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Abstract
Multivariate time series (MTS) classification is a
challenging and important task in various domains
and real-world applications. Much of prior work
on MTS can be roughly divided into neural net-
work (NN)- and pattern-based methods. The for-
mer can lead to robust classification performance,
but many of the generated patterns are challeng-
ing to interpret; while the latter often produce in-
terpretable patterns that may not be helpful for the
classification task. In this work, we propose a re-
inforcement learning (RL) informed PAttern Min-
ing framework (RLPAM) to identify interpretable
yet important patterns for MTS classification. Our
framework has been validated by 30 benchmark
datasets as well as real-world large-scale electronic
health records (EHRs) for an extremely challeng-
ing task: sepsis shock early prediction. We show
that RLPAM outperforms the state-of-the-art NN-
based methods on 14 out of 30 datasets as well as
on the EHRs. Finally, we show how RL informed
patterns can be interpretable and can improve our
understanding of septic shock progression.

1 Introduction
Multivariate time series (MTS) are sequences of events ac-
quired longitudinally, where each event is constituted by ob-
servations recorded over multiple attributes. For example, the
vital signs and lab results in electronic health records (EHRs)
can be formulated as MTS, since they are measured over time
and multiple measurements can be obtained simultaneously
(e.g., temperature and blood pressure). MTS are widely used
in motion recognition [Rakthanmanon and Keogh, 2013], hu-
man activity recognition [Minnen et al., 2006], and healthcare
[Kang and Choi, 2014]. Comprehensive analyses of MTS
can provide insights and facilitate decision-making in vari-
ous domains and applications [Senin and Malinchik, 2013],
and MTS classification is one of the fundamental problems
of MTS analyses and has received significant attention [Li et
al., 2021]. In general, previous work on MTS classification
can be roughly divided into the more recent, highly effective
neural network (NN)- based methods, and the classic, often
interpretable pattern-based methods.

Various NN-based approaches have been proposed to
directly learn low-dimensional representations from MTS
through various NN or deep NNs, including the state-of-the-
art ROCKET [Dempster et al., 2020], TapNet [Zhang et al.,
2020], and MLSTM-FCN [Karim et al., 2019]. For example,
ROCKET uses a large number of random convolution kernels
to transform time series and uses the transformed representa-
tions to train a linear classifier. Despite their effectiveness,
due to the ‘black-box’ nature of neural network models, the
learned representations are often hard to interpret.

The pattern-based methods, on the other hand, generate
discrete representations or time-series shapelet as patterns
that capture both intra- and inter-sample structures of MTS
(e.g., ShapeNet [Li et al., 2021], WEASEL+MUSE [Schäfer
and Leser, 2018]). These methods decompose each original
attribute into a bag of substructures using sliding windows,
then transform the substructures into features to be used as in-
puts for classifiers. Since the patterns are still operating on the
original attribute space, they are often highly interpretable.
Specifically, discriminative patterns are those that can dis-
tinguish MST among different classes [Senin and Malinchik,
2013] and they are typically useful for classification tasks. As
frontier work, WEASEL+MUSE [Schäfer and Leser, 2018]
applies symbolic Fourier approximation to discretize MTS
and uses χ2-test to determine discriminative patterns.

In addition to the fact that pattern-based methods often pro-
duce interpretable patterns which may not be helpful for clas-
sification, they also have three major limitations: (i) General-
izability – to determine discriminative patterns, pattern-based
methods typically use carefully designed architectures, often
in combination with domain knowledge over specific types of
data [Gao et al., 2021]. (ii) Scalability – they tend to gener-
ate a great amount of pattern candidates and require compli-
cated feature filtering modules. This could lead to inefficient
training and undesirable model performance as discussed
in [Zhang et al., 2020]. (iii) Reliability – existing pattern-
based methods employ distance-based metrics, i.e. dynamic
time warping (DTW) [Shokoohi-Yekta et al., 2015] and sym-
bolic Fourier approximation [Schäfer and Leser, 2018] to dis-
cretize and segment MTS,. Yet, these metrics are not consid-
ered to be very reliable [Hallac et al., 2017].

