
1

Deep Reinforcement Learning-based Approach for
Efficient and Reliable Droplet Routing on

MEDA Biochips*

Mahmoud Elfar, Yi-Chen Chang, Harrison Hao-Yu Ku, Tung-Che Liang,
Krishnendu Chakrabarty, and Miroslav Pajic

Abstract—The micro-electrode-dot-array (MEDA) architecture
provides precise droplet control and real-time sensing in digital
microfluidic biochips. Previous work has shown that trapped
charge under microelectrodes leads to droplets being stuck and
failures in fluidic operations. A recent approach utilizes real-
time sensing of microelectrode health status, and attempts to
avoid degraded electrodes during droplet routing. However, the
problem with this solution is that the computational complexity is
unacceptable for MEDA biochips of realistic size. Consequently,
in this work, we introduce a deep reinforcement learning (DRL)-
based approach to bypass degraded electrodes and enhance the
reliability of routing. The DRL model utilizes the information of
health sensing in real-time to proactively reduce the likelihood
of charge trapping and avoid using degraded microelectrodes.
Simulation results show that our approach provides effective
routing strategies for COVID-19 testing protocols. We also
validate our DRL-based approach using fabricated prototype
biochips. Experimental results show that the developed DRL
model completed the routing tasks using a fewer number of clock
cycles and shorter total execution time, compared with a baseline
routing method. Moreover, our DRL-based approach provides
reliable routing strategies even in the presence of degraded
electrodes. Our experimental results show that the proposed
DRL-based routing is robust to occurrences of electrode faults,
as well as increases the lifetime and usability of microfluidic
biochips compared to existing strategies.

I. INTRODUCTION

As microfluidic technology advances, digital microfluidic
biochips (DMFBs) are being utilized to automate labora-
tory procedures associated with bioanalytical assays. DMFBs
revolutionize traditional experimental processes by provid-
ing precise control of nanoliter-sized droplets. Various bio-
experiments have been performed using DMFBs, such as
molecular detection, diagnostic tests for newborns, portable
detection for COVID-19, and aerosol detection [1], [2], [3],
[4], [5], [6].

In recent years, an improved DMFB structure called
micro-electrode-dot-array (MEDA) has been proposed. MEDA
biochips adopt the concept of sea-of-micro-electrodes and
consist of a large number of microelectrodes (MCs), where
each MC contains an individual circuit for real-time control

* This research was supported in part by the National Science Foundation
under grant No. ECCS-1914796.

Mahmoud Elfar, Yi-Chen Chang, Harrison Hao-Yu Ku, Krishnendu
Chakrabarty, and Miroslav Pajic are with the Department of Electrical and
Computer Engineering, Duke University, Durham, NC, USA (e-mail: mah-
moud.elfar@duke.edu; yichen.chang@duke.edu; harrison.hy.ku@duke.edu;
tung.che.liang@duke.edu; krish@duke.edu; miroslav.pajic@duke.edu).

and sensing [7], [8]. In contrast to conventional DMFBs,
MEDA biochips are implemented using a 0.35µm standard
CMOS process [9], [10]. The size of an MC is around 40 times
smaller than the size of an electrode in a conventional DMFB.
Hence, the MCs can be flexibly grouped to form different
types of microfluidic modules during bioprotocol execution
on MEDA biochips.

Both conventional DMFBs and MEDA biochips adopt the
principle of electrowetting-on-dielectric (EWOD) to manip-
ulate droplets. A high voltage is repeatedly applied to the
electrodes to generate dragging forces on the droplets. How-
ever, as the electrodes are frequently charged and discharged,
charge trapping might occur on the electrodes and result
in electrode degradation. The degraded electrodes generate
abnormal EWOD forces, which cause unexpected droplet
movements (or lack thereof) and lead to failure of microflu-
idic operations. Therefore, reliability is a major concern for
microfluidic biochips. While solutions have been proposed in
the literature to mitigate the problem of electrode degradation,
most of these methods focus on recovery after erroneous
behaviors occur. These techniques include the design of fluidic
checkpoints, droplet-aliquot operations, synthesis of recovery
protocols using probabilistic-timed-automata, as well as selec-
tive sensing [11], [12], [13], [14], [15], [16]. On the other hand,
preventive approaches that proactively predict and prevent
failures during the droplet routing stage have not received
much attention.

Recently, a reinforcement learning (RL)-based droplet rout-
ing model has been developed to address the reliability prob-
lems in DMFBs [17]. However, the main limitation of this
method is that the RL developed model can only learn from
the occurrence of failures. In other words, the model adjusts its
policy only after an error has occurred. This limitation prevents
the model from being applicable to time-sensitive applications
such as flash chemistry [18].

A new hardware design, which enables real-time sensing of
health status for each MC on MEDA biochips, was first in-
troduced in [19]. A stochastic game-based formal synthesizer
was proposed to generate adaptive routing strategies based on
the electrode health information derived from MEDA biochips
in real-time [20]. However, the formal synthesizer suffers from
the limitation of scalability in terms of biochip size. For a
MEDA biochip of size 20 × 20, around three seconds are
needed for the formal synthesizer to complete a synthesis task
for one step, and a bioassay consists of at least hundreds of

such steps. Therefore, the formal synthesizer is infeasible for
practical applications. For instance, a commercial microfluidic
biochip platform called aQdrop includes 41 thousand elec-
trodes [21], which is around 100 times larger than the size
of the biochips used in [20]. Thus, a formal synthesis method
that explores all the state-space cannot be deployed for state-
of-the-art biochip platforms.

Consequently, in this work, we introduce a DRL-based
droplet routing approach that incorporates real-time health
information to provide routing strategies that proactively avoid
the use of degraded MCs. The routing framework is deployed
with a deep neural network (DNN) agent, which is first trained
using offline DRL with simulated environments. Then, online
DRL training is applied to the agent to adjust the policy
under different biochip environments. In contrast to the formal
synthesizer from [20], which enumerates all the possible state
spaces, the DRL model efficiently stores routing solutions
using the DNN agent. The agent provides routing strategies
with negligibly short computing time. Thus, the proposed
DRL model can be employed under realistic scenarios for
different applications.

A preliminary version of this DRL-based routing approach
appeared in [22]. In this paper, we present more details on
the DRL model and the training methods for CNN agents.
We have also validated the proposed DRL routing model
using fabricated prototype biochips. Specifically, the main
contributions of this paper are as follows:

• We propose a DRL-based approach (and the corresponding
DRL model) for droplet routing on MEDA biochips, provid-
ing reliable routing strategies based on real-time health in-
formation.

