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Abstract— This work focuses on control of discrete event
systems (DES) in the presence of attacks on their inputs and
outputs. We propose to model such attacks as nondeterministic
finite state transducers (FSTs) and show how FSTs can be
used to capture a very wide class of attacks including all
previously considered attacks on DES, as well as additional
attacks and attack features reported in recent security incidents.
We study the supervisory control problem in cases when attacks
occur: (i) only on the sensors, (ii) only on the actuators,
and (iii) both on the actuators and sensors of the plant. For
each case, we present new sets of controllability theorems and
synthesizing algorithms for attack-resilient supervisors. On a
series of examples, we illustrate the use of our approach for
modeling and design of such security-aware supervisory control.

I. INTRODUCTION

Control systems operate in a range of security-critical
domains where communication between the controller and
the plant, or the physical environment of the plant, may
be susceptible to adversarial attacks. Thus, it is critical to
provide techniques to analyze behavior of control systems
under attack, as well as synthesize attack-resilient control
systems [1], [2], [3]. Such systems should be able to provide
strong control guarantees under different types of intelligent
and coordinated attacks (e.g., [1], [3]); such malicious behav-
iors are more complex than random failures, which is well
studied in the fields of reliability and fault tolerant control.

In this work, we adopt the framework of the supervisory
control of discrete event systems [4], in which a supervisor
controls the behavior of a plant, modeled as a discrete event
system (DES), within a desired language. Recent works
focused on securing DES, consider possible attacks on com-
munication between the supervisor and the plant [5], [7], [8],
[9]; specifically, the attackers have the ability to insert, delete,
and replace events/symbols communicated with the plant
according to certain prespecified rules, and the supervisor,
generally realized by a finite state automaton, regulates the
words passing-by to counter the attacks.

We show that all previously studied attacks on DES
including injection, deletion, and replacing events/symbols
according to certain prespecified rules, fall into a more gen-
eral class of regularly-rewriting attacks, which are considered
in this work. With these attacks, attackers can revise the
symbols communicated between the supervisor and the plant
nondeterministically to a word (possibly empty) in a regular
language. Mathematically, the regularly-rewriting attacks de-
fine a regular relation between the input and output languages
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of the attacker [10], [11]. We show how they can be realized
by finite state transducers (FST) or nondeterministic Mealy
machines. To counter such attacks and improve resiliency
guarantees, we also consider supervisors that can be modeled
as FSTs, instead of automata as previously done; this allows
the supervisor to rewrite symbols, in addition to monitoring.

Figure 1 illustrates the considered supervisory control
setup where FSTs model attacks on information delivered to
the controller from the plant’s sensors as well as attacks on
control commands delivered to the actuators. We show how
this configurations captures the basic controllability problems
in attack-resilient supervisory control. Specifically, we focus
on configurations with attacks on: (i) sensors, (ii) actuators,
and (iii) both actuators and sensors. This enables capturing of
network-based attacks that may corrupt communicated data
(e.g., as in [18], [1]), as well as noninvasive attacks that affect
the plant’s environment (e.g., GPS spoofing attacks [19]).

We show that for Case (i), attacks on sensing data de-
livered to the controller can be completely countered by an
FST-based supervisor derived by the serial composition of
the inversion of the (very-general) attack model and a model
of the desired language. For Case (ii), the actuator attacks
on commands sent to the plant can be partly countered by a
supervisor derived by the serial composition of a model of
the desired language and the inversion of the attack model.
The exact controllability is achieved if the desired language
is invariant under the attack. Finally, for Case (iii), we show
that an attack-resilient supervisor can be derived by serially
composing the supervisors from (i) and (ii).

The derived controllability conditions for actuator attacks
generalizes the standard controllability conditions for DESs
under partial controllable and observable sets [4]. Our con-
trollability conditions distinguish from existing works on the
attack-resilient supervisory control of DESs [5], [7], [8], [9],
as more general attack and supervisor models are adopted.

This paper is organized as follows. After preliminaries
in Section II, we show how attacks can be modeled by FSTs
(Section III) and formally specify the problem (Section IV).
Controllability theorems and algorithms to design attack-
resilient supervisors are presented in Section V and VI, when
only plant sensors or actuators, respectively, are corrupted.
These results are generalized for attacks on both sensors and
actuators (Section VII), before concluding in Section VIII.

