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Abstract— In this work, we study supervisory control of
discrete event systems in the presence of network-based attacks
on information delivered to and from the supervisors. The
attacks are modeled by finite state transducers (FSTs), having
the ability to nondeterministically rewrite a word to any word
of a regular language. A desired language is called controllable
if there exists a security-aware supervisor that ensures that
the restricted language executed by the plant for any possible
attack behavior is the desired one – we refer to such supervisors
as attack-resilient. First, we solve the problem of computing
the maximal controllable sub-language (MCSL) of a desired
language and propose the design algorithm for an attack-
resilient supervisor, in scenarios where no security guarantees
exists for communication between the plant and the supervisor.
Then, we consider the case where the supervisor has active
but intermittent access to a size-limited secure channel, which
ensures integrity and availability of the data transmitted over it.
Specifically, we propose the notion of accessibility as a measure
of distance between a language and its sub-language, and show
that a desired language is controllable with intermittently secure
communication if and only if its difference from its MCSL
without secure channel is bounded by the accessibility measure.
Finally, we illustrate our approach on several examples.

I. INTRODUCTION

Control resiliency is a key issue in deployment of cyber-
physical systems (CPS) in a wide range of safety-critical
but attack-subjective environments, such as smart grids [1],
medical devices [2], and distributed control systems [3]. In
general, in these applications, adversarial attacks can happen
from the cyber and/or physical domains; attacks targeting
sensors or actuators of the plant, communication between the
controller and the plant, or even the physical environment
of the plant, have raised the urgency to develop methods
to analyze such systems in the presence of attacks, as well
as design attack-resilient systems (e.g., [4], [5], [6]). Such
attack-resilient systems provide strong Quality-of-Control
guarantees even under intelligent and coordinated attacks [7],
[6] that introduce malicious behaviors more complex than
merely generating random failures (which can be handled
with fault tolerant control techniques).

In this work, we consider the problem of supervisory
control of discrete event systems in the presence of network-
based attacks on communication between the supervisor and
the plant’s sensors and actuators, as illustrated in Figure 1. We
focus on network-based attacks, such as Man-in-the-Middle or
Denial-of-Service attacks, since network connectivity, which
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is prevalent in CPS, allows for a remote attacker to affect
control performance by tampering with the transmitted sensor
measurements and actuator commands. As proposed in our
companion paper [8], we model attacks on discrete-event
systems using finite state transducers (FST) by exploiting
nondeterminism of FSTs to capture all possible attack actions;
in [8] we show that FSTs enable modeling most forms of
malicious activity in CPS, including ones that may occur as
result of network-based attacks that corrupt the data communi-
cated between the plant and controller, as well as non-invasive
attacks that affect the environment of the plant (e.g., GPS
spoofing attacks on autonomous vehicles [9]). This attack
model generalizes the ones studied in the growing literature
in the attack-resilient discrete event systems, considering
possible attacks between the communication between the
supervisor and the plant [10], [11], [12], [13]. We also use
FSTs as the supervisor for the plants modeled by deterministic
finite automata, giving it the power to revise symbols instead
of simple insertion or deletion as in [10], [11], [12], [13].

FSTs have found applications in a wide-range of appli-
cation domains, such as applications in speech recognition
(e.g., [14]). In this work, nondeterministic FSTs are employed
to model all possible malicious behaviors of the network-
based attacks. Additional advantage of using FSTs to model
attacks is that the class of FSTs is closed under inversion
and composition, which are easily computable. Consequently,
the problem of designing attack-resilient supervisory control
for complex system configurations and coordinated attacks
from multiple attack-points, where each attack is modeled by
an FST, can be simplified to a few basic configurations.

We are mainly concerned with two problems in the
attack-resilient supervisory control of discrete-event plants
commonly modeled as deterministic finite state automata
(e.g., [15]): (i) control of plants in the presence of FST-
modeled (i.e., regularly-rewriting) attacks on the communi-
cation between the actuators/sensors and the supervisor, and
(ii) the same problem with the supervisor having active and
intermittent access to a secure size-limited communication
channel, as illustrated in Figure 1. The active and intermittent
access to a size-limited secure channel captures the common
practice of providing intermittent security guarantees for
communication over potentially compromised networks. For
example, in CAN-based automotive systems, the continuous
use of cryptographic security primitives to protect real-
time communication, may not be possible due to resource
constraints such as network bandwidth and the processing
speed of the computers [16], [17], [18]. Note that the network
as well as the processors used for control computation are
commonly shared between more than one control loop. Thus,
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Fig. 1: Supervisory control under attack on the communication
between the plant’s sensors and actuators and the supervisor.

increasing communication/computation requirements in every
control cycle may not be possible if done for all control loops;
however, if additional resources are only intermittently used
for each control loop, the resource overhead can be ‘spread’
around for all control loops, making the system schedulable
on deployed platforms.

