns inMQ

D. With this interpretation in hand, we are
now ready to continue with the proof of Theorem 1.

Proof: [Theorem 1] Consider time-stepsk =
0, 1, . . . , D, and suppose that the malicious nodes during this
period are a subset of the setF = {vj1 , vj2 , . . . , vjf }. From
(3), (4) and (6), the values seen by the IDS over these time-
steps are given by

t[0 : D] = ΘDz[0] +MF
Dv[0 : D − 1] , (9)

wherev[k] =
[
y′[k] f ′[k]

]′
. Note that the IDS knows the

quantitiest[0 : D] andΘDz[0], but it does not know the set
F or the valuesv[0 : D − 1]. The IDS will try to identify
these unknown parameters based on the known quantities.

Let F1,F2, . . . ,F(Nf )
⊂ V denote all possible sets of

f nodes, and letMF1

D ,MF2

D , . . . ,M
F
(Nf )

D denote the input
matrices corresponding to these sets. With these matrices in
hand, suppose that the IDS finds the firstj ∈ {1, 2, . . . ,

(
N
f

)
}

such that the vectort[0 : D]−ΘDz[0] is in the column space
of the matrixMFj

D . This means that the IDS can find a vector
v̄[0 : D − 1] such that

M
Fj

D v̄[0 : D − 1] = t[0 : D]−ΘDz[0].

The vector̄v[0 : D− 1] is the IDS’sestimateof the value of
v[0 : D− 1] (note that the valuēv[k] =

[
ȳ′[k] f̄ ′[k]

]′
con-

tains estimates of the plant outputs and the malicious errors



at time-stepk). Substituting (9) into the above expression
and rearranging, we have

MF
Dv[0 : D − 1]−M

Fj

D v̄[0 : D − 1] = 0 .

Let {F ,Fj} denote the set that is obtained by concatenating
setsF and Fj (i.e., it is the union of the two sets, with
duplications allowed). Exploiting the form of matrixMQ

D

shown in (7), the above expression can be written as



0 · · · 0

TB{F ,Fj} · · · 0

TWB{F ,Fj} · · · 0
...

. . .
...

TWD−1B{F ,Fj} · · · TB{F ,Fj}




︸ ︷︷ ︸
M

{F,Fj}

D




ṽ[0]
ṽ[1]
ṽ[2]

...
ṽ[D − 1]



= 0

(10)
whereB{F ,Fj} =

[
H EF EFj

]
and

ṽ[k] =



y[k]− ȳ[k]

f [k]
−f̄ [k]


 .

Now consider the matrixMF∪Fj

D . SinceF ∪Fj has at most
2f nodes, equation (8) indicates that the firstp + |F ∪ Fj |

columns of the matrixMF∪Fj

D are linearly independent of
each other, and of all other columns of the matrix. Now, note
that the matrixM{F ,Fj}

D is obtained from matrixMF∪Fj

D

simply by duplicating certain columns (namely, the columns
corresponding to nodes that appear in bothF and Fj).
Consider a nodevl ∈ F . If vl /∈ Fj, then the column
corresponding tovl within the first p + 2f columns of
M

{F ,Fj}
D will be linearly independent of all other columns

in M
{F ,Fj}
D (since this column will also appear in the

first p + |F ∪ Fj | columns ofMF∪Fj

D ). This means that
equation (10) can be satisfied only iffl[0] = 0. On the other
hand, if fl[0] 6= 0, the only way for equation (10) to be
satisfied is ifvl ∈ Fj and f̄l[0] = fl[0]. In other words, if
equation (8) is satisfied, any malicious node that commits an
error during the first time-step will appear in setFj , and its
additive error can be found by the IDS.

Next, note from (8) that the firstp columns ofM{F ,Fj}
D

will be linearly independent of each other and of all other
columns in that matrix (since these columns also appear in
M

F∪Fj

D and are not duplicated inM{F ,Fj}
D ). This means that

the only way for equation (10) to be satisfied is ifȳ[0] =
y[0]. Thus, the IDS has also recovered the outputs of the
plant that were injected into the network at time-stepk = 0.

At this point, the IDS knowsy[0] and the identities of
those nodes inF that committed errors during time-step0,
along with the exact values of their additive errors. The IDS
can then use (3) to obtain the transmitted values of all nodes
at time-stepk = 1 as

z[1] = Wz[0] +Hy[0] +BFj
f̄ [0] .