II. PRELIMINARIES

The empty string is denoted by ε. A finite-length sequence
of symbols taken from a given finite set is called a word.
A set of words is called a language of the symbols. The
cardinality and the power set of a set I are denoted by |I|
and 2I, respectively. For two sets I and O, let I\O =

{
i ∈ I |
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Fig. 1: Supervisory control in the presence of attacks on sensors,
actuators as well as the communication between the sensors,
controller and actuators.

i /∈ O
}

. For n ∈ N, where N is the set of natural numbers, let
[n] = {1, .., n}. For a word I = i1i2 . . . in, we call i1i2 . . . ik,
with k ≤ n, a prefix of I . For a language L, its prefix-
closure is defined by L =

{
I | I is a prefix of J, J ∈ L

}
.

The language L is prefix-closed if L = L. Also, we adopt
the following convention on generating regular expressions:
a superscript ∗ means repeating a symbol or a set of symbols
finitely many times, and a comma means “or”.

A relationR between two sets I and O is a setR ⊆ I×O.
For i ∈ I, let R(i) = R(i, ·) =

{
o ∈ O | (i, o) ∈ R

}
. The

relationR(i) is a partial function for the input i if |R(i)| ≤ 1,
for any i ∈ I. More generally, for I′ ⊆ I, while slightly
abusing the notation we define R(I′) = R(I′, ·) =

{
o ∈ O |

(i′, o) ∈ R, i′ ∈ I′
}

. Thus, R(·) defines a function 2I → 2O.
For relation R ⊆ I×O, its inversion is defined by R−1 ={

(o, i) ∈ O × I | (i, o) ∈ R
}

. Finally, for two relations
R ⊆ I ×O and R′ ⊆ I′ ×O′, their (serial) composition is
defined by R◦R′ =

{
(i, o′) ∈ I×O′ | ∃o ∈ O∩I′ : (i, o) ∈

R ∧ (o, o′) ∈ R′
}

.
FSTs extend Finite State Automata (FSA) by generating

an output sequence nondeterministically during execution, by
augmenting each transition with a regular output language.
Definition 1 (Finite State Transducer). An FST is a tuple
A = (S, sinit, I,O,Trans,Sfinal) where: (i) S is a finite set
of states; (ii) sinit ∈ S is the initial state; (iii) I is a finite
set of inputs; (iv) O is a finite set of outputs; (v) Trans :
S× I ∪ {ε} → O ∪ {ε} × S is a partial transition relation;
and (vi) Sfinal ⊆ S is a finite set of final states.

The FST is deterministic if Trans is a partial function.
The sequence (sinit, i0, o0, s0)(s0, i1, o1, s1) . . . (sn−2, in−1,
on−1, sn−1) is called an execution, if (oisi) ⊆ Trans(si−1, ii)
for i ∈ [n] with s−1 = sinit. The state sn−1 is called
reachable upon receiving the input word I = i0i1 . . . in. An
input/output word is accepted by A, if there exists such an
execution ending at Sfinal. The set of accepted input/output
words is called the input/output languages of A, denoted by
LI(A) and LO(A), respectively.

We refer to [14] for common operations on FSTs, such
as inversion and composition. Specifically, the complexity is
O(n1) for inversion, and O(n1n2) for composition, where n1

and n2 are the numbers of transitions. Obviously, an FST A
defines a regular relation RA between the input and output
languages. On the other hand, a relation R ⊆ I∗ × O∗ is
regular, only if it is realized by an FST.
Remark 1. In this work, FSA are viewed as FSTs with
identical inputs and outputs. On the other hand, FSTs can
be viewed as FSA with labels in (I ∪ {ε})× (O ∪ {ε}).
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Fig. 2: FST realizations of different attack models.

III. MODELING ATTACKS WITH FSTS

This section presents modeling attacks on supervisory
control using FSTs; we show how such FST-based models
generalize all existing attack models. Specifically, we start
by showing how FSTs can be used to capture all previously
reported attacks on DES [5], [9], as well as additional attacks
and attack features. For example, FSTs can be used to capture
constraints imposed by the system design, as well as model
finite-memory replay attacks, where the attacker records a
finite-length of symbols and replays it repeatedly [20], [2].
Example 1 (Projection/Deletion/Injection Attacks). Con-
sider I′ where I′ ⊆ I. The projection attack defined as

ProjectI′(i) =

{
i, if i ∈ I′

ε, otherwise,
(1)

captures attacks that remove all symbols from I \ I′. On the
other hand, the (nondeterministic) deletion attack defined as

DeleteI′(i) =

{
i, if i ∈ I′

ε or i, otherwise,
(2)

extends the ProjectI′ attack as it captures that the attacker
may (or may not) remove symbols from I \ I′; e.g., if I′ = I
this model captures Denial-of-Service (DoS) attacks [21].