We propose a Reinforcement Learning (RL) informed
PAttern Mining (RLPAM) framework to identify inter-
pretable yet important patterns for MTS classification.



Table 1: Baselines and UEA datasets in related work vs. RLPAM
Used as baselines

Method EDI DTW
WEASEL
+MUSE
(2018)

MLSTM
-FCN
(2019)

TapNet
(2020)

ShapeNet
(2021)

ROCKET
(2020)

# of
UEA

datasets
Wins

WEASEL+MUSE ✓ ✓ 20 13
MLSTM-FCN ✓ ✓ 20 14

TapNet ✓ ✓ ✓ ✓ 30 14
ShapeNet ✓ ✓ ✓ ✓ ✓ 30 14
ROCKET ✓ ✓ 26 9

RLPAM (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 30 16

RLPAM combines Deep RL (DRL) and Toeplitz inverse
covariance-based clustering (TICC) to address limitations
and shortcomings of existing pattern-based approaches while
preserving their original interpretability. DRL have shown
great success in improving prediction performance [Gao et
al., 2022b; Zoph and Le, 2017], which do not necessarily
rely on domain knowledge. By considering the graphical
connectivity structure of both the temporal and the cross-
attribute dependencies among events, it has been shown that
TICC produces more reliable results in MTS segmentation
than distance-based metrics, as well as discovering pattern in-
terpretations in various applications such as driving patterns
in traffic [Hallac et al., 2017; Yang et al., 2021].

We compare RLPAM with other the-state-of-the-art NN-
based and pattern-based methods on 30 benchmark datasets
as shown in Table 1 as well as real-world large-scale EHRs
for a challenging task: sepsis shock early prediction. RL-
PAM outperforms all other methods on 14 out of 30 datasets
as well as on the EHRs. We also show that by selecting pat-
terns based on RL, not only can the performance of classifica-
tion be improved, but they can also be used to draw insights
into quantitative and qualitative relationships between MTS
and labels through a case study using the task of septic shock
progression. To summarize, our work has at least two main
contributions: 1) To the best of our knowledge, RLPAM is the
first MTS classification method to adapt RL to identify dis-
criminative patterns, making the framework scalable, gener-
alizable, and reliable; 2) We have conducted a comprehensive
comparison of various state-of-the-art NN-based and pattern-
based methods across 30 UEA Archive datasets (Table 1).

2 Related Work
Table 1 summarizes the performance of some recently pro-
posed MTS classification models comparing with their re-
spective baselines over the UEA datasets. These methods in
general can be categorized into pattern-based and NN-based.

Pattern-based methods generally extract bag-of-patterns
(BOP) (e.g., WEASEL+MUSE [Schäfer and Leser, 2018]) or
shapelet-patterns (e.g., ShapeNet [Li et al., 2021]) from time
series and then feed these patterns into a classifier. Specif-
ically, BOP breaks up time series into windows and repre-
sents them as discrete features via a histogram of feature
counts. For instance, one of the state-of-the-art BOP mod-
els, WEASEL+MUSE [Schäfer and Leser, 2018], uses sym-
bolic Fourier approximation and statistical methods to gener-
ate discrete-valued patterns for classification. It outperforms
classic baselines (e.g., DTW) on 13 out of 20 UEA datasets.
Shapelets are time series subsequences that can best repre-
sent samples across different classes [Ye and Keogh, 2009].
ShapeNet [Li et al., 2021] embeds shapelets into a unified
space and characterizes MTS by evaluating pre-defined dis-

(a) Learning multi-pattern time series (MPTS).

(b) RL for MPTS pattern se-
lection and classifier training.

(c) Policy (Actor) πθ of Figure
1b.

Figure 1: Overview of the RLPAM framework.

tance metrics calculated from selected shapelets as inputs to
the classification model. It outperforms baselines including
WEASEL+MUSE on 14 out of 30 UEA datasets.