The major contributions of this work are twofold. First, we
solve the problem of computing the maximal controllable sub-
language (MCSL) of a desired language and the corresponding
attack-resilient supervisor design. These result can be viewed
as an supplement and continuation of the attack-resilient super-
visory control problems proposed in [8]. Second, we study the
benefit of the supervisor having active and intermittent access
to a size-limited secure channel in attack-resilient supervisory
control. Specifically, we propose a graph-theoretic metric for
the difference between an automaton and its sub-automaton,
and use the metric to derive a controllability condition for
a desired language, under the presence of such a secure
channel; we show that the desired language is controllable
and the system can be made resilient to attacks, if and only
if the language’s difference from its MCSL measured by
accessibility is within the secure channel’s repairing ability.

The rest of the article is organized as follows. The pre-
liminaries on discrete events systems and FSTs are provided
in Section II. In Section III, the problem formulation is
presented. In Section IV, we provide a procedure to compute
the MCSL of a desired language K without any secure
transmission, and design the corresponding attack-resilient
supervisor. Based on this, we present the controllability
theorem and the supervisor design for a desired language with
the resilient supervisor having active but intermittent access to
a size-limited secure channel via a graph-theoretic approach
in Section V. Finally, we conclude the work in Section VI.

II. PRELIMINARIES

A finite-length sequence taken from a given finite set of
symbols is called a word and the empty word is denoted by
ε. A set of words is called a language of those symbols. The
set of all regular languages of a set of symbols I is denoted
by Re(I∗). The cardinality of set A is denoted by |A|. For
two sets A and B, let A\B =

{
x ∈ A | x /∈ B

}
. For n ∈ N,

let [n] = {0, 1, . . . , n − 1}. For a word i1i2 . . . in, we call
i1i2 . . . ik, with k ≤ n, a prefix of I . For a language L, its
prefix-closure is defined by L =

{
I | I is a prefix of J, J ∈

L
}

. The language L is prefix-closed if L = L. The length of a
word is denoted by | · |. We adopt the following convention on
generating regular expressions: for languages L1 and L2, L∗1

stands for repeating L1 finitely many times, L1, L2 for the
disjunction of L1 and L2, and L1 for the prefix closure of L1.

A relation R between two sets A,B is a set R ⊆ A×B.
For a ∈ A, let R(a) =

{
b ∈ B | (a, b) ∈ R

}
. The relation R

is a partial function if R(a) is empty or a singleton for any
a ∈ A. More generally, for A′ ⊆ A, while slightly abusing
the notation, let R(A′) =

{
b ∈ B | (a′, b) ∈ R, a′ ∈ A′

}
.

Clearly, R(·) defines a function 2A → 2B . For relation R ⊆
A×B, its inversion is defined by R−1 =

{
(b, a) ∈ B ×A |

(a, b) ∈ R
}

. For two relations R ⊆ A×B and R′ ⊆ B′×C,
their (serial) composition is defined by R ◦R′ =

{
(a, c) ∈

A× C | ∃b ∈ B ∩B′ : (a, b) ∈ R ∧ (b, c) ∈ R′
}

.

A. Discrete Event Systems

Discrete event systems are deterministic finite state au-
tomata (FSA) [15], [19].

Definition 1 (Finite State Automata). An FSA P is a tuple
P = (S, sinit, I,Trans,Sfinal) where
• S is a finite set of states;
• sinit ∈ S is the initial state;
• I ∪ {ε} is a finite set of inputs;
• Trans : S× I→ S is a transition relation;
• Sfinal ⊆ S is a finite set of final states.
The FSA P is deterministic if Trans is a partial function.

The sequence (sinit, i0, s0)(s0, i1, s1) . . . (sn−2, in−1, sn−1) is
called an execution of P , if si ⊆ Trans(si−1, ii) for i ∈ [n]
with s−1 = sinit. The state sn−1 is called reachable by the
input word I = i0i1 . . . in. The input word I is accepted by P ,
if there exists an execution ending at Sfinal. The set of words
accepted by P is called the language accepted by P , denoted
by L(P). On the other hand, P is called a realization or
model of L(P).