Finally, the (nondeterministic) injection attack defined as
InsertI′(i) = (I′)∗i(I′)∗ (3)

captures that a finite number of symbols from I′ can be
added before and/or after the symbols. These attacks can
be modeled as FSTs (Fig. 2a, 2b and 2c, respectively). C
Example 2 (Replacement-removal Attack). This attack is
defined by the replacing-removing rule φ : I→ 2I∪{ε}, and
can be represented by an FST as shown in Figure 2d. C
Example 3 (Injection-removal Attack). Let I′ ⊆ I. An
injection-removal attack nondeterministically inserts or re-
moves symbols in I′ from a word (the FST in Fig. 2e). C
Example 4 (Finite-Memory Replay Attack). For systems
with continuous-state dynamics, replay attacks have been
modeled and studied (e.g., [20], [2]). On the other hand,
for DESs no such models currently exit. In a DES, a replay
attack records a prefix of a word and replaces the rest with
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Fig. 3: Controllability under actuator and sensor attacks.

the repetitions of the recorded prefix, with the prefix size
being bounded by the finite-memory capacity (i.e., size) N .
For example, a replay attack recording a prefix of length
up to N = 2 for any word of symbols I = {i1, i2} can be
modeled by an FST as shown in Figure 2f. C
Remark 2. Using FSTs to model attacks naturally supports
the composition of multiple attacks modeled with the corre-
sponding FSTs. With the general architecture from Figure 1,
the system may be under a coordinated attack from multiple
deployed attackers, capturing different ‘point-of-entries’ for
the attack vectors on sensors/actuators and communication
network; for example, false data injection via sensor spoofing
on a subset of plant sensors (e.g., [19]) in coordination with
DoS attacks on transmitted measurements from other sensors.

IV. MODELING AND PROBLEM FORMULATION

In this section, we introduce a general mathematical
framework for the supervisory control of DESs subject
to attacks on both the plant’s actuators and sensors. As
illustrated in Figure 3, the supervisor S controls behavior
of the plant P by observing the symbols that P generates
and then sending the possible control symbols back to it.
Here, P is a DES driven by a finite set of symbols I. Its
state transits upon receiving an acceptable word i ∈ I∗.

However, the information about the sensed symbols can
be compromised by an attacker with the ability of inject,
delete or replace symbols in both the control and observation.
These attacks are modeled by two attack FSTs Aa and As

on the actuators and sensors respectively, with the same sets
of input and output symbols I = O. They can regularly
rewrite an acceptable input word, i.e., replace a symbol
nondeterministically with an arbitrary word taken from some
predefined regular language. This includes, e.g., injection,
replacement and deletion. We do not assume to know what
actions the attacker may perform. Rather, the FSTs use
nondeterminism to capture all possible actions of the attacker
for a specific set of compromised resources (e.g., sensors,
actuators), as well as all potential limitations imposed on
the attacker’s actions by the system design (e.g., the use of
cryptographic primitives on some communication messages
to prevent false-data inserting attacks over the network).

Furthermore, in our setup the supervisor is also modeled
by an FST S. Using FSTs instead of automata to model su-
pervisors provides them the ability to revise symbols that are
required to counter attacks on the plant’s sensors; Example 5
presents an attack As that can only be handled by FSTs.
Example 5. Consider a set of symbols I = {i1, i2} and a
plant P accepting the language (i1, i2)∗, as in Figure 4a. The
(prefix-closed) desired language is K = (i1i2)∗, represented
by a discrete event system MK in Figure 4c. The sensor
attacks As are modeled by an FST as shown in Figure 4b.

0 i1, i2
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(b) Attacker As

0 1

i1

i2

(c) Desired K

0 1

i1|i1

i1|i2

(d) Supervisor S

Fig. 4: Sensor attacks that can only be countered by FSTs.