NN-based methods [Karim et al., 2019; Zhang et al., 2020]
have been proposed to improve the MTS classification per-
formance recently. For instance, MLSTM-FCN [Karim et
al., 2019] is a deep learning framework that generates la-
tent patterns with a squeeze-and-excitation block, and it out-
performs WEASEL+MUSE on 14 out of 20 UEA datasets.
TapNet [Zhang et al., 2020] proposes an attentional proto-
type network to learn the latent features extracted from MTS,
and it outperforms both benchmark and recent baselines (e.g.,
MLSTM-FCN) on 14 out of 30 UEA datasets. ROCKET
[Dempster et al., 2020] is neural-network based model that
transforms time series using random convolutional kernels to
train linear classifiers. It is recognized as a strong method
evaluated on 26 UEA datasets in recent work [Ruiz et al.,
2021]. Although these NN-based approaches can be trained
end-to-end, they provide little interpretability.

3 RLPAM
The overview of our RLPAM framework is illustrated in Fig-
ure 1. It first encodes MTS into univariate cluster sequences
(UCS), then learns multi-pattern time series (MPTS) using
pattern candidates extracted from UCS, from which discrim-
inative patterns are identified by a RL module, in concurrent
with training of the classification model. We are releasing the
source code of our implementation and it can be accessed at
https://github.com/fay067/RLPAM.

3.1 Problem Formulation
Multivariate time series can be represented as X =
{X1, ...,XN}, where N is the total number of samples.
Each sample Xi consists of a sequence of events: Xi =
(xi,1, ...,xi,ti) where each xi,j is an event representing the
observations at time step j and ti is the horizon which can
vary across different samples. Specifically, xi,j ∈ RD

and D is the number of attributes recorded; thus, we have
Xi ∈ Rti×D. Our goal is to train a classification model
f : Xi → yi which assigns each sample Xi to its corre-
sponding class yi ∈ P = {1, ..., P}.

https://github.com/fay067/RLPAM


3.2 Learning Multi-pattern Time Series
Encoding UCS from MTS. We first convert each MTS
sample Xi into a univariate cluster sequence (UCS), which
is a vector characterizing the dependencies across attributes
in the original MTS. It consists of the following two steps:
• Events Stacking & Clustering: Events from all sam-
ples are stacked to form a multivariate sequence X =
(x1,1, ...,x1,t1 , ..., xN,1, ...,xN,tN ) with length T =∑N

i=1 ti. Then we group the events xi,j ∈ X into C clusters,
where each xi,j is assigned with one from the set of clus-
ters K = {K1, . . . ,KC}. The distance-based metrics used in
classic clustering methods, such as K-Means [Lloyd, 1982],
are shown to be not fully reliable for pattern mining pur-
poses [Keogh and Lin, 2005; Hallac et al., 2017]. As a result,
we choose to formulate the objective as defined in the Toeplitz
inverse covariance-based clustering (TICC) problem [Hallac
et al., 2017], since it can be solved through a model-based
manner by considering the graphical connectivity structure of
both the temporal and the cross-attribute dependencies among
events.
• UCS Formulation: After mapping each event into a cluster,
a vector K = (K1,1, . . . ,K1,t1 , . . . ,KN,1, . . . ,KN,tN ) can
be defined such that each element Ki,j ∈ K is mapped from
the corresponding event xi,j ∈ X . Then we group together
the Ki,j’s that are mapped from the same sample as Ui =
(Ki,1, . . . ,Ki,ti) to constitute the UCS for sample Xi.

Extracting MPTS from UCS. From the pattern informa-
tion encoded in UCS, we further extract multi-pattern time
series (MPTS) to represent the time series samples.
• Initializing Pattern Candidates: For the set of UCS, Up

p ∈ P, which mapped from samples {Xi|yi = p} associated
with a class p, we extract consecutive subsequences with a
minimum length of 2, as pattern candidates unique to class
p. Consequently, the overall set of pattern candidates for all
the classes, L = {l1, . . . , lL}, can be obtained by extracting
subsequences from all Up and taking a union of their outputs;
here, L is the size of such pattern candidates set.
• Encoding Multi-Pattern Time Series. Given a sample Xi

with length ti, its MPTS over L pattern candidates is writ-
ten as Mi = (Mi,1, ...,Mi,L)

⊤ ∈ {0, 1}ti×L, where Mi,l ∈
{0, 1}ti . The elements of Mi,l are determined by the time
stamps the l-th pattern candidate appears (denoted as 1) or is
absent (denoted as 0) in its corresponding UCS Ui. Note that
such MPTS encapsulate the dependencies underlying sequen-
tial patterns across timestamps and samples, and they could
be used as the inputs to a classification model.