B. Finite State Transducers

FSTs extend discrete event systems by nondeterministically
generating a sequence of outputs; this is done by augmenting
each transition with a regular output language.

Definition 2 (Finite State Transducer). An FST is a tuple
A = (S, sinit, I,O,Trans,Sfinal) where
• S is a finite set of states;
• sinit ∈ S is the initial state;
• I is a finite set of inputs;
• O is a finite set of outputs;
• Trans : S×Re(I∗)×Re(O∗)→ S is a partial transition

function;
• Sfinal ⊆ S is a finite set of final states.
Specially, the FST is normal if the input and output labels

on the transitions are I ∪ {ε} and O ∪ {ε}, respectively.

The definitions of input/output words, executions, accep-
tance, and realization are similar to discrete event systems
(Definition 1). The automaton Ain derived by removing the
output symbols of the FST A is called the input automaton
of A; its acceptable language is called the input languages
accepted by A, denoted by Lin(A); similarly, the automaton
Aout derived by removing the input symbols of the FST A is
called the output automaton of A; its acceptable language is
called output languages generated by A, denoted by Lout(A).
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Fig. 2: Supervisor control without a secure channel.

C. Regular Relations

An FST A defines a relation RA between inputs I∗

and outputs O∗ as follows: (i, o) ∈ RA if and only if
there exists an execution (sinit, i0, o0, s0)(s0, i1, o1, s1) . . .
(sn−2, in−1, on−1, sn−1) such that i = i0i1 . . . in−1 and o =
o0o1 . . . on−1. This relation is called a regular relation
between I∗ and O∗. On the other hand, a relation R ⊆
I∗×O∗ is regular, only if it is realized by a finite state trans-
ducer. Clearly, Lout(A) = R(I∗) and Lin(A) = R−1(O∗).
Specially, a discrete event systemM defines a regular relation
RM =

{
(I, I) | I ∈ L(M)

}
on Re(I∗)× Re(I∗).

Despite the addition of an output, the computational
complexity of solving problems on FSTs does not increase
significantly from discrete event systems. A discrete event
system can be lifted to a special FST with identical inputs
and outputs. On the other hand, a normalized FST can be
viewed as a discrete event system with labels in the set
(I ∪ {ε})× (O ∪ {ε}).

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this work, we consider the setup from Figure 2. Here,
the supervisor S , modeled by an FST, controls the behavior
of the plant P by observing the symbols that the plant
generates and then sending the possible control symbols back
to the plant. In a companion paper [8], we show how such
attacks can be modeled as nondeterministic FSTs; the attack
FSTs can regularly rewrite an word, i.e., replace a symbol
nondeterministically with an arbitrary word taken from some
predefined regular language, including, for example, injection,
replacement and deletion. In addition, we show that such FSTs
can be used to capture a very wide class of attacks including
all previously considered attacks on discrete-event systems
(e.g., false data-injection, nondeterministic denial of service,
rewriting), as well as additional attacks reported in recent
security incidents (e.g., replay attack). In such models, the
nondeterminism captures all possible actions of the attacker
for a specific set of compromised resources (e.g., sensors,
actuators), as well as all potential limitations imposed on
the attacker’s actions by the system design (e.g., the use of
cryptographic primitives on some communication messages
to prevent false-data inserting attacks over the network).

Consequently, in this work we model network-based attacks
on the information delivered to and from the supervisor by
two FSTs Aa and As affecting the inputs and outputs of
the plant, respectively (Figure 2). The control objective is
to restrict the symbols passing to the plant P within some
desired language K ⊆ L(P). We first consider the case where
the communication is always subject to attack, as shown
in Figure 2, and study the problem of computing the maximal
controllable sub-language (MCSL) K ⊆ K of the desired
language – i.e., the largest subset of the desired language

that is achievable by some supervisor under the attacks. In
addition, we study the synthesis problem for such attack-
resilient supervisor.