• We introduce a stochastic model to constitute the virtual
training environments for the DRL model. To enhance
training efficiency, we adopt action space parameterization
and adaptive droplet step movement.

• We design a DNN agent for the DRL model that ensures
the scalability of the DRL framework. We deploy both tra-
ditional and transfer learning techniques for agent training,
and evaluate their performance.

• We validate the estimation of degradation parameters using
PCB-based biochips.

• We compare the performance of the DRL model with
the formal synthesizer by running bioassays for COVID-
19 testing.

• We design and execute experiments where we evaluate the
trained DNNs on PCB-based biochips, and compare the
proposed solution to baseline routing policies.

The remainder of this paper is organized as follows. Sec-
tion II provides background on MEDA biochips, adaptive
routing, reinforcement learning, and the problem formulation
for the adaptive droplet routing problem. Section III introduces
the proposed DRL model for adaptive droplet routing. Sec-
tion IV describes the configurations used for training, the DNN
architecture, the training algorithm, and two approaches for
training multiple DNNs. Section V evaluates the degradation
parameters and compares the performance of the proposed
DRL framework to existing routing methods. Section VI

describes the experiment design and presents results for eval-
uating the trained agents using PCB-based biochips. Finally,
Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. MEDA Biochips

MEDA biochips apply the EWOD [23] mechanism to
manipulate individual droplets with droplet volumes in a nano-
liter scale. Typically, one biochip may contain up to thousands
of MCs. Every MC module is composed of three components:
a microelectrode, a controlling unit, and a capacitance-sensing
circuit for real-time detection of droplet location. Depending
on the bioassay requirements, the controller can dynamically
reconfigure the grouping of microelectrodes, and thus modules
such as mixers and splitters can be formed. When a sensing
operation is conducted, a charging and discharging process is
applied to all the MCs to measure the capacitance difference
and thus the locations of droplets can be determined. A scan-
chain architecture is adopted to connect all the MCs into a
daisychain, whereby the control signals and the sensing data
are shifted in and out as a sequences of bits.

B. Adaptive Droplet Routing

As biochip platforms such as Illumina, Genmark, and
Baebies [24], [25], [26], are commercialized by companies,
the reliability of these devices has emerged as a major
concern. Manufacturing defects can be detected using the
method proposed in [27]. However, degradation due to charge
trapping in the dielectric layer occurs when electrodes are
used over time. The degraded electrodes lead to the failure of
droplet movement when they are involved in the transportation
path. To overcome reliability problem, a wear-leveling method
has been proposed to avoid electrode overuse by uniformly
distributing the electrode usage during the mapping of the
fluidic operations to the biochips [28]. However, for droplet
routing, only a few methods consider the dynamic changes of
the health condition of the biochips.

The first RL-based routing model that considers electrode
degradation on DMFBs was introduced in [17]. However,
this method is limited to conventional DMFBs, in which the
unique features for MEDA biochips are not incorporated.
For instance, the model only allows droplets of a single
size while MEDA biochips support droplets of various sizes.
Another limitation of [17] is that this model needs to learn
from occurrence of failures, which might lead to erroneous
outcomes of bioassay execution.

Recently, a new MC design for MEDA biochips was pro-
posed in [20]. This design enables real-time sensing of the
health information of individual MCs. A formal synthesizer
has been developed to utilize health sensing to provide routing
strategies that maximize the likelihood of successful bioassay
execution. An analytical model that defines the probabilistic
behaviors between the degradation level of MCs and the
corresponding probability of a successful actuation has also
been developed. Based on this analytical model, the synthe-
sizer provides an optimal routing strategy using a stochastic
game-based formulation. However, the computing time of this

2

method grows significantly as the size of biochip increases.
Hence, the large runtime is unacceptable for realistic applica-
tions.

C. Reinforcement Learning

Reinforced learning (RL) is a class of machine learning
in which the models learn the optimal strategy in an com-
plicated environment. RL algorithms have been shown to
be efficient for applications across various domains, such as
robotic manipulation, playing GO, video games and medical
devices [29], [30], [31], [32]. An RL problem can be formu-
lated using Markov decision processes (MDPs) using a tuple
(S,A, T,R), where S is the set of states; A is the set of
actions; T : S × A → S is the state transition function;
and R : S × A → R is the reward function. The aim of an
RL agent is to find a policy that maximizes the total reward
received from interactions with an uncertain environment at
discrete time steps. In modern RL applications, DNN agents
are deployed to obtain a near-optimal policy under large state
and action spaces.

D. Problem Formulation

In this work, we address the problem of designing droplet
routing policies for MEDA biochips. We assume that a bioas-
say scheduler breaks down microfluidic operations into a series
of single-droplet routing jobs. Each routing job is characterized
by droplet shape and size, initial and final droplet locations,
and the biochip area within which routing is allowed.

Then, the objective is to design routing policies for droplets
to successfully execute a given routing job. At each control
cycle, a routing policy shall provide the actuation pattern to
be applied. To this end, the routing policy is expected to
utilize both the real-time droplet sensing feedback, as well
as the microelectrode health feedback provided by the on-
board sensors.

We also consider the issue of designing such routing policies
for multiple biochip sizes and fault injection levels. From a
run-time perspective, a routing policy need to be available
within few seconds of receiving the routing job. Furthermore,
at each control cycle, the time between receiving sensor
measurements and generating the control pattern should not
exceed 200 ms. Those run-time requirements are motivated by
typical applications where the control cycle period is 1 sec.
In addition, time-critical microfluidic applications — such as
flash chemistry [18] — demand timely response on the scale
of fractions of few seconds.

III. DRL APPROACH FOR MEDA

In this section, we present the DRL-based framework
for designing routing policies for MEDA biochips. We first
introduce the stochastic model that constitutes the virtual
training environment. We then discuss the elements comprising
the training environment; specifically, the action space, the
observation space, and the reward function.

For notation, Z, N0 and R denote the set of integer, natural,
and real numbers, respectively. We use 1 : {⊤,⊥} → {0, 1}

1 2 3 4 5 6 7 8 9

7

6

5

4

3

2

1

Unactuated MC

Actuated MC at time step k

Droplet at time step k

Actuated MC at time step k+1

Droplet at time step k+1

Fig. 1: Example for droplet coordinates at time steps k and k + 1.

to denote the indicator function over the set of Booleans. We
also utilize U{i, j} and U(a, b) to denote the discrete (i.e.,
over integers) and the continuous (i.e., over reals) uniform
distributions over Ji, jK and [a, b], respectively. Finally, we use
bold capital letters for matrices, and italic capital letters for
their elements.