Supervising the plant to the desired language K without
the ability to revise symbols is not feasible. The reason is
that the supervisor output should be the desired language
(i1, i2)∗, but the input is always i∗1, since the plant only
generates i∗2 and the attacker rewrites it to i∗1. However, for
such attack model there exists an FST-based attack-resilient
supervisor S for the plant, shown in Figure 4d – it counters
the attacks by revising i1 back to i2 every other step. C

We assume that the attack FSTs Aa, As, supervisor S and
plant P only receive acceptable inputs (see Assumptions 1
and 2). This is generally achievable with the proper use of
FST models for the attacks Aa, As, and supervisor S.

For the described system, we consider the problem of
attack-resilient supervisory control. Specifically, let L(P)
be the language generated by the plant without supervisor
and K ⊆ L(P) be the desired language. We consider the
existential and, more importantly, the synthesis problem of a
supervisor S supervising the language received by the plant
to be exactly or as close as possible to some desired language
K when the system is under attack. This is formally specified
in Definition 2. It is important to note that the supervisor is
not trying to completely recover a corrupted control; instead,
it constrains the control sent to the plant to be within K.

To simplify our presentation, we assume that for the plant
P , supervisor S, and actuator and sensor attacks Aa,As,
all states are final Sfinal = S, i.e., both the sets of their
inputs and outputs are prefix-closed. We also assume that the
desired language is also prefix-closed K = K̄ and regular.
The regularity of K is to ensure that it is controllable by
supervisors modeled by FSTs. The prefix-closeness requires
that the supervision can be implemented step-by-step.
Definition 2. The supervisor S weakly controls the deter-
ministic plant P to the desired language K in the presence
of actuator and sensor attacks Aa and As, if it holds that

K ⊆min L(P|S,Aa,As). (4)
Here, L(P|S,Aa,As) denotes the restricted language of
P under supervision with both actuator and sensor at-
tacks, while ⊆min stands for minimal inclusion – i.e.,
any supervisor S ′ with K ⊆ L(P|S ′,Aa,As) satisfies
L(P|S,Aa,As) ⊆ L(P|S ′,Aa,As). Furthermore, we say
that the supervisor controls the plant P to the desired
language K when the equality in (4) holds.

The restricted languages of P with only actuator or
sensor attacks are denoted by L(P|S,Aa) and L(P|S,As),
respectively. Both controllability and weak controllability for
these cases are similarly defined.

Relationship with existing work: By specifying suitable
actuator and sensor attack models, existing DES under at-



tack problem formulations can be derived from the general
problem formulation considered in this work. To show this,
let the actuator attack model A(s)

a = InsertIuc
◦ P be the

serial composition of the injection attack from (3) and the
plant. These inserted symbols are acceptable symbols of the
plant, but not uncontrollable by the supervisor. In addition,
let the sensor attack model A(s)

s = ProjectIo from (1).
The removed symbols can be viewed as the unobservable
symbols generated by the plant. For such setup, our problem
reduces to the standard (i.e., without taking security/attacks
into account) supervisory control formulation [4] with uncon-
trollable events Iuc, and unobservable events Iuo = I\Io.

In the second setup, let us assume that actuator and sensor
attack modules A(s)

a and A(s)
s (defined above) are composed

with modules of injection-removal of a set of vulnerable
control symbols from Example 3. Our problem for such
setup directly captures the problem of supervisory control
under the actuator and sensor enablement/disablement at-
tack studied in [9]. Yet, if A(s)

s is composed with a sen-
sor replacement-removal attack from Example 2, the problem
considered in this paper yields the problem of supervisory
control under replacement-removal sensor attacks [5]. Simi-
larly, composing A(s)

s with a sensor injection-deletion attack
from Example 3 maps our problem into supervisory control
problem under injection-deletion sensor attacks from [5].

V. CONTROLLABILITY UNDER ATTACKS ON SENSORS

We start our analysis with the supervisory control problem
under only sensor attacks. In the rest of the section, we make
the following assumption on the sensor attacker As.
Assumption 1. The attack FST As can (i) accept and
(ii) only accept words that are acceptable to the plant P ,
i.e., LI(As) = L(P).

The first part of Assumption 1 means that the attack FST
As is well-defined for any acceptable word of the plant P .
This can be done by encoding the error behavior of receiving
an unacceptable word to the plant model. The second part
of Assumption 1 is always achievable by trimming the As.