In the presence of network-based attacks captured by Aa

and As, the MCSL K can be significantly smaller than the
desired language K. Thus, we also study the controllability
problem with an intermittently accessible secure channel that
works asynchronously with the insecure channel subject to the
attacker Aa, as shown in Figure 3. Suppose that the supervisor
wants to ensure that any controls in K is sent to the plant
safely – i.e., the plant receives words in K under all possible
attacks. Clearly, if K 6⊆ K, then sending a control in I ∈ K\K
entirely through the insecure channel is undesirable. One
solution is to send any word I ∈ K through a secure channel,
where security is usually enforced by encryption. However,
this can impose excessive communication and computation
overheads, limiting its use in resource-constrained systems.

A more cost-efficient way is to find another control J ∈ K
that only mismatches with I in short fragments; namely, there
exist compositions I = I1I2I3I4I5... and J = I1J2I3J4I5...,
where Ii, Ji ∈ I∗, such that for all n ∈ N, |I2n| ≤ l1 and
|J2n| ≤ l2 for some l1, l2 ∈ N. The idea is that in this case,
the supervisor can send via insecure channel fragment-by-
fragment the control I ′1J

′
2I
′
3J
′
4I
′
5 . . . that is modified from

the original controls I = I1I2I3I4I5..., and always stays
within K under the attacks (in Section V, we show how to
compute these fragments from I and J). On the other hand,
the pairs {(I2n, J2n)}n∈N indicating the difference between
I and J is sent via the secure channel, where J2n serves as
anchors for the restoration. Accordingly, the authenticator
only receives a control within K via the insecure channel;
in certain cases, due to attacks it will receive J and can
restore the original control I , which may be ∈ K\K, using
the secure transmissions.

As the restoration of J to I is only performed on the
small fragments J2n, the secure channel merely needs the
capacity of intermittently transmitting a pair of words of
length less than l1 and l2. Note that in this scenario, the
transmission of the anchors J2n is the overhead cost (i.e.,
additional communication packets). Therefore, if l2 ≤ l1, the
savings of not having to secure every transmitted symbol
(i.e., in the order of l1 + l2) will be large due to the very
high cost of protecting communication packets (e.g., with
the use of standard cryptographic primitives). For example,
let us assume that transmissions in the secure and insecure
channels happen asynchronously and take the time to send
each of fragments {I ′nJ ′n}n∈N, as well as to send each of
the pairs {(I2n, J2n)}n∈N as 1. Then, the transmission of the
secure channel is only needed every other time. For other
time measures, the maximal frequency constraints on the
secure channel changes accordingly.

Assumptions: We assume that Lout(Aa) = Lin(As) =
L(P) – i.e., the input attacks cannot generate words unac-
ceptable to the plant and the output attacks does not receive
those words. The latter is achievable by trimming the attack
model As; the former is achievable by restricting the plant
— the results derived in the rest of paper hold for Lout(Aa)
instead of L(P) when Lout(Aa) 6= L(P). In addition, to
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Fig. 3: Supervisor control with a secure channel.

simplify our presentation, we assume that for the plant P , the
supervisor S, and the input and output attacks Aa,As, all
states are final Sfinal = S, i.e., both the sets of their inputs and
outputs are prefix-closed. In addition, the desired language
is also prefix-closed K = K̄ and regular. The regularity of K
is to ensure that it is controllable by supervisors modeled as
FSTs. The prefix-closeness requires that the supervision can
be implemented step-by-step.

IV. MAXIMAL CONTROLLABLE SUB-LANGUAGE

In this section, we study the problem of computing the
MCSL of a desired language K ⊆ L(P), under the presence
of input and output attacks, and without the use of secure
channel, as shown in Figure 2.

Definition 3. Let K be the desired language of the plant
P with K ⊆ L(P), and Aa and As be the FSTs modeling
attacks on the plant’s input and output. The desired language
K is controllable if there exists a supervisor S such that

L(P|S,Aa,As) = K,
where L(P|S,Aa,As) = K is the language executed by the
plant P in the presence of supervisor S , and attacks Aa, As.
The controllable language K is the MCSL of K, denoted
by K ⊆max K, if every controllable sub-language of K is
contained in K̃. The desired language K is controllable if
and only if K ⊆ K.

The computation of MCSL K of the desired language K
depends on the operator RA−1

a ◦ Aa
. For any words k, k′ ∈

Lout(Aa), it holds that k′ ∈ RA−1
a ◦ Aa

(k) if and only if
A−1

a (k′) = A−1
a (k) – i.e., k and k′ may result from the same

supervisory control. Therefore, the following lemma holds.