A. MEDA Training Environment

Consider a MEDA biochip of size W×H, denoting the
number of MCs in each row and column, respectively.
Following [19], we model a droplet as a quadruple δ =
(xa, ya, xb, yb) ∈ ∆, where ∆ ⊂ N4

0 is the set of all possible
droplets. A routing task is characterized by the initial (start)
and target (goal) droplet locations, denoted by δs and δg ,
respectively. We use δ(k), k ∈ N0, to denote the droplet
location at the kth control step. Fig. 1 shows an example of
the droplet location.

Let (i, j) be the coordinates of a given MC; Dij ∈ [0, 1] be
its degradation level, where 1 indicates a fully healthy MC and
0 a fully degraded; and nij ∈ N0 be the total number of control
steps at which the MC was actuated. The degradation level can
be estimated as D(n)

ij = τ
nij/cij
ij ∈ [0, 1], where cij ∈ R>0 and

τij ∈ [0, 1) are parameters controlling the degradation rate.
Those parameters are generally unknown, although their range
can be experimentally estimated [33]. The degradation level
of an MC can be measured through the health measurement
unit [19]. Given a health measurement unit with b-number of
bits, the MC measured health is captured by

H
(n)
ij = ⌊2b ·D(n)

ij ⌋ = ⌊2b · τnij/cij⌋. (1)

At each control cycle, MEDA biochips support single- and
double-step droplet movements in both the cardinal and ordinal
directions. The movement is achieved by applying an actuation
pattern that corresponds to the movement direction, and the
probability that this movement is successful largely depends
on the health level of the group of microelectrodes — referred
to as the frontier set — primarily responsible for generating
the EWOD force for the action to be performed. We employ
the probabilistic transitions modeling from [19]. Each action,
along with the current droplet location, determines the group
of microelectrodes to be actuated. We use U(k) ∈ {0, 1}W×H to
denote the actuation pattern matrix (pattern, for short) applied
at time step k, where Uij = 1 indicates that the microelectrode
MC(i,j) is actuated.

3

Algorithm 1: Procedure for Computing Number of Steps

Input: Droplet δ : (xa, ya, xb, yb); goal δg : (xag , yag , xbg , ybg);
action a ∈ A

Output: Signed distance (λx, λy)
1 (λx, λy)← (0, 0)
2 (∆x,∆y)← (xag − xa, yag − ya)
3 (Λx,Λy)← (⌊(xb − xa + 1)/2⌋, ⌊(yb − ya + 1)/2⌋)
4 if a∈{aN, aNE, aNW} then

λy ← Λy − (Λy −∆y) · 1{0<∆y<Λy}
5 if a∈{aS, aSE, aSW} then

λy ← −Λy + (Λy +∆y) · 1{−Λy<∆y<0}
6 if a∈{aE, aNE, aSE} then

λx ← Λx − (Λx −∆x) · 1{0<∆x<Λx}
7 if a∈{aW, aNW, aSW} then

λx ← −Λx + (Λx +∆x) · 1{−Λx<∆x<0}
8 return (λx, λy)

B. Parameterized Action Space

In a traditional action space, an action captures both the
direction and magnitude of the movement. This results in a
large action space cardinality, rendering the model unsuitable
for training. For instance, an action space that supports double-
step movements is comprised of at least 16 actions. Hence, we
propose a parameterized action space where actions capture
only the movement direction, while the number of steps is de-
fined based on the droplet size, shape, and its location relative
to the goal. The motivation behind the parameterization of the
action space is twofold. First, it reduces the dimensionality
of the model by reducing the action space size. Second, it
unifies the action set across different droplet shapes and sizes,
enabling the usage of one trained agent for the entire range
of droplet sizes. Consequently, a parameterized action space
is an efficient representation that allows for moving a droplet
beyond two steps at a time.

We define the parameterized action space as the set A =
{aN, aS, aE, aW, aNE, aNW, aSE, aSW}, where N, S, E and W
stands for north, south, east and west, respectively. Let
(λx, λy) ∈ Z be the signed distance (distance, for short)
associated with the adaptive action a ∈ A. Algorithm 1
presents the procedure for computing (λx, λy) given the
current droplet location δ, goal location δg , and action a.
Basically, the procedure computes the maximum movement
distance based on the droplet size and the movement direction,
while avoiding overshooting the goal location. The computed
distance (λx, λy) is then used to transform the action a into
the corresponding actuation pattern U. Note that |A| = 8 at all
states, reducing the complexity of the model and, subsequently,
the time required for training.

Example 1. The droplet shown in Fig. 1 is of size 4× 3.
Since the maximum reliable distance for the droplet to travel
is (λx, λy) = (⌊w/2⌋, ⌊h/2⌋) = (2, 1), the adaptive action
aNE attempts to move the droplet one and two steps in the east
and north directions, respectively, during the current control
cycle. If the goal location is δg = (4, 3, 7, 5), then the distance
is capped at (λx, λy) = (1, 1) to prevent the droplet from
overshooting.

Health Matrix
Hazard Bounds

Droplet
Location

Goal
Location Observation

Fig. 2: Channels comprising the observation space.

C. Observation Space

At each control step k, the DRL agent can observe the
current sensor matrix Y ∈ {0, 1}W×H. For a droplet δ =
(xa, ya, xb, yb), Yij = 1 for all (i, j) ∈ Jxa, xbK × Jya, ybK,
and Yij = 0 otherwise. In addition, the DRL agent can read
the health matrix H(k) ∈

{
0, 1, . . . , 2b − 1

}W×H
. From a DRL

perspective, an observation shall also incorporate the current
droplet location δ, goal location δg , and the hazard bounds δh.

To preserve the spatial relationships among the observed
data, we utilize a 3D image-based observation space. Specif-
ically, we define an observation as a 3D matrix o ∈
[0, 1]H×W×3). As shown in Fig. 2, the first layer captures both
the health matrix and hazard bounds, and is defined as

o(i, j, 1) =

{
H(i, j, 1)/2b i ∈ [xah, xbh], j ∈ [yah, ybh],
0 otherwise,

where the hazard bounds are indirectly captured by masking
the health matrix values outside those bounds. The second
layer is defined as

o(i, j, 2) =

{
1 i ∈ [xa, xb], j ∈ [ya, yb],
0 otherwise,

to capture the droplet location. Similarly, the third layer is
defined as

o(i, j, 3) =

{
1 i ∈ [xag, xbg], j ∈ [yag, ybg],
0 otherwise,

to capture the goal location. Note that the elements of the
first layer are scaled so that the observation elements are both
within the range [0, 1] and independent of the actual number
of bits b used for health measurements.