Now, using the identity

t[1 : D + 1] = ΘDz[1] +MF
Dv[1 : D] ,

the IDS can repeat the above process to find the values of
y[1] along with the identities of the nodes that are malicious
during time-stepk = 1. By repeating the above procedure
for all positive values ofk, the IDS can obtain the identities
of all malicious nodes and the errors that they commit, along
with the source streamsy[k] for all k, simply by listening
to the transmissions of the nodes inT .

V. NETWORK TOPOLOGYCONDITIONS FOR

M ISBEHAVIOR IDENTIFICATION AND DATA RECOVERY

Theorem 1 provides a decoding procedure for the IDS
provided that condition (8) is true. In this section, we will
relate this condition to the topology of the network.

A. System Inversion

The quantitiesy[k] andf [k] in (3) are unknown to the IDS,
and so linear systems of this type are termedlinear systems
with unknown inputs.3 For such systems, it is often of interest
to “invert” the system in order to reconstruct some or all
of the unknown inputs, and this problem has been studied
under the moniker ofdynamic system inversion[13]. We
will now apply some pertinent results on system inversion
to the problem of detecting and identifying malicious nodes
in the wireless control network. First, recall that for any set
Q ⊆ V , the transfer function of the linear system (5) is
P(z) = T (zI−W)

−1
BQ, which is a|T |×(p+|Q|) matrix

of rational functions ofz.
Definition 1: The system (5) is said to have anL-delay

inverse if there exists a system with transfer functionP̂(z)
such that̂P(z)P(z) = z−LIp+|Q|. The system is invertible if
it has anL-delay inverse for some finiteL. The least integer
L for which anL-delay inverse exists is called the inherent
delay of the system.

In order for the system to be invertible, its transfer function
must have rankp + |Q| over the field of rational functions
in z. The following result from [13] and [14] provides a test
for invertibility in terms of the matricesW,BQ andT.

Theorem 2 ([13], [14]): For any nonnegative integerL,

rank(MQ
L ) ≤ p+ |Q|+ rank(MQ

L−1) (11)

with equality if and only if the system has anL-delay inverse
(note that rank(MQ

−1) is defined to be zero). If the system is
invertible, its inherent delay will not exceedL = N − p −
|Q|+ 1.

We will now relate the algebraic test from the above
theorem to agraph-theoretictest for invertibility.

B. Structured Systems

A linear system of the form (5) is said to bestructuredif
each entry of the matricesW,BQ andT is either a fixed
zero or an independent free parameter [15]. Interestingly,
such systems have certain properties that can be inferred
purely from the zero/nonzero structure of the system ma-
trices; these properties aregeneric, meaning that they will

3In our case, the setF (and thus the matrixBF ) is also unknown to
the IDS, so the system given by (3) and (4) is more general thanthe linear
systems with unknown inputs commonly considered in the literature.



hold for almost any choice of free parameters (i.e., the set
of parameters for which the property does not hold has
Lebesgue measure zero [15]). Of particular relevance to this
paper is thegeneric normal rankof the transfer function
matrix of a structured system, which is the maximum rank
(over the field of rational functions inz) of the transfer
function matrix over all possible choices of free parameters.

To analyze structural properties of linear systems of the
form (5), one associates a graphH with the structured set
(W,BQ,T) as follows. The vertex set ofH is given by
V ∪ I ∪ O, whereV = {v1, v2, . . . , vN} is the set of state
vertices,I = {i1, i2, . . . , ip+|Q|} is the set of input vertices,
andO = {o1, o2, . . . , o|T |} is the set of output vertices. The
edge set ofH is given by Evv ∪ Eiv ∪ Evo, whereEvv =
{(vj , vl) | Wlj 6= 0}, Eiv = {(ij , vl) | BQ,lj 6= 0}, and
Evo = {(vj , ol) | Tlj 6= 0} (where Wlj indicates entry
(l, j) of matrix W, and so forth). The following theorem
characterizes the generic normal rank of the transfer function
of a structured linear system in terms of the graphH.

Theorem 3 ([15], [16]): Let the graph of a structured
linear system be given byH. Then the generic normal rank
of the transfer function of the system is equal to the maximal
size of a linking inH from I to O.