Lemma 1. For any k, k′ ∈ Lout(Aa), it holds that (i) k ∈
RA−1

a ◦ Aa
(k), and (ii) k′ ∈ RA−1

a ◦ Aa
(k) ⇔ A−1

a (k) =
A−1

a (k′)⇔ k ∈ RA−1
a ◦ Aa

(k′).

For any language K, let R∞A−1
a ◦ Aa

(K) be the least fixed
point (LFP) of RA−1

a ◦ Aa
containing K – i.e., the smallest su-

perset of K such that RA−1
a ◦ Aa

(
R∞A−1

a ◦ Aa
(K)
)

= R∞A−1
a ◦ Aa

(K).
As Lout(Aa) is a fixed point of RA−1

a ◦ Aa
, such an LFP exists.

The LFP is characterized by the following lemma.

Lemma 2 (Least Fixed Point). For any K ⊆ Lout(Aa), the
LFP ofRA−1

a ◦ Aa
is given byR∞A−1

a ◦ Aa
(K) =

⋃∞
i=0Ri

A−1
a ◦ Aa

(K),
where Ri

A−1
a ◦ Aa

is the n-fold composition of RA−1
a ◦ Aa

. Clearly,
for any i ∈ N, Ri

A−1
a ◦ Aa

(K) ⊆ R∞A−1
a ◦ Aa

(K).

When RA−1
a ◦ Aa

is idempotent on K, namely, there exists
n such that Rn+1

A−1
a ◦ Aa

(K) = Rn
A−1

a ◦ Aa
(K), then the LFP can

be computed in finite time by R∞A−1
a ◦ Aa

(K) = Rn
A−1

a ◦Aa
(K).

Otherwise, computing R∞A−1
a ◦ Aa

(K) may be challenging.

Algorithm 1 Design of a Supervisor for Maximal Control-
lable Sub-Language under Input and Output Attacks
Require: Plant P , input attacker Aa, output attacker As, Desire

language K.
1: Compute MCSL by (1) and find a model MK.
2: Compute supervisor S by (2).
3: return Supervisor S.

In [8], we show that given the MCSL K satisfying K =
R∞A−1

a ◦ Aa
(K), the supervisor designed by S = A−1

s ◦MK ◦
A−1

a restricts the language received by the plant to K. Similar
to [8] and differing from previous works [13], [15], [10], the
MCSL only depends on the input attack Aa, because the
supervisor, modeled by an FST instead of an automaton, has
more power in generating control commands, and can totally
counter the effect of the output attacker by composing with
A−1

s . Given R∞A−1
a ◦ Aa

(K), the computation of the MCSL of
K and the supervisor can be done as captured by Theorem 1
and Algorithm 1.

Theorem 1 (Maximal Controllable Sub-Language). The
maximal controllable sub-language (MCSL) of the desired
regular language K ⊆ Lin(P) under the input and output
attacks modeled by FSTs Aa and As is

K = K\R∞A−1
a ◦ Aa

(
RA−1

a ◦ Aa
(K)\K

)
, (1)

under the supervisor
S = A−1

s ◦MK ◦ A−1
a . (2)

Example 1 (Supervisor design for intermittent secure trans-
missions). Consider the supervisory control of a plant P
shown in Figure 4a with the set of symbols I = {i1, i2, i3}.
The (prefix-closed) desired language is K = (i1(i2, ε)i3)∗,
modeled by an automaton shown in Figure 4b. The input
and output attacks Aa and As of the plant are modeled by
FSTs shown in Figures 4c and 4e, respectively. By Theorem 1,
the MCSL is K = (i1i2i3)∗, which is strictly contained in K,
as shown in Figure 4d. It is easy to check the maximality
of K. The supervisor computed by Algorithm 1 is shown
in Figure 4f after minor simplification. C

Remark 1. By Theorem 1, attacks on the output do not affect
controllability, as opposed to previous works [10], [11], [13].
This is caused by the fact that the plant is deterministic, so
its state is known from the perspective of the supervisor, and
the supervisor as an FST can generate controls for the next
step by itself without using the sensing information of the
plant. These sensing information will become useful to learn
the state of the plant when it is nondeterministic, which will
be studied in the future, with initial results reported in [8].

Remark 2. Note that the supervisor derived in Example 1 is
nondeterministic — there are transition with ε input symbol
that can be triggered spontaneously. The controllability
theorem guarantees that in the presence of attacks, the
union of all possible words received by the plant under all
these allowable controls is exactly the desired language K.
In implementation, the nondeterminism can be resolved by
choosing one of the allowable controls. Accordingly, the
possible words received by the plant is contained in K.
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Fig. 4: Example supervisor for input and output attacks.