D. Reward Function

The primary goal in adaptive droplet routing is to ensure
that the droplet can reach the target location. Performance
metrics in this case include the time and distance traveled
by the droplet. Since excessive actuations of individual mi-
croelectrodes can lead to their premature failure, the number
of actuations per microelectrode has to be incorporated in the
routing process.

Let a(k) be the action taken at step k from state s(k),
resulting in a new state s(k+1). Thus, the reward is defined as

r(k) = αdisr
(k)
dis + αterr

(k)
ter + αactr

(k)
act

where rdis, rdeg and rter are the distance, terminal and
action rewards, respectively, and αi ∈ R are the respective

4

hyperparameters. To incentivize progression towards the target
location, rdis is defined as

r
(k)
dis = D

(
δ(k), δg

)
−D

(
δ(t+1), δg

)
,

where D
(
δ(k), δg

)
denotes the Manhattan distance between

two droplet locations. The terminal reward rter aids in faster
convergence by associating reaching the target location with
an additional reward, defined as r(k)ter = 1{δ = δg}. Finally, the
action reward ract penalizes selecting an invalid action, i.e., an
action that causes the droplet to exit the routing job area. The
selection of the hyperparameters αi is discussed in Section IV.

Note that a maximum number of cycles per routing job
is imposed during training to allow for diverse sampling.
While the agent is rewarded for reaching the target location,
it is not penalized if the routing job fails due to reaching
the maximum number of cycles allowed. The reason is that
the number of cycles available for routing is not part of the
observation space. That is, states that only differ by the number
of cycles remaining have identical observations, leading to
state aliasing [34].

IV. DRL AGENT DESIGN AND TRAINING

This section summarizes our approach for design of the
DRL agents, to be employed for routing, including the em-
ployed architecture and training procedure.

A. DNN Architecture and Training Configurations

We first discuss the employed DNN architecture as well as
configuration parameters that affect the training convergence
speed – i.e., MEDA biochip size, droplet size, the initial and
target droplet locations, the initial microelectrode degradation
levels, and the degradation parameters.

DNN Architecture: We employ a convolutional neural
network (CNN) to learn droplet routing policies due to its
potential in preserving important features of the observation
space. As illustrated in Fig. 2, the input to the CNN is
a matrix of size (H,W, 3). The three channels represent
the microelectrode health levels and routing zone, the goal
location, the current droplet location. The agent’s goal is to
learn a policy that maximized the expected cumulative reward.
For notation, we use H and H∗ to denote untrained and trained
CNN agents, respectively.

Biochip and Droplet Sizes: For training, we considered
biochips of sizes between 30×30 and 180×180. We trained the
agent for the most common droplet sizes, with droplet width
and height w, h ∈ {2, 3, 4, 5, 6}, where w/h ∈ [0.8, 1.25].
We assume that the droplet size is preserved throughout a
single routing job. Hence, there are two approaches to droplet
size selection during training. In the first, multiple agents are
utilized, where each agent is trained for a specific droplet size.
In the second, the same agent is trained against the range of
droplet sizes. Note that a DNN can be feature-invariant by
training against the range of values for such feature. Moreover,
the exact size of droplets during execution might slightly vary
outside those specific values. Consequently, we opt for training
a single agent in this framework (i.e., the second approach).

TABLE I: CNN layers and their configurations.

Layer Type Activation Size Stride Padding

L1 Convolution ReLU 64 3 1
L2 Convolution ReLU 128 3 1
L3 Convolution ReLU 128 3 1
L4 Fully-connected ReLU 256 3 1
L5 Output ReLU 8 – –

Degradation Parameters: From (1), degradation parame-
ters of microelectrodes affect their degradation rate, although
they are not directly observable to the agent. For training,
we randomly sample the degradation parameters as cij ∼
U(cmin, cmax) and τij ∼ U(τmin, τmax), where the distribu-
tions are experimentally obtained as described in Section V.
On the other hand, the number actuations nij is updated based
on the actuation patterns applied by the agent at each step.

Initial and Target Locations: In MEDA biochips, a
droplet is either the result of a preceding microfluidic operation
or dispensed by an on-chip dispenser. In the former case, the
droplet location can be anywhere on the biochip; in the latter,
the initial location δs is one of multiple, predefined dispenser
coordinates. Similarly, the target location δg can be either
where a microfluidic module is (e.g., a mixer or a splitter),
or a predefined exit through one of the biochip reservoirs.

For benchmark bioassays, the percentage of routing jobs
involving initial (e.g., dispensing operations) or target (e.g.,
discarding operations) droplets adjacent to one of the biochip
edges is between 20% and 40% [35]. Thus, during training
both the initial and goal locations are sampled from a stratified
distribution. Specifically, we randomly sample δs and δg
at the start of each training episode such that xas, xag ∼
U{2,W−w−1}, and yas, yag ∼ U{2,H−h−1}.

B. Agent Training

For training, we use the proximal policy optimization (PPO)
algorithm [36], [37] with the actor-critic architecture. Unlike
policy gradient methods for reinforcement learning where pol-
icy gradients are updated after reading each data sample, PPO
utilizes a surrogate objective to stabilize the training process
via multiple workers. Algorithm 2 summarizes the procedure
for training the agent to learn droplet routing policies. Each
training episode starts with the initial state (δg,H), sampled
according to the distributions described earlier. After each step,
the number of actuations nij is updated for all MCs using the
actuation pattern matrix U.

An episode terminates whenever one of two conditions is
met, namely, reaching a target location (i.e., δ = δg), or reach-
ing a predefined threshold for the number of cycles, denoted
by kmax. Imposing the second condition aids in diversifying
the routing jobs used in training. We use kmax = α(Wh+Hh),
where α ∈ [1, 2] is a hyperparameter, and Wh and Hh are the
width and height of the hazard zone, respectively.

An episode is terminated when either the target location
is reached, i.e., δ = δg , or the maximum number of steps
allowed has passed, i.e., k = 2(W+H). Using the accumulated
rewards, the gradients for each encountered (s, a) are updated.