3.3 RL for Pattern Selection and Classification
Considering the fact that the number of MPTS pattern can-
didates {l1, . . . , lL} are usually large, it is highly desired to
filter out the noisy patterns to classify based on critical ones.
Though some linear models, e.g., LASSO, may be capable of
selecting patterns based off from MPTS, they cannot capture
the temporal correlations existed in MTS [Tan et al., 2016].
In this work, we introduce RL to simplify the MPTS Mi’s by
identifying the discriminative patterns, which can best dis-
tinguish each sample among the classes, by interacting with
the RL environment while training the classifier f . Equipped

with RL, our method can not only improve the performance
of f , but also highlight interpretability of the patterns.

There exists at least two challenges for RL to solve the
problem we consider. (a) Large discrete search space. The
number of pattern candidates could result in exponentially
growing search space since it has size 2L. (b) Sample-
agnostic discriminative pattern selection. Usually the clas-
sification model is trained using mini-batches which are
randomly sampled from the training dataset [Ruder, 2016].
However, we expect the selected discriminative patterns to
distinguish each sample among all the others that are not as-
sociated with the same class, even if they are not presented
in the current training batch. As a result, we expect the RL
to select a set of patterns that are consistently discriminative
among all the samples, instead of finding patterns that can
only distinguish samples within each specific input batch.
Modeling with RL. General RL trains an agent to learn op-
timal strategies by interacting with environments and maxi-
mizing cumulative rewards. Such environments can be for-
malized as Markov decision processes (MDPs). Specifi-
cally, each time after the agent performs an action a =
π(s) at state s following its policy π, the environment re-
sponds with the next state s′ with the reward signal r.
The goal is to find a policy π that maximizes the ex-
pected cumulative return the agent could obtain, as G(π) =

Eρ

[∑η
τ=0 γ

iR(sτ , aτ )
]
; here, η is the horizon of the envi-

ronment, ρ = {(s0, a0), . . . , (sη, aη)|aτ = π(sτ )} is the tra-
jectory given π, and γ ∈ [0, 1) is the discount factor.

The modeling of MPTS pattern selection and training an
LSTM [Hochreiter and Schmidhuber, 1997] classifier based
on RL is illustrated in Figure 1b. Each element of M =
(S,A,P, R, γ) in this RL environment is detailed below:
• State Space S. The states are characterized by s = (M,h),
where M ∈ {0, 1}Ttrain×L is the batch of MPTS mapped
from corresponding training samples selected in the current
iteration, Ttrain =

∑Ntrain

i=1 ti, h ∈ RNtrain×nlstm are the
encodings (or the hidden states) generated by the LSTM,
Ntrain is the batch size and nlstm is the number of hidden
units of the LSTM.
• Action Space A. The action space defines the mechanism
of selecting discriminative patterns from all the L patterns re-
siding within the input batch M. We define actions as vectors
with length L as a ∈ {0, 1}L. Each dimension l ∈ [1, L] is
filled with either 1 (or 0) corresponding to if the l-th pattern
in M is considered as a discriminative pattern (or not).

Given that there exists one-to-one mapping between each
Xi and Mi following from Section 3.2, we can rewrite the
classification model’s input in terms of MPTS under the batch
training setting to simplify mathematical notations. Specifi-
cally, from now on we consider the classification model f
takes as input batch M ⊙ a and maps them to predictions ŷ,
where M⊙a means all the elements in the l-th column of M
are multiplied with the l-th element in a for all l ∈ [1, L].
• Transitions P . The transition dynamics determine how to
transit from a current state s = (M,h) to the next state
s′ = (M′,h′) given an action a to the environment. In our
case, M → M′ is determined by how training batches are
formulated by sampling from the dataset in each iteration.