V. CONTROLLABILITY WITH SECURE CHANNEL ACCESS

In this section, we extend the results from Section IV to
the case that the supervisor has access to a secure channel.
Recalling Section III, the supervisor can decompose the
desired control I = I1I2I3I4I5... ∈ K\K into fragments and
find a segmentally mismatching but attack-resilient control
J = I1J2I3J4I5.... To counter the attacks, the supervisor
can send the modified control fragments I ′1J

′
2I
′
3J
′
4I
′
5 . . . with

I ′1 = RA−1
a

(I1), I ′1J
′
1 = RA−1

a
(I1J1), and so on, via the

insecure channel, and the pairs {(I2n, J2n)}n∈N to indicate
the difference between I and J via the secure channel.
Accordingly, from the insecure channel the authenticator
will receive a word in RA−1

a ◦ Aa
(J) ⊆ K. Upon receiving

exactly J , it can use the pairs {(I2n, J2n)}n∈N to restore J
back to I , where J2n serves as anchors for the restoration.
In other words, the control received by the plant is always
in K and is exactly the original one I when the attacker Aa

takes certain attacks. When RA−1
a ◦ Aa

(J) ⊆ K = {J} – i.e.,
J is revertible from all possible attacks of Aa, the recovery
to the original control I is guaranteed.

The above solution depends critically on whether for any
word K, we can find a word in K with bounded fragmentary
mismatches. This gives rise to a difference measure from K
to K, which we define as accessibility.

A. Accessibility

To quantitatively calculate the accessibility for any two
regular languages K ⊆ K, we propose a method of building
automata models MK and MK realizing K and K, respec-
tively, with the model MK contained in the model MK, and
then computing it on the two graph models MK and MK
using graph-theoretic tools.

Definition 4 (Sub-Automata). Let P = (S, sinit, I,Trans,
Sfinal) be an FSA with Sfinal = S. We call P ′ =

Algorithm 2 Constructing MK ⊆MK for K and K.

Require: Languages K ⊆ K.
1: Find minimal realization MK and MK of K and K.
2: Convert MK and MK to FSTs by adding ε as output and

input symbol for each transition, respectively.
3: M =MK ◦MK.
4: Trim off transitions with input symbol ε in M.
5: return Min and Mout.

(S′, s′init, I
′,Trans′) with S′final = S′ a sub-automata of P ,

denoted by P ′ ⊆ P , if S′ ⊆ S, s′init = sinit, I′ ⊆ I, and
Trans′(s′, i′) = Trans(s′, i′) for any s′ ∈ S′ and i′ ∈ I′. For
any prefix-closed K ⊆ L(P), there exists a maximal sub-
automaton P ′ ⊆ P such that K = L(P ′), and all such
sub-automata are sub-automata of P ′.

To quantify the difference between two automata P ′ ⊆ P ,
we introduce the definition of (l1, l2)-step accessibility.

Definition 5 ((l1, l2)-Step Accessibility). For two au-
tomata P ′ and P , such that P ′ ⊆ P , we say that
P is (l1, l2)-accessible from P ′ if there is no execution
(s0, i0, s1) . . . (sn−1, in−1, sn) ⊆ Trans\Trans′ with n > l2.
In addition, for any such execution with n ≤ l2, there exists
an execution (σ0, i0, σ1) . . . (σm−1, im−1, σm) ⊆ Trans with
m ≤ l1, σ0 = s0 and σm = sn.

For an FSA P , let the induced the directed graph be
GraphP = (S,

{
(s, s′) ∈ S2 | (s, i, s′) ∈ Trans

}
). Accessibil-

ity can be checked by the following graph-theoretic condition.

Theorem 2 ((l1, l2)-Step Accessibility). For two automata
P ′ and P , such that P ′ ⊆ P , P is (l1, l2)-accessible from
P ′ if and only if (i) the subtracted graph GraphP\GraphP′
is a tree with paths no longer than l1; and (ii) for any such
path, there is a path no longer than l2 with same start and
end in GraphP′ .

These two graph-theoretic conditions in Theorem 2 can be
examined with well-studied algorithms (e.g., from [20]).