5

Algorithm 2: Procedure for Learning Routing Policies
Input: MEDA biochip size

1 for epoch do
2 resample ← ⊤
3 for iter = 1, 2, . . . , Niter do
4 for actor = 1, 2, . . . , Nactor , running in parallel, do
5 if resample = ⊤ then
6 Sample δs, δg , (τij), (cij), and N
7 resample ← ⊥
8 Run current policy π and obtain rewards and new state
9 if (k ≥ kmax) ∨ (δ = δg) then resample ← ⊤

10 if (iter ·Nactor) mod minibatchsize = 0 then
11 Optimize PPO2 loss function, update current policy π

Train for
30x30

0% Faults

Blank
CNN

Trained
CNN

Train for
60x60

0% Faults

Blank
CNN

Trained
CNN

Train for
30x30

10% Faults

Blank
CNN

Trained
CNN

⋯

⋮

Train for
60x60

10% Faults

Blank
CNN

Trained
CNN ⋯

⋮ ⋱

Train for
30x30

0% Faults

Blank
CNN

Trained
CNN

Train for
60x60

0% Faults

Trained
CNN

Train for
30x30

10% Faults

Trained
CNN

⋯

Train for
60x60

10% Faults

Trained
CNN ⋯

(a)

(b) ⋮
Fig. 3: Dataflow diagram for (a) traditional learning and (b) transfer learning.

To avoid catastrophic unlearning, we adopt a dynamic
learning rate scheduler for training. Specifically, the training
process starts with a base learning rate η0. At the end of the
i-th epoch, the learning rate is discounted with factor βη only
if the agent performance is above a certain threshold, i.e.,

ηi+1 =

{
max (βη ∗ ηi, ηmin) success rate > 0.99,
ηi otherwise.

Through hyperparameter optimization, we chose η0 = 3.5 ×
10−4, ηmin = 1.0× 10−6, and βη = 0.7.

C. Training Multiple CNNs

In this work, we explore two approaches for training mul-
tiple CNN agents as shown in Fig. 3. In the first approach,
namely traditional learning, we train a CNN for each droplet
size and fault injection level, where each training process starts
with a randomly initialized CNN. Since there is no dependency
between the various training processes, CNNs can employ
observations of various sizes independently of each other.

In the second approach, namely transfer learning, we utilize
pre-trained CNNs to accelerate the training process for un-
trained agents. Specifically, we first train a randomly initialized
CNN H(30,0) on biochips of size 30 × 30 with no fault
injection, resulting in H∗

(30,0%). Next, we use the pre-trained
agent to initialize the training of the CNNs used for the next

biochip size and fault injection level. For example, we use
H(60,0%) = H∗

(30,0%) and H(30,0.1) = H∗
(30,0%) to obtain the

networks H∗
(60,0%) and H∗

(30,0.1), respectively. The process is
then repeated using the new CNNs as illustrated in Fig. 3.

In order to make the transfer learning process feasible, the
input layer size is unified across all CNNs. This is achieved
by scaling the observation matrix from the original size,
i.e., (W,H, 3), to a unified observation size (30, 30, 3). The
scaling is performed using an algorithm provided by OpenCV
library [38] that resamples the original observation using pixel
area relation.

Fig. 4 compares the training performance of the CNNs for
various biochip sizes trained via traditional and transfer learn-
ing. For all biochip sizes, the transfer learning-based CNNs
are able to learn effective policies within the first training
epoch, exhibiting the same performance that the CNNs trained
via random initialization were able to achieve after 15 to 40
epochs. This gain in training performance comes at the cost of
computation required to resize the observations. Nevertheless,
this cost is negligible when compared to the computational
power and time required to train the CNNs for more epochs
using observations of larger sizes. Another consideration is
that training multiple CNNs using transfer learning cannot be
fully done in parallel. Since the initial training is done offline,
training one CNN at a time is considered acceptable.

V. MODEL AND LEARNING EVALUATION

A. Measurement and Modeling of Degradation Parameters

The first series of experiments aims to establish the degra-
dation model and to evaluate the coefficients in (1). We
monitored the processes of electrode degradation in PCB-
based DMFBs, which utilize the same EWOD principle as
MEDA biochips to manipulate droplets. Electrodes of three
sizes are included on our biochips: 2×2mm2, 3×3mm2, and
4×4mm2 (see Fig. 5). Four reservoir modules on two sides of
the DMFB are used to dispense different reagent droplets. The
actuation of each electrode can be controlled individually using
a high-voltage relay on the control board. Each high-voltage
relay is controlled using a single configuration bit, and these
configuration bits are stored in the shift register ICs.

Fig. 5 shows the overall hardware design of the DMFB
and the controller. Identical actuation sequences are executed
on two DMFBs simultaneously to accelerate the experimen-
tal process.

A series of actuation sequences are designed to simulate
repeated bioassay executions on the biochips. The electrodes
are activated and deactivated under a high frequency. The
charging time is monitored via an oscilloscope after each
execution. The charging path can be simplified as an RC circuit
since the electrode and the top plate form a capacitor, and
a resistor is connected in series between the electrodes. The
effective capacitance of an electrode at time t can then be
derived using VC(t) = Vpp

(
1− e−t/RC

)
, where VC(t) is the

electrode capacitance at time t. Subsequently, the EWOD force
F can be obtained from [39], [40] as

F =
C(VC − VT)

2

2

dA(x)

dx
,

6

0 5 10 15 20 25

−1

0

1

·102

Training Epochs

Size 60×60

0 5 10 15 20 25

−1

−0.5

0

0.5

1

·102

Training Epochs

Size 90×90

0 5 10 15 20 25

−2

−1

0

1

2

·102

Training Epochs

Size 120×120

0 5 10 15 20 25

−1

−0.5

0

0.5

1

1.5

2

·102

Training Epochs

Size 150×150

0 5 10 15 20 25

−2

−1

0

1

2

·102

Training Epochs

Size 180×180

Score
Succ. Rate
No. Cycles
TL Score
TL Succ. Rate
TL No. Cycles

Fig. 4: Performance results for training CNNs via random initialization (red) and transfer learning (blue).

2x2mm electrode

3x3mm electrode

4x4mm electrodeReservoir

Control Board

DMFB Board

Solid State Relay AQW210

Fig. 5: The experimental setup.

0.16

0.18

0.20

0.22

0.24

C
ap

ac
ita

nc
e

(n
F)

0 200 400 600 800 1,000 1,200

0.18

0.20

0.22

0.24

Number of Actuations n

Fo
rc

e
(m

N
)

Mean
DMFB1
DMFB2
DMFB3
DMFB4
DMFB5

Fig. 6: Capacitance increase (top) and EWOD force degradation (bottom).

where VT = 130 is threshold voltage due to soldermask
insulator [40], A(x) is the area of the droplet over the activated
electrode, and x is the droplet position.

The degradation results, including the measured capacitance
and the corresponding EWOD force, of five identical DMFBs
are presented in Fig. 6. The capacitance of an electrode
increases linearly as the number of actuations grows. The in-
crease in capacitance leads to a decrease in the induced EWOD
force. The coefficients of (1) are estimated as τ ∈ [0.5, 0.7] and
c ∈ [500, 800], which are further used in the DRL environment
for agent training.