Similarly, h → h′ represents the change of LSTM hidden
states by switching from the old input M⊙a to the new input
M′⊙a′. Consequently, by putting together all the transitions
above, we define s → s′.
• Reward Function R. After the agent takes an action a at
state s, the reward r = R(s,a) is returned by the environ-
ment, thus the policy π can then be updated following this
information. We define the reward function as R(s,a) =
−J(ŷ,y), which is the negative of a commonly used loss
function such as cross-entropy.

Actor-Critic DRL. Although some existing RL methods
can resolve the challenge (a), e.g., [Dulac-Arnold et al.,
2015], they may not be capable of addressing the challenge
(b), which is specific to the pattern selection problem con-
sidered in this work. Here, we choose to adapt from an actor-
critic deep RL method, i.e., deep deterministic policy gradient
(DDPG) [Lillicrap et al., 2016], for two reasons. First, it was
originally designed for continuous action spaces which intrin-
sically has large spaces; Second, the policy π can be updated
using past experience, which is more sampling efficient.

In DDPG, an actor πθ : S → A is used to represent the
policy to be updated iteratively. It is parametrized by a multi-
layer perceptron (MLP) [Anzai, 2012] θ. The actor πθ is
jointly trained with the critic Qξ : S ×A → R, parametrized
by another MLP ξ, to maximize the approximated expected
return Gβ(πθ) = Es∼ρβ [Qξ(s, πθ(s))].

Our Neural Architecture and Actor-Critic Updates. We
first design the neural architecture for actor πθ to account for
the discrete action space a ∈ {0, 1}L, by using Sigmoid out-
put activations and thresholding. The architecture is illus-
trated by a flowchart in Figure 1c. Specifically, to better rep-
resent the states s = (M,h) as matrices in batch settings, we
define s̃ = (M̃,h) where M̃ is obtained by first padding all
the sequences Mi ∈ M to become the same length and then
concatenating all the elements in each padded sequence into a
vector; thus, the first dimension of M̃ becomes Ntrain, which
is consistent with h ∈ RNtrain×nlstm .1 Then, the architec-
ture follows regular MLP up until when logits are generated,
which are with dimension RNtrain×L. In what follows, the
logits first pass through a Sigmoid layer and are then aver-
aged over all the samples in batch, where we denote the out-
put from here as µθ(s) ∈ RL. At last, the action is generated
following πθ(s) = 1(µθ(s) ≥ 0.5), where 1(·) is the indica-
tor function and πθ(s) ∈ RL.

Due to the averaging layer, the same action is taken for all
the inputs in the batch, i.e., the same patterns are selected over
all the input samples (Xi’s) that are mapped to the MPTS
batch M. The purpose of using such an averaging layer is
to reduce the conditional dependencies between a and s as
pointed out in the challenge (b). Since each batch is formed
by randomly sampling from the training data, by enforcing
such constraints we expect the policy would focus on the pat-
terns that are helpful to distinguish different classes over all
the samples.

Note that the updates of policy πθ do not rely on domain
knowledge of the datasets, which shows generalizability of

1Note that s̃ and s can be used interchangeably.

the framework. The use of deep classification models and
deep RL makes the proposed method scalable. In event clus-
tering, the objective does not include the distance-based met-
rics that are shown to be not fully reliable. Moreover, the
selected discriminative patterns could be interpretable, which
will be illustrated in Section 4.5.

4 Experiments
In this section, we introduce the datasets and baselines used
for evaluations, followed by results and a case study illustrat-
ing the interpretability of derived patterns.

4.1 Datasets
We first evaluate our model on 30 datasets from UEA MTS
classification archive [Bagnall et al., 2018], which consists of
data collected from various domains, including human activi-
ties recognition, ECG/EEG signals, motion classification, etc.
The sample sizes of the datasets range from 27 to 50,000. The
lengths of time series range from 8 to 17,901. We follow the
same train/test split ratio as provided by the dataset authors.

Furthermore, we evaluate our model’s performance on
24-hour early predictions of septic shock using MIMIC-III
[Johnson et al., 2016] which contains real-world electronic
healthcare records obtained from intensive care unit patients.
We pre-process and label sepsis patients following [Gao et
al., 2022a]. We use 3D-MICE [Luo et al., 2018] to impute the
missing values. In total 772 (containing 386 positive and 386
negative) sepsis patients are obtained. The lengths of time se-
ries range from 1 to 923. We adopt 5-fold cross validation to
evaluate the performance on this dataset.