To counter the attack modeled by As, we can construct its
inversion A−1

s . For any word k passing the plant, the attack
As rewrites it to a word in RAs

(k), and the inversion can
reverse it back to RAs◦A−1

s
(k); note that RAs◦A−1

s
(k) is the

set of possible words passing through the plant and yielding
the same observation after attack as k. Restricting this set of
words to the desired language K guarantees the supervisory
control goal. Therefore, the supervisor S should be designed
to be A−1

s ◦MK , where MK is the automata realizing the
desired language K. In this way, it is guaranteed that the
supervisor only sends control words within K, even if the
sensors are corrupted, as summarized by the theorem below.
Theorem 1 (Controllability under sensor attacks). The plant
P is controllable to the desired regular language K ⊆ L(P)
under attack As on the plant’s sensors. This can be achieved
by the supervisor S = A−1

s ◦MK .
Furthermore, Theorem 1 also directly provides a computa-

tional method to design such attack-resilient supervisor; the
procedure is introduced in Algorithm 1.
Example 6 (Supervisor design under sensor attacks). From
Example 5, the supervisor S = A−1

s ◦MK in Figure 4d is

Algorithm 1 Design Supervisor Resilient to Sensor Attacks

Require: Desire language K, plant P , sensor attacker As.
1: Find MK realizing K ⊆ L(P) .
2: Compute inversion A−1

s .
3: Compute serial composition S = A−1

s ◦MK .
4: return Supervisor S.

derived by a serial composition of the inversion of As in Fig-
ure 4b and the model of desired language K (Figure 4c). C
Remark 3. By Theorem 1, attacks on sensors do not affect
controllability, as opposed to previous works [5], [7], [9].
This is caused by the fact that the plant is deterministic, thus
the FST-based supervisor can control the plant in open-loop
without using the sensing information of the plant. These
sensing information will become useful to learn the state of
the plant when it is nondeterministic, as we show in [6].

VI. CONTROLLABILITY UNDER ACTUATOR ATTACKS

We now study the attack-resilient supervisory control
problem when only attacks on plant actuators may occur.
Specifically, actuators of the plant P are under the attack Aa,
but the supervisor S has direct access to the words passing
the plant. This problem is more complex then the supervisory
control problem with sensor attacks studied in Section V, as
the supervisor commands are not directly sent to the plant.
Consequently, not all desired language are controllable to
the plant. For example, if attack Aa generates the empty
word ε upon all inputs, modeling DoS attacks, then the only
controllable desired language for the plant is {ε}.

We make the following assumption on the attack FST Aa.
Assumption 2. The attack FST Aa can (i) generate and
(ii) only generate words that are acceptable to the plant P ,
i.e., LO(Aa) = L(P).

The first part of Assumption 2 means that the actuator
attack Aa will not cause an error by sending an unacceptable
input of the plant P (such attacks are easy to detect); instead,
the attack will try to affect the plant and violate the control
goal by sending a word in L(P)\K to the plant. The second
part ensures that every word in L(P) may possibly be sent to
the plant P – otherwise, we can only discuss controllability
with respect to LO(Aa) (see Remark 5).

For attack-resilient supervision of the plant under actuator
attacks, the supervisor S needs to (i) constrain (i.e., filter)
the words passing the plant P , and (ii) rewrite these words
to counter the effects of the actuator attacks Aa.

Filter: Unlike our approach presented in Section V, for
the first requirement, we construct an FST filter MK of the
desired language K ∈ L(P). This is because an automaton
of K cannot handle input words in L(P)\K. The filter takes
a word k ∈ L(P) and sends the same word if k ∈ K, and ε
otherwise. This is achieved with Algorithm 2.

For the second requirement, we construct the inversion
A−1

a of the actuator attacks. Consequently, the supervisor is
S =MK ◦A−1

a . For any word k passingMK , we know k ∈
K. The inversion A−1

a rewrites it to a word in RA−1
a

(k), and
the actuator attack Aa rewrites it to RA−1

a ◦Aa
(k) and passes

to the plant. This is the set of possible words that can be
derived by attacking the input words yielding k. Therefore,
we have k ∈ RA−1

a ◦Aa
(k) and K ⊆ RA−1

a ◦Aa
(K).



Algorithm 2 FST Filter for Desired Language K.

Require: The desire language K, plant P .
1: Find automata M and M′ with L(M) = L(P) and

L(M′) = K .
2: Convert M and M′ to FSTs by adding ε as output and input

symbol for each transition, respectively.
3: A =M◦M′.
4: Trim off transitions with input symbol ε in A.
5: return Supervisor A.