The above result says that if the graph of the structured
system (5) hasp + |Q| vertex disjoint paths from the
inputs to the outputs, then for almost any choice of free
parameters inW, BQ andT, the transfer function matrix
T(zI − W)−1BQ will have full column rank. Based on
Theorem 2, this will mean that the firstp + |Q| columns
of the matrixMQ

N−p−|Q|+1 will be linearly independent of

all other columns inMQ
N−p−|Q|+1.

We now have a graph-theoretic characterization of the
invertibility of linear structured systems, and are in place to
apply this to the problem of identifying malicious behavior
and recovering the plant outputs in the WCN.

C. Topological Conditions for Identifying Malicious Nodes

From Theorem 1 and Theorem 2, the IDS can identify
up to f malicious nodes if the linear system given by the
tuple (W,BQ,T) is invertible for every setQ ⊂ V of
up to 2f nodes. To verify that this property holds, note
that for any given setQ, the tuple(W,BQ,T) essentially
defines a structured linear system, with the only exception
being that the nonzero entries in the matricesEQ (where
BQ =

[
H EQ

]
) andT are taken to be “1”, rather than

free parameters. However, this is of no consequence, since
each nonzero entry in those matrices appears in a row and
column by itself, and thus can essentially be “scaled” to a
free parameter by an appropriate redefinition of the inputs
and outputs (e.g., see [17]). Thus, we can proceed with
applying the above results on structured system theory to the
tuple (W,BQ,T), which brings us to the following result.

Theorem 4:Let Ḡ = {V ∪S, E ∪ EI} denote the graph of
the wireless control networkG augmented with the sensor
verticesS and the corresponding edges. LetT ⊂ V denote
the set of monitored nodes. Suppose that for every possible

setQ ⊂ V of 2f nodes, the graph̄G contains a(p + 2f)–
linking from S ∪ Q to T . Then, for almost any element
(W,H,G) ∈ Ψs (if it is nonempty), there exists an integer
D ≤ N−p−2f+1 such that the IDS can recover the outputs
of the plant and identify all malicious nodes with a delay of
at mostD time-steps, as long as there are no more thanf
malicious nodes in any set ofD contiguous time-steps.

Proof: For any setQ ⊂ V of 2f nodes, consider the
graph4 HQ associated with the structured set(W,BQ,T).
To obtain this graph, start by taking the graph of the network
G. To this graph, addp + 2f input vertices (denoted by
I) which will connect to the nodes in the graph according
to the structure of the input matrixBQ. Specifically,p of
these input vertices correspond to the plant sensorsS (which
producey[k]), and each of these has outgoing edges to the
nodes inVS (specified by the structure of matrixH). The
other2f input vertices each have a single outgoing edge to
a node inQ (corresponding to the single1 in each column
of EQ). Next, add|T | output vertices (denoted by the set
O), and place a single edge from each node in the setT to
a node inO, corresponding to the single nonzero entry in
each row of the matrixT. Furthermore, add a self loop to
every state vertex corresponding to the nonzero entries on
the diagonal of the matrixW.

From the statement of the theorem, note that graphḠ
contains a linking of sizep+ 2f from S ∪Q to T , for any
setQ of 2f nodes. This linking also exists in the graphHQ,
sinceḠ is a subgraph ofHQ.5 This linking can be extended
to a linking from the entire setI to T in HQ simply by
including the edges from the setI \ S to the setQ. Finally,
this linking can be further extended to a linking fromI to O
simply by including the edges from each vertex inT to the
corresponding output vertex inO. From Theorem 3, we see
that the system(W,BQ,T) will be invertible for almost
any choice of matricesW andH (subject to the required
sparsity patterns). This genericness implies that invertibility
will hold simultaneously for all of the sets(W,BQ,T) for
every setQ of 2f nodes with almost any choice of free
parameters in the matricesW and H. From Theorem 2,
the firstp+ |Q| columns of the matrixMQ

N−p−2f+1 will be
linearly independent of each other and of all other columns in
MQ

N−p−2f+1. Thus, condition (8) in Theorem 1 is satisfied,
and the IDS can uniquely determine the identities of the
malicious nodes, as well as the values of the plant outputs,
based on the transmissions of the nodes inT , with a delay
of at mostN − p− 2f + 1 time-steps.