4.2 Evaluation Metrics
For each dataset, we report the classification accuracy, aver-
age rank and number of wins/ties on the testing set. We com-
pute mean per class error (MPCE), which is the average error
of each class for all the datasets, following the process de-
scribed in [Karim et al., 2019]. We also conduct the Friedman
test and Wilcoxon signed-rank test following the process de-
scribed in [Demšar, 2006] with Holm’s α (5%) [Holm, 1979].
The Friedman test is a non-parametric statistical test to jus-
tify the significance of performance differences across all the
methods. The Wilcoxon signed-rank test is a non-parametric
statistical test based on the hypothesis that the rank medians
between our method and any baselines are the same.

4.3 Baselines
We compare RLPAM with (i) directly using UCSs as inputs to
train LSTM, which is denoted as UCS in Table 2. This serves
as an ablation baseline which helps analyze the advantages of
mining discriminative patterns from them, as proposed in RL-
PAM. (ii) Seven state-of-the-art methods: WEASEL+MUSE,
ShapeNet, MLSTM-FCN, TapNet, and ROCKET as reviewed
in Section 2, as well as MrSEQL [Le Nguyen et al., 2019]
and MiniRocket [Dempster et al., 2021], which are origi-
nally proposed towards TS classification but can be directly
applied to MTS classification. (iii) Three MTS classifica-
tion benchmarks [Shokoohi-Yekta et al., 2015; Bagnall et al.,
2018]: EDI is one nearest neighbor classifier based on Eu-
clidean distance. DTWI is dimension-independent dynamic



Table 2: Classification performance comparison over 30 UEA multivariate time series (MTS) datasets.

Dataset EDI DTWI DTWD
WEASEL
+MUSE
(2018)

MLSTM
-FCN
(2019)

MrSEQL
(2019)

TapNet
(2020)

ShapeNet
(2021)

ROCKET
(2020)

MiniRocket
(2021) UCS RLPAM

AF 0.267 0.267 0.200 0.333 0.267 0.267 0.333 0.400 0.067 0.133 0.467 0.733
HMD 0.279 0.306 0.231 0.365 0.365 0.149 0.378 0.338 0.446 0.392 0.432 0.635
SWJ 0.200 0.333 0.200 0.333 0.067 0.333 0.400 0.533 0.530 0.333 0.600 0.667
FM 0.550 0.520 0.530 0.490 0.580 0.550 0.530 0.580 0.530 0.550 0.630 0.640

SRS2 0.483 0.533 0.539 0.460 0.472 0.572 0.550 0.578 0.540 0.522 0.622 0.632
PEMS 0.705 0.734 0.711 N/A 0.699 0.620 0.751 0.751 0.832 0.522 0.607 0.861

HB 0.620 0.659 0.717 0.727 0.663 0.741 0.751 0.756 0.726 0.771 0.737 0.779
NATO 0.860 0.850 0.883 0.870 0.889 0.872 0.939 0.883 0.894 0.928 0.767 0.950
UWGL 0.881 0.869 0.903 0.916 0.891 0.872 0.894 0.906 0.938 0.938 0.416 0.944
LSST 0.456 0.575 0.551 0.590 0.373 0.588 0.568 0.590 0.639 0.643 0.350 0.644

PD 0.973 0.939 0.977 0.948 0.978 0.923 0.980 0.977 0.982 N/A 0.533 0.982
MI 0.510 0.390 0.500 0.500 0.510 0.520 0.590 0.610 0.560 0.550 0.570 0.610
BM 0.675 1.000 0.975 1.000 0.950 0.950 1.000 1.000 1.000 1.000 0.950 1.000
CR 0.944 0.986 1.000 1.000 0.917 0.986 0.958 0.986 1.000 0.986 0.764 1.000