B. Evaluation

We next present the results for training agents for various
configurations by showing the mean score of the agents after
each training epochs for biochips of sizes W × H, where
W = H ∈ {30, 60, 120, 180}. Performance metrics consist of
the mean score, the number of cycles, as well as the success
rate. The metrics are collected after each training epoch by
testing the agent for 500 random routing jobs, and each
experiment is repeated five times. All experiments were carried

0 10 20

−1

0

1

·102

Training Epochs

Size 30×30

Score
Succ. Rate
No. Cycles

0 10 20

−1

0

1

·102

Training Epochs

Size 60×60

0 20 40

−2

−1

0

1

2

·102

Training Epochs

Size 120×120

0 20 40

−2

−1

0

1

2

·102

Training Epochs

Size 180×180

Fig. 7: Performance results for training CNNs on healthy MEDA biochips.

0 10 20

−1

0

1

·102

Training Epochs

Size 30× 30
10% Faults

Score
Success Rate
No. Cycles

0 10 20

−1

0

1

·102

Training Epochs

Size 30× 30
20% Faults

0 10 20

−1

0

1

·102

Training Epochs

Size 90× 90
10% Faults

0 10 20

−1

0

1

·102

Training Epochs

Size 90× 90
20% Faults

Fig. 8: Performance results for transfer learning in fault injection.

out with eight parallel environments and 214 total number of
steps. The training and experiments were conducted on an Intel
Xeon Silver 4208 CPU and an Nvidia RTX 6000 GPU with
24 GB of memory. The training and simulation environment
were implemented using Python, including OpenAI Gym and
Stable-Baselines libraries.

We first trained the CNN on a healthy MEDA biochip, i.e.,
the number of actuations per each microelectrode is reset at the
beginning of each training episode. Fig. 7 presents the CNN
performance metrics versus the number of training epochs.
The trends show that after a low number of epochs, a CNN
learns an effective policy — i.e., the success rate converges to
100% and the score and the average number of cycles stabilize
— at a relatively small number of epochs that ranges from 10
to 40 and increases with the biochip size.

We also tested the robustness of the trained agents against
randomly injected faults at runtime. We used the agents
trained on healthy biochips to initialize the training against
biochips with randomly injected faults. Before each training
episode, a fixed percentage of fully-degraded microelectrodes
are randomly placed in clusters of size 2 × 2. Similar to the
previous experiments, the trained agents were used to initialize
the training on a higher percentage of faults. Fig. 8 shows the
performance results for training against 10% and 20% fault
injection modes. The trends demonstrate that the agents were
able to adapt to the faults within the first training epoch.

Finally, to evaluate the trained CNNs, we run experiments
where we compare their performance against two baselines:

7

675 700 725 750 775 800 825
0.0

0.2

0.4

0.6

0.8

1.0

Number of Cycles (k)

Pr
ob

ab
ili

ty
of

Su
cc

es
s

COVID-PCR

170 180 190 200 210 220 230
0.0

0.2

0.4

0.6

0.8

1.0

Number of Cycles (k)

Pr
ob

ab
ili

ty
of

Su
cc

es
s

COVID-RAT

Baseline
Formal
DRL

Fig. 9: Probability of successful bioassay completion vs. no. of cycles.

(i) health-agnostic policies that aim to minimize the time to
reach the target without knowledge of the MC health levels
(referred to as the baseline), and (ii) formally synthesized
strategies using PRISM-games model checker (referred to
as the formal) [19]. Each policy was used to execute two
benchmark bioassays that are employed for COVID-19 testing:
PCR-based (COVID-PCR) and rapid antigen-based (COVID-
RAT), are widely used to detect the presence of the SARS-
CoV-2 virus or the body’s response to infection [35].

Fig. 9 presents the probability of successful bioassay com-
pletion within a given number of cycles k. The graph shows
that the DRL-based routing policy outperforms the policies
from the literature by achieving a significantly higher probabil-
ity of success. The gain in performance is primarily due to the
utilization of adaptive movement distance (see Section III). For
instance, the DRL-based policy successfuly executed COVID-
PCR within k = 762 with probability p > 0.9, compared to
p < 0.4 when the other policies were used. In addition, the
time needed to obtain a routing policy from the trained CNN
is negligible (t < 0.1 sec) when compared to the formally
synthesized policies where t ranged from 5 to 48 sec before
each routing job.

VI. EXPERIMENTAL RESULTS

In this section, we present a set of experiments whose goal
is to evaluate the overall performance of the proposed DRL-
based framework. Specifically, we execute routing tasks on
fabricated biochips. In our experiments, we employed a PCB-
based DMFB, which utilizes the same EWOD principle as
MEDA biochips to manipulate droplets.

A. Environmental Setup
1) Fabricated DMFB: The DMFB is a 5.8×5.8 cm2 4-

layer PCB board containing a 9× 12 electrode array and four
reservoirs, as shown in Fig. 10a. The size of one electrode
is 1.8×1.8mm2 . Every electrode is connected to one of the
control pins at the sides of the DMFB. The control signals
are sent from the control board through the pins to actuate the
electrodes. To reduce the number of required pins and also the
chip area, pin sharing is used in our DMFB design. The 9×12
electrode array is divided into three equal-sized areas, where
each area includes a 9 × 4 electrode array. Electrodes at the
corresponding position in these three arrays can be mapped
to a same pin. As a result, in comparison with the control of
each electrode with individual pins, only one-third of the total
number of pins is needed. A layer of Cytop is coated on the
PCB surface to form the hydrophobic layer on the electrodes.

(a) (b)

Fig. 10: Design of PCB boards: (a) The DMFB (b) The control board.

Fig. 11: The overall system used for our experiments.

2) Control Board: The control board is a 11.5×13.5 cm2

4-layer PCB design, as shown in Fig. 10b . Register ICs (P/N
SN74AHC595) are used to store the actuation sequences sent
from the micro-computer. At the same time, every pin that
connects to the DMFB is controlled by a high voltage relay
(P/N AQW210). Thus, 36 relays are needed for our DMFB
design. Each relay receives the signals sent from the register
ICs. Two voltage sources are applied to the control board: a
source of 1 KHz and 200 V for electrode actuation, and a
source of 3 V for the ICs.

3) Overall System: The overall system is shown in Fig.
11. It consists of three parts: A DMFB with a control board, a
micro-computer (P/N Raspberry Pi 4), and a camera module.
The routing model is deployed in the micro-computer, where
an image detection program is also executed. With this image
detection program, real-time images of the DMFB captured
by the camera module are processed to detect the current
droplet position. Based on the detection results, the micro-
computer requests the next droplet action from the routing
model. After receiving the output from the routing model, the
micro-computer sends corresponding actuation signals to the
control board to perform the desired droplet movements.