B. Supervisor Design for Attack-Resilience

To measure the distance between K and K, we build two
automata MK ⊆MK, where K is the MCSL of K, as given
in Theorem 1. This is done as follows. Let MK and MK be
the minimal realization of K and K. Then we can convert
them into FSTs by adding ε as input and output symbol for
each transition, respectively. Let M =MK ◦MK and trim
the transitions of M with labels ε input symbol. Clearly,
we have Mout ⊆ Min L(Min) = K and L(Mout) = K.
This is summarized by Algorithm 2. In the rest of this
section, let MK = (S, sinit, I,Trans,Sfinal) be Min and
MK = (S, sinit, I,Trans,Sfinal) be Mout.

The transitions in MK are resilient to attacks, thus do
not require transmissions from the secure channel, while
other transitions in MK are non-resilient and need secure
transmission. By Definition 5, if MK is (l1, l2)-accessible
fromMK, then for any execution ofMK, there is at most l1
consecutive non-resilient transitions and it is replaceable by an
l2 secure transitions. This pair of words, transmitted through



Algorithm 3 Design supervisor and authenticator with active
access to secure channel
Require: Plant P , input attacker Aa, output attacker As, Desire

language K.
1: Compute MCSL by (1) and find FSA models MK ⊆MK .
2: Compute NK by (3) and supervisor S by (4).
3: return Supervisor S.

the (l1, l2)-secure channel, are used to repair the corrupted
word from the insecure channel. This is summarized by the
following theorem.

Theorem 3 (Controllability with Intermittent Active Access
to Secure Channel). The desired regular language K ⊆ L(P)
is controllable with active (l1, l2)-secure channel access if
MK is (l1, l2)-accessible from MK, where K is the MCSL
of K as given by Theorem 1, and MK and MK are given
by Algorithm 2.

Now, the supervisor resilient to such attacks can be realized
by an FST with two outputs for the secure and insecure chan-
nel, respectively. Specifically, let MK = (S, sinit, I,Trans,
Sfinal) and MK = (S, sinit, I,Trans,Sfinal) be deterministic
FSA models for K ⊆ K, with MK ⊆MK. We construct an
FST NK = (S×S, (sinit, sinit), I, I×{+,−},Trans′,Sfinal×
Sfinal) with
Trans′ =

{(
(s, s), i, (�, i), (s′, s′)

)
| (s, i, s′) ∈ Trans

}{(
(s, s), i, (i, �1), (s′, s)

)
| (s, i, s′) ∈ Trans\Trans, s ∈ S

}{(
(s, s′), i, (i, �2), (s, s′′)

)
| (s′, i, s′′) ∈ Trans, s ∈ S

}
(3)

The output (�, i) stands for sending i over the insecure channel
while closing the secure channel; (i, �1) and (i, �2) denote
sending i to the first and second component of the pair of
words transmission via the secure channel while closing the
insecure channel. Then the supervisor S is constructed by
the composition

S = NK ◦2 A−1
a (4)

similar to [8]. Here, ◦2 stands for the composition between
the input of Aa with the second component of the output of
NK , while keeping the first component.

Example 2 (Supervisor design for maximal controllable
sub-languages). Following Example 1, the desired language
K = (i1(i2, ε)i3)∗ is achievable with intermittent access to
(2, 1)-secure channel. The supervisor designed by Algorithm 3
is shown in Figure 5, in which the upper half of the FST
is identical to Figure 4f handling words in MCSL K and
the lower half handles the word in K\K. Upon i1 at the
beginning, the supervisor may actively activate the secure
channel to send (i1i2, i1), so that if the plant receives i1i2i3,
the authenticator repairs it back to i1i3. C

VI. CONCLUSIONS

In this work, we have studied the supervisory control of
discrete event systems under regularly-rewriting attacks on
their actuators and sensors with intermittent authentication.
First, we have solved the problem of computing the maximal
controllable sub-language (MCSL) of a desired language and
proposed a design method for such attack-resilient supervisor,

0

1 2

3

4 5

(�, ε|i1)

(�, i2|ε)

(�, ε|ε)
(�, i2|i2) (�, ε|i2)

(�, ε|i3)

(ε|i1, �1)

(i2|i2, �1)

(ε|i1, �2)

Fig. 5: Supervisor S with active access to secure channel.

when there is no protection for communication between the
plant and supervisor. We have then extended these results
for the case when the supervisor has active but intermittent
access to a size-limited secure channel that protects its
communication with the plant.
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