SAD 0.967 0.960 0.963 0.982 0.990 0.980 0.983 0.975 0.998 0.993 0.492 0.986
FD 0.519 0.513 0.529 0.545 0.545 0.545 0.556 0.602 0.630 0.620 0.520 0.621
CT 0.964 0.969 0.990 0.990 0.985 0.970 0.997 0.980 N/A 0.993 0.696 0.978
EP 0.667 0.978 0.964 1.000 0.761 0.993 0.971 0.987 0.993 1.000 0.826 0.978

DDG 0.275 0.550 0.600 0.575 0.675 0.175 0.575 0.725 0.520 0.650 0.425 0.700
HW 0.371 0.509 0.607 0.605 0.286 0.474 0.357 0.451 0.585 0.507 0.096 0.522
EC 0.293 0.304 0.323 0.430 0.373 0.555 0.323 0.312 0.380 0.468 0.354 0.369
RS 0.868 0.842 0.803 0.934 0.803 0.868 0.868 0.882 0.921 0.868 0.743 0.868

AWR 0.970 0.980 0.987 0.990 0.973 0.993 0.987 0.987 0.993 0.992 0.677 0.923
EW 0.550 0.603 0.618 0.890 0.504 N/A 0.489 0.878 0.901 0.962 0.534 0.908

SRS1 0.771 0.765 0.775 0.710 0.874 0.679 0.652 0.782 0.846 0.925 0.577 0.802
LIB 0.833 0.894 0.872 0.878 0.856 0.872 0.850 0.856 0.906 0.922 0.550 0.794
PS 0.104 0.151 0.151 0.190 0.110 N/A 0.175 0.298 0.280 0.292 0.051 0.175
JV 0.924 0.959 0.949 0.973 0.976 0.922 0.965 0.984 0.965 0.989 0.743 0.935
ER 0.133 0.133 0.133 0.133 0.133 0.878 0.133 0.133 0.981 0.981 0.581 0.819
IW 0.128 N/A 0.115 N/A 0.167 N/A 0.208 0.250 N/A 0.595 0.125 0.352

Avg. Rank 7.567 6.733 5.867 5.133 6.000 6.233 5.000 3.967 3.667 3.367 7.433 2.900
MPCE 0.100 0.092 0.091 0.089 0.092 0.091 0.075 0.085 0.074 0.075 0.095 0.058

Win/Ties 0 1 2 4 0 2 2 4 7 8 0 14
Ours 1-to-1-Wins 27 24 25 19 23 24 23 20 16 16 30 -

Ours 1-to-1-Losses 2 5 3 9 7 5 4 8 12 12 0 -
Wilcoxon Test p-value 0.000 0.000 0.000 0.010 0.000 0.001 0.000 0.012 0.313 0.636 0.000 -

- Accuracy results are sorted by deviations between RLPAM and the best performing baselines.
- The classification accuracy of the baselines on the UEA archive datasets are obtained from their original papers, except ROCKET which is run using the code open-sourced by [Ruiz et al.,

2021].

Figure 2: Performance Comparison on MIMIC-III dataset.
ShapeNet cannot be implemented due to the high missing rate in
clinical data which make shapelet based methods hard to converge.

time warping. DTWD is dimension-dependent dynamic time
warping.

4.4 Classification Results
The overall classification accuracy results for the UEA
datasets are presented in Table 2. The result “N/A” indicates
the corresponding methods are not reported in [Bagnall et al.,
2018] or incapable of producing the results. Overall, RLPAM
achieves the best average accuracy rank across all the com-
pared methods. Specifically, RLPAM attains the average rank
of 2.900, which is higher than all the baselines. RLPAM re-
sults in 14 wins/ties while the best performing state-of-the-
art gets 8 wins/ties. In terms of MPCE, RLPAM achieves the
least average error per class across all datasets. In Friedman
test, our statistical significance is p <= 0.001. It confirms the
statistical significance of the performance difference among
all 12 methods. The Wilcoxon signed-rank test is performed
between RLPAM and all baselines, which shows that over-
all performance of RLPAM over the 30 UEA datasets out-
performs baselines with statistical significance at the level of
p < 0.05, except ROCKET and MiniRocket. Interestingly,
on datasets where UCS performs reasonably well but not as