B. Routing Tasks

Fig. 12 shows the bioassay that we use in our experiments.
This bioassay consists of several fluidic operations including

8

Fig. 12: The steps of the bioassay used for our experiments.

dispensing, mixing, spiltting, and detection. To focus on the
routing performance of the models, we split the bioassay into
five main routing tasks (T1 to T5). For each routing task,
we set the maximum number of clock cycles as 40, which
is around the perimeter of the electrode array. A routing task
is failed and terminated when the droplet does not reach the
destination after 40 steps.

C. Experimental Settings

We compare the performance of the obtained DRL-based
routing policies with a baseline routing approach, which adopts
the shortest-path algorithm. Both routing policies (i.e., models)
are executed under two different DMFB health environments:
0% injected faults and 10% injected faults, i.e., 10% of
the electrodes are degraded. The injected faults are used to
simulate the aging degradation of the electrodes, which can
be detected by real-time sensing. The information about the
injected faults is provided as the health matrix to the DRL
routing model. For each routing task, the positions of the
injected faults are randomly chosen, and the electrodes that
are chosen to insert faults are set to a low voltage to simulate
the degradation.

In addition to injected faults, some inherent defects might
also cause the failure of droplet movements; these include
imperfect coating to incorporate the hydrophobic layer and
PCB manufacturing defects. Unlike aging degradation, which
causes changes in the capacitance and thus can be sensed
in real-time, the inherent defects can not be easily sensed.
Therefore, the information about these defects is not provided
to the DRL routing agent. For our DMFB boards, around 5%
of electrodes suffer from inherent defects. Our results show
that the DRL model can ensure reliable bioassay execution
even in the presence of these defects.

D. Results and Evaluation

We execute the baseline routing model and the proposed
DRL routing model under two different DMFB health en-
vironments with five routing tasks (T1 to T5). Fig. 13(top)
shows the average number of clock cycles needed for each
routing task. Under the environment with 0% injected faults,
the developed DRL policy can achieve a similar performance
as the baseline that adopts the shortest path. When the injected
fault rate is 10%, our results show that the DRL model needs
fewer clock cycles than the baseline approach. Similar results
can be seen in Fig. 13(bottom), where the average execution
time for each operation is shown. The execution time for a
routing task includes the computation time of the model and
the electrode actuation time.

Fig. 13: Average number of clock cycles and average execution time for each
routing task under fault rate of 0% and 10%. When the fault rate is 10%, 10
electrodes on the DMFB are chosen as degraded and set to a low voltage:
(top) Average number of clock cycles for each routing task; (bottom) Average
execution time for each routing task.

Fig. 14: Execution the routing task T1 with degraded electrodes: (top-left) The
intended routing task T1, (top-right) the routing progression for the baseline
model, (bottom) the routing progression for the DRL model.

Fig. 14 shows an example when the baseline approach
and the DRL-based routing policy execute a routing task
with degraded electrodes on the routing path. Fig. 14(top-
left) shows the routing task T1, which performs the mixing
of droplet A and droplet B. Thus, we transport droplet A to
the location corresponding to droplet B. The two degraded
electrodes are marked with red squares. Fig. 14(top-right)
shows routing progression for the baseline model. The droplet
followed the shortest path to approach the destination before
encountering the degraded electrodes. When the droplet en-
countered the degraded electrodes, it got stuck at the same
position until the maximum number of steps was reached and
the assay was aborted. On the other hand, Fig. 14(bottom)
shows routing progression for the DRL model. When the
droplet encountered the degraded electrodes, the DRL-based
policy chose an alternative route and reached the destination
successfully. The video of this example can be found in [41].

Consequently, our experiments show that the proposed
DRL-based routing approach can be effectively integrated into

9

a DMFB system. The experimental results show that the DRL-
based routing policy provides reliable routing results even in
the presence of degraded electrodes.

VII. CONCLUSION

We have presented a deep reinforcement learning (DRL)
framework that can respond to microelectrode degradation
during droplet routing on MEDA biochips. Our framework
adopts proactive health monitoring on individual microelec-
trodes and uses the captured response to plan more feasible
route for droplet transportation. We have shown that the
bioassay execution time and the number of clock cycles are
significantly reduced when our approach is employed. Our
results also show that the DRL-based routing policies facilitate
real-time adaptation to faulty microelectrodes as MCs degrade
over time.

REFERENCES

[1] W.-L. Chou, P.-Y. Lee, C.-L. Yang, W.-Y. Huang, and Y.-S. Lin, “Re-
cent advances in applications of droplet microfluidics,” Micromachines,
vol. 6, no. 9, pp. 1249–1271, 2015.

[2] M. Ibrahim, C. Boswell, K. Chakrabarty, K. Scott, and M. Pajic, “A real-
time digital-microfluidic platform for epigenetics,” in 2016 International
Conference on Compliers, Architectures, and Sythesis of Embedded
Systems (CASES), Oct 2016, pp. 1–10.

[3] R. S. Sista, R. Ng, M. Nuffer, M. Basmajian, J. Coyne, J. Elderbroom,
D. Hull, K. Kay, M. Krishnamurthy, C. Roberts, D. Wu, A. D. Kennedy,
R. Singh, V. Srinivasan, and V. K. Pamula, “Digital microfluidic
platform to maximize diagnostic tests with low sample volumes from
newborns and pediatric patients,” Diagnostics, vol. 10, no. 1, 2020.
[Online]. Available: https://www.mdpi.com/2075-4418/10/1/21

[4] S. Huang, J. Connolly, A. Khlystov, and R. B. Fair, “Digital microfluidics
for the detection of selected inorganic ions in aerosols,” Sensors, vol. 20,
no. 5, p. 1281, 2020.

[5] A. Ganguli, A. Mostafa, J. Berger, M. Y. Aydin, F. Sun, S. A. S. d.
Ramirez, E. Valera, B. T. Cunningham, W. P. King, and R. Bashir,
Proceedings of the National Academy of Sciences, vol. 117, no. 37,
pp. 22 727–22 735, 2020.

[6] C. Sheridan, “COVID-19 spurs wave of innovative diagnostics,” Nature
biotechnology, vol. 38, no. 7, pp. 769–772, 2020.

[7] S. Poddar, S. Ghoshal, K. Chakrabarty, and B. B. Bhattacharya, “Error-
correcting sample preparation with cyberphysical digital microfluidic
lab-on-chip,” ACM Transactions on Design Automation of Electronic
Systems, vol. 22, no. 1, pp. 1–29, 2016.