Algorithm 3 Design Supervisor under Actuator Attacks

Require: Desire language K, plant P , actuator attacker Aa.
1: Find FST filter MK for K .
2: Compute inversion A−1

a .
3: Compute serial composition S =MK ◦ A−1

a .
4: if the output language LO(S ◦ Aa) ⊆ K then
5: return K is controllable
6: else
7: return K is not controllable
8: end if
9: return Supervisor S.

Since RA−1
a ◦Aa

(K) is not necessarily contained in K,
the supervisor S = MK ◦ A−1

a only restricts the language
passing the plant to a minimal superset of K. The desired
language K is controllable, when the containment holds.
This is equivalent to checking if K is contained in the output
language of Mk ◦ A−1

a ◦ Aa. In this way, it is guaranteed
that the plant only receives control words from K, even if
the actuators are corrupted. This is summarized below.
Theorem 2 (Controllability under actuator attack). The plant
P is weakly controllable to the desired regular language
K ⊆ L(P) under the attacks Aa on its actuators by
the supervisor S = Mk ◦ A−1

a . Accordingly, the minimal
controllable language containing K is

K̃ = RA−1
a ◦Aa

(K). (5)
The desired language is controllable if and only if K̃ = K, or
equivalently the output language ofMk ◦A−1

a ◦Aa satisfies
LO(Mk ◦ A−1

a ◦ Aa) ⊆ K. (6)
Theorem 2 provides a computational method to design

such supervisor, as provided in Algorithm 3.
Example 7 (Supervisor design for actuator attacks). For
the setup from Figure 3 without attacks on sensors, let
us consider a set of symbols I = {i1, i2} and a plant P
accepting the language (i1, i2)∗, as shown in Figure 5a. The
(prefix-closed) desired language is K = (i1, i2)i2, associated
with the FST filter MK (Figure 5b). Now we consider
the following two cases. Controllable: Attacks on actuators
are represented by an FST Aa shown in Figure 5c. It
rewrites the first i1 nondeterministically to i1 or i2. The
output language LO(S ◦ Aa) = (i1, i2)i2 is exactly K.
Therefore, the plant is controllable to K by the supervisor S
even under the attack. Weakly Controllable: The actuator
attacks Aa are represented by an FST from Figure 5e. It
rewrites any i1 nondeterministically to i1 or i2. It sends first
i1 and then i1 or i2 upon receiving i2. The output language
LO(S ◦Aa) = (i1, i2)(i1, i2) is larger than K. Therefore, the
plant is uncontrollable to K by the supervisor S. It is easy
to see that (i1, i2)(i1, i2) is a minimal superset of K. C
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Fig. 5: Example supervisors for actuator attacks.

Remark 4. Note that the supervisor in Figure 5f, derived
in Example 7, is nondeterministic — at the state 0, it can
either send i1 or i2 upon receiving i1. The controllability
theorem guarantees that in the presence of attacks, the
union of all possible words received by the plant under
all these allowable controls is exactly the desired language
K. In implementation, the nondeterminism can be resolved
by choosing one of the allowable controls. Accordingly, the
possible words received by the plant is contained in K.

VII. CONTROLLABILITY UNDER ATTACKS ON BOTH
ACTUATORS AND SENSORS

Finally, we study the setup with attacks on both plant
actuators and sensors, as shown in Figure 3. This is a
combination of theproblems studied in Sections V and VI.
Again, we assume that the actuator attacks Aa and sensor
attacks As are well-defined as stated in Assumptions 1 and 2.

From Section VI, it follows that the FST MK ◦ A−1
a

can constrain the words passing the plant P , and revise
these words to counter the actuator attacks Aa. This, in
combination with the analysis in Section V, implies that the
supervisor A−1

s ◦MK◦A−1
a can additionally counter the sen-

sor attacks As. It is easy to check that K ⊆ RAs◦S◦Aa
(K).