Finally, we show that there is a tuple(W,H,G) in the set
Ψs (which contains all stabilizing structured matrices for the
plant and is assumed to be nonempty) that allows the IDS to
recover the desired information. This is done by noting that
the set of matrices for which the system is stable has nonzero
measure inRr (wherer is the number of free parameters in
the matricesW andH). More precisely, ifλ ∈ R

r denotes

4The notationHQ is used to denote the fact that this graph is associated
with the structured set(W,BQ,T), for a particular setQ of 2f nodes.

5Specifically, it is the graph obtained by dropping the outputvertices and
the 2f input vertices connecting to the setQ in HQ.



a numerical vector of free parameters inW and H that
produces stability (e.g., obtained from the procedure in [4]),
the closed loop system will remain stable for any parameter
vectorsλ∗ satisfying the component-wise inequalitiesλ −
ǫ1 ≤ λ∗ ≤ λ + ǫ1, for sufficiently smallǫ > 0; this is
because the eigenvalues of a matrix vary continuously with
the parameters in that matrix. Thus, the set of stabilizing
parameters has measure at least(2ǫ)r > 0, whereas the set of
parameters for which the system is not invertible has measure
zero. Thus, for almost any(W,H,G) ∈ Ψs, the system is
stableand allows the IDS to recover the plant outputs and
identify malicious behavior.

Theorem 4 characterizes the set of nodesT that the IDS
should observe in order to achieve its objectives. However,
the fact that the theorem is framed in terms ofall possible
setsQ of 2f nodes makes it somewhat unwieldy. One can
come up with a more compact condition when the entire
network is sufficiently well connected, as follows.

Corollary 1: Suppose that the networkG has connectivity
at leastp+2f , and that each sensor inS connects to at least
p+2f source nodes. LetT ⊆ V be any set of at leastp+2f
nodes. Then, for almost any element(W,H,G) ∈ Ψs (if it
is nonempty), there exists an integerD ≤ N − p − 2f + 1
such that the IDS can recover the outputs of the plant and
identify all malicious nodes with a delay ofD time-steps, as
long as there are no more thanf malicious nodes in any set
of D contiguous time-steps.

Proof: For any setQ ⊂ V of 2f nodes, note that
VS \ Q has at leastp nodes (since|VS | ≥ p + 2f ). Since
each sensor inS connects to at leastp + 2f source nodes,
each sensor will connect to at leastp nodes in the setVS \Q.
By Hall’s Theorem (e.g., see [12]), there is a linking of size
p from S to VS \ Q (this is also called amatching). Let
V̄S ⊂ VS be the set ofp source nodes contained in this
matching, and note that̄VS ∪Q hasp+2f nodes. Since the
network has connectivityp+2f , Lemma 1 shows that there
is a linking of sizep + 2f from V̄S ∪ Q to T . Thus, the
graphḠ = {V ∪S, E ∪EI} contains a linking of sizep+2f
from S ∪ Q to T for any setQ of 2f nodes. Theorem 4 is
thus satisfied, from which the result follows.

Note that the above corollary indicates that in networks
with connectivity p + 2f or higher, any set of p + 2f
nodes can be chosen to be observed by the IDS in order
to recover the desired information about the system. For
example, consider the wireless control network shown in
Fig. 1. The source nodesVS = {v1, v2, v3} have access to
the plant’s (scalar) outputy[k] at each time-step. Note that
the connectivity of the network isκ = 3, and since there
is a single sensor on the plant (p = 1) that connects to
three nodes, Corollary 1 indicates that the IDS can detect
and identify up tof = ⌊κ−p

2 ⌋ = 1 malicious node, simply
by monitoring the transmissions of anyp + 2f nodes (e.g.,
the setT = {v3, v6, v9}).

Remark 1:The approach presented in this paper can be
viewed as a form ofnetwork codingthat has been recently
proposed by the communications community, where nodes in
a network transmit linear combinations of incoming packets

rather than simply routing them (e.g., see [18], [19] and
the references therein). It was shown in [18], [19] that the
capacity of the network must be at leastp + 2f in order
to transmit information fromp sources to a set of sinks,
despite the presence off attackers. Our work shows that this
bound holds for the WCN proposed in [4] using a purely
linear system theoretic approach, even though the linear
combinations have been chosen to obtain stability. Further
investigation of the applicability of resilient network coding
to control network design is a ripe avenue for research.
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