[8] T.-C. Liang, Z. Zhong, M. Pajic, and K. Chakrabarty, “Extending the
lifetime of MEDA biochips by selective sensing on microelectrodes,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 11, pp. 3531–3543, 2020.

[9] K. Y.-T. Lai, Y.-T. Yang, and C.-Y. Lee, “An intelligent digital microflu-
idic processor for biomedical detection,” Journal of Signal Processing
Systems, vol. 78, no. 1, pp. 85–93, 2015.

[10] Y. Ho, G. Wang, K. Y.-T. Lai, Y.-W. Lu, K.-M. Liu, Y.-M. Wang, and
C.-Y. Lee, “Design of a micro-electrode cell for programmable lab-
on-cmos platform,” in IEEE International Symposium on Circuits and
Systems (ISCAS), 2016, pp. 2871–2874.

[11] Y. Zhao, T. Xu, and K. Chakrabarty, “Integrated control-path design
and error recovery in the synthesis of digital microfluidic lab-on-chip,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 6, no. 3, 2010.

[12] Z. Zhong, Z. Li, and K. Chakrabarty, “Adaptive and roll-forward
error recovery in MEDA biochips based on droplet-aliquot operations
and predictive analysis,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 4, pp. 577–592, 2018.

[13] Z. Li, K. Y.-T. Lai, P.-H. Yu, K. Chakrabarty, M. Pajic, T.-Y. Ho, and C.-
Y. Lee, “Error recovery in a micro-electrode-dot-array digital microflu-
idic biochip,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2016, pp. 1–8.

[14] Z. Li, K. Y. Lai, J. McCrone, P. Yu, K. Chakrabarty, M. Pajic, T. Ho,
and C. Lee, “Efficient and adaptive error recovery in a micro-electrode-
dot-array digital microfluidic biochip,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 3, pp.
601–614, March 2018.

[15] M. Elfar, Z. Zhong, Z. Li, K. Chakrabarty, and M. Pajic,
“Synthesis of error-recovery protocols for micro-electrode-dot-array
digital microfluidic biochips,” ACM Transactions on Embedded
Computing Systems, vol. 16, no. 5s, pp. 127:1–127:22, Sep. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3126538

[16] T. C. Liang, Z. Zhong, M. Pajic, and K. Chakrabarty, “Extending the
lifetime of meda biochips by selective sensing on microelectrodes,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 11, pp. 3531–3543, 2020.

[17] T.-C. Liang, Z. Zhong, Y. Bigdeli, T.-Y. Ho, K. Chakrabarty, and R. Fair,
“Adaptive droplet routing in digital microfluidic biochips using deep
reinforcement learning,” in Proceedings of the International Conference
on Machine Learning (ICML), 2020.

[18] J.-i. Yoshida, A. Nagaki, and T. Yamada, “Flash chemistry: fast chemical
synthesis by using microreactors,” Chemistry–A European Journal,
vol. 14, no. 25, pp. 7450–7459, 2008.

[19] M. Elfar, T.-C. Liang, K. Chakrabarty, and M. Pajic, “Formal synthesis
of adaptive droplet routing for MEDA biochips,” in 2021 Design,
Automation Test in Europe Conference Exhibition (DATE). IEEE, 2021.

[20] ——, “Formal synthesis of adaptive droplet routing for meda biochips,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2021.

[21] S. Anderson, B. Hadwen, and C. Brown, “Thin-film-transistor digital
microfluidics for high value in vitro diagnostics at the point of need,”
Lab on a Chip, vol. 21, no. 5, pp. 962–975, 2021.

[22] M. Elfar, T.-C. Liang, K. Chakrabarty, and M. Pajic, “Adaptive droplet
routing for meda biochips via deep reinforcement learning,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2022.

[23] C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Current
Opinion in Colloid & Interface Science, vol. 6, no. 1, pp. 34–39, 2001.

[24] “illumina Official Website,” https://www.illumina.com/techniques/sequen
cing/ngs-library-prep/automation.html, 2022 [online].

[25] “Genmark Official Website,” https://www.genmarkdx.com, 2022 [on-
line].

[26] “Baebies Official Website,” https://baebies.com, 2022 [online].
[27] F. Su, S. Ozev, and K. Chakrabarty, “Ensuring the operational health

of droplet-based microelectrofluidic biosensor systems,” IEEE Sensors
Journal, vol. 5, no. 4, pp. 763–773, 2005.

[28] Z. Zhong, T.-C. Liang, and K. Chakrabarty, “Enhancing the reliability
of meda biochips using ijtag and wear leveling,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 10, pp. 2063–2076, 2021.

[29] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates,”
in IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2017, pp. 3389–3396.

[30] H.-A. M. C. e. a. Silver, D., “Mastering the game of go with deep neural
networks and tree search,” in Nature 529, 2016, p. 484–489.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[32] Q. Gao, M. Naumann, I. Jovanov, V. Lesi, K. Kamaravelu, W. M.
Grill, and M. Pajic, “Model-based design of closed loop deep brain
stimulation controller using reinforcement learning,” in 2020 ACM/IEEE
11th International Conference on Cyber-Physical Systems (ICCPS),
2020, pp. 108–118.

[33] H. Verheijen and M. Prins, “Reversible electrowetting and trapping of
charge: model and experiments,” Langmuir, vol. 15, pp. 6616–6620,
1999.

[34] S. D. Whitehead and D. H. Ballard, “Learning to perceive and act by
trial and error,” Machine Learning, vol. 7, no. 1, pp. 45–83, 1991.

[35] G. Guglielmi, “Fast coronavirus tests: what they can and can’t do.”
Nature, vol. 585, no. 7826, pp. 496–498, 2020.

[36] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of the International Conference
on Machine Learning (ICML), 2016, pp. 1928–1937.

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

10

[38] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[39] Z. Li, K. Y.-T. Lai, P.-H. Yu, K. Chakrabarty, T.-Y. Ho, and C.-Y. Lee,
“Droplet size-aware high-level synthesis for micro-electrode-dot-array
digital microfluidic biochips,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 11, no. 3, pp. 612–626, 2017.

[40] R. B. Fair, “Digital microfluidics: is a true lab-on-a-chip possible?”
Microfluidics and Nanofluidics, vol. 3, no. 3, pp. 245–281, 2007.

[41] M. Elfar, Y.-C. Chang H. H.-Y. Ku, T.-C. Liang, K. Chakrabarty,
and M. Pajic, “Recorded video for the routing example.”
https://reurl.cc/AK20pZ, 2022 [online].

11