However, RAs◦S◦Aa(K) is not necessarily contained in K.
The supervisor S = A−1

s ◦ MK ◦ A−1
a only restricts the

language passing the plant to a minimal superset of K. The
desired language K is controllable, when the containment
holds. This is summarized by the following theorem.
Theorem 3 (Controllability under both attacks). For the
system from Figure 3, the plant P is weakly controllable to
the desired regular language K ⊆ L(P) under the attacks
Aa and As on its actuators and sensors, respectively, by the
supervisor S = A−1

s ◦MK ◦A−1
a . Accordingly, the minimal

controllable language containing K is
K̃ = RA−1

a ◦Aa
(K). (7)

The desired language is controllable if and only if K̃ = K, or
equivalently the output language ofMK ◦A−1

a ◦Aa satisfies
LO(MK ◦ A−1

a ◦ Aa) ⊆ K. (8)
From Theorem 3, the design of an attack-resilient super-

visor can be performed by separately taking into accounts



Algorithm 4 Supervisor Resilient to Actuator and Sensor Attacks

Require: Plant P , actuator attacker Aa, sensor attacker As, Desire
language K.

1: Find a model MK of K .
2: Compute inversion A−1

a and A−1
s .

3: Compute serial composition S = A−1
s ◦MK ◦ A−1

a .
4: if the output language LO(As ◦ S ◦ Aa) ⊆ K then
5: return K is controllable
6: else
7: return K is not controllable
8: end if
9: return Supervisor S.

0 1 2

i2|i1, i2 i2|i1, i2

(a) Supervisor II

0
i1|i2
i2|ε

(b) Sensor Attack I

0 i1, i2|i2

(c) Sensor Attack II

0 1 2

i1

i2 i2

(d) Desired K

0 1 2

i2|i1

ε|i1

ε|i2

(e) Supervisor I

Fig. 6: Example supervisors for sensor and actuator attacks.

the actuator and sensor attacks, and the attacks on sensors
As have no influence on the controllability. This result is
different from most previous works [9], [4], [5], and is caused
by the fact that the supervisor, when modeled by an FST,
and not an automaton, has more power in generating control
commands (i.e., can generate controls by itself); thus, it
depends much less on the input word it receives. By adding
a component A−1

s , the effect of the sensor attacker As is
totally countered. Theorem 3 also provides a computational
method to design such supervisor, as given in Algorithm 4.
Example 8 (Supervisor design for both sensor and actuator
attacks). From Example 7, consider a set of symbols I =
{i1, i2} and a plant P accepting the language (i1, i2)∗, as
shown in Figure 5a. The (prefix-closed) desired language
is K = (i1, i2)i2, represented by an automaton MK (Fig-
ure 6d). Now, let us consider the following two cases.
Controllable: The attacks Aa and As are modeled by FSTs
from Figures 5c and 6b, respectively. The Aa rewrites the
first i1 nondeterministically to i1 or i2. The As removes i2
and replaces i1 with i2. The supervisor shown in Figure 6e
does not contain any transition with input label i1, as it
will never appear due to the attack. The output language
LO(As◦S ◦Aa) = (i1, i2)i2 is equal to K. Thus, the plant is
controllable to K by the supervisor S. Weakly Controllable:
Consider attack FSTs Aa and As from Figures 5e and 6c,
where Aa rewrites i1 nondeterministically to i1 or i2, and
As replaces i1 with i2. The supervisor does not contain
any transition with input label i1, as it will never appear.
Hence, the output language (i1, i2)(i1, i2) minimally contains
K. Comparing to Example 7, adding sensor attacks has no
influence on controllability. This agrees with Remark 3. C

Finally, note that if the second part of Assumption 2 is
violated, i.e., LO(Aa) ⊆ L(P), Theorems 2 and 3 still hold
on the trimmed plant accepting LO(Aa).

Remark 5. For LO(Aa) ⊆ L(P), K̃ = A−1
a ◦ Aa(K) is

the minimal controllable language containing K ∩LO(Aa),
and K is controllable if LO(MK ◦ A−1

a ◦ Aa) ⊆ K and
K ⊆ LO(Aa).

VIII. CONCLUSIONS

We have studied the attack-resilient supervisory control
problem when attacks occur on: (i) sensors, (ii) actuators,
and (iii) both actuators and sensors; we have considered a
very general class of attacks and proposed to model them
using FSTs. We have presented new sets of controllability
conditions and synthesizing algorithms for supervisors in
these scenarios. We have shown that for (i), an FST-based
supervisor derived by the serial composition of the inversion
of the attack model and a model of the desired language
should be used; for (ii), the actuator attacks can be partly
countered by a supervisor derived by the serial composition
of a model of the desired language and the inversion of the
attack model; and for (iii), a supervisor can be derived by
serially composing the supervisors from (i) and (ii).
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