good as the state-of-the-arts, RLPAM can improve its perfor-
mance and even outperforms state-of-the-arts. On datasets
where UCS performs poorly, RLPAM can significantly im-
prove its performance but may not beat the state-of-the-arts.
The observations above demonstrate the importance of gener-
ating pattern-based representations, as proposed in RLPAM,
for MTS classification. Moreover, RLPAM performs better
in most datasets that contain a limited number of training
samples, such as StandWalkJump (SWJ) and AtrialFibrilla-
tion (AF) which contain only 12 and 15 training samples re-
spectively. The reason could be that these datasets intrinsi-
cally contain high-qualitative representative and discrimina-
tive patterns which are captured by RLPAM.

We further investigate how RLPAM performs against the
state-of-the-art MTS classification methods on a real-world
healthcare problem, i.e., 24-hour early septic shock predic-
tion. For this task we use the data extracted from MIMIC-III,
along with the open-sourced code attached to each method
in its original paper. Given that this is a binary classification
task, we show both the average accuracy and AUC obtained
from 5-fold cross validation in Figure 2. It can be observed
that RLPAM achieves the best performance in terms of both
metrics, which significantly outperforms the other methods.

4.5 A Case Study on Interpretability
Six RLPAM patterns with the highest supports were selected
here. Here the support is calculated by the portion of vis-
its which contain the pattern among all visits. As shown in
Figure 3a, three of them (i.e., N1, N2, N3) appear signifi-
cantly more frequently in non-shock visits than in shock ones,
while S1, S2, S3 appears significantly more in shock visits



Table 3: Interpretations for the RLPAM informed patterns.
Classes Pattern Interpretation
Non-shock N1 Temperature Physiological Responses Inflammation, Slight Non-Temperature Inflammation

N2 Temperature Physiological Responses Inflammation
N3 Physiological Organ Failure, Slight Respiratory Organ Failure

Shock S1 Under-Resuscitated Septic Shock, Cardiovascular Organ Failure
S2 Under-Resuscitated Septic Shock, Respiratory Organ Failure, Cardiovascular Organ Failure
S3 Slight Under-Resuscitated Septic Shock, Slight Cardiovascular Organ Failure, Non-Temperature Physiological Response Inflammation

(a) Overall supports. (b) Deviations from means.

(c) Beginning/ending 4hrs’ supports across two classes.
Figure 3: Analysis for the RLPAM informed patterns.

than non-shock ones. For each pattern l ∈ L and all MTS
X = {X1, . . . ,XN}, we calculate the average value, κd

l , of
each attribute d ∈ [1, D] recorded in the part of X pertaining
to Mi,l = 1, across all i ∈ [1, N ] patients. In what follows,
the deviations κd

l − κ̄d
l , from the population mean of each at-

tribute κ̄d
l = 1

N

∑
i

1
ti

∑
t xi,t,d, are visualized in Figure 3b2.

It can be observed that S1, S2, S3 in general result in neg-
ative deviations (shown in red), while most part of N1, N2,
N3 are associated with positive deviations (shown in blue).
According to the deviations, and referring to the septic shock
diagnosis criteria provided by some expertized clinician, we
find potential ways to interpret the patterns as shown in Ta-
ble 3. The patterns informed by RLPAM are fine-grained and
convey insights of septic shock progress.

We further analyze the supports of patterns in the beginning
4 hours and the ending 4 hours across visits for non-shock
and shock patients, which are shown in Figure 3c left and
right side respectively. We find that patterns N1, N2, N3 ap-
pear consistently frequent across non-shock visits with sim-
ilar supports between the beginning and the ending 4 hours.
On the contrary, patterns S1, S2, S3 behave differently across
shock visits: S1 is more than twice as frequent in the begin-
ning 4 hours than in the ending 4 hours; S2 is consistently
frequent in both the beginning and ending 4 hours; S3 only
appears in the ending 4 hours. Interestingly, we also inves-
tigate all C = 6 cluster indices that constitute UCSs, and
most of them have supports greater than 0.6 on both shock
and non-shock classes. This indicates that it is hard to use
cluster indices alone to differentiate classes, but the patterns
recognized by RLPAM can provide insights into the relations

2All MTS X are min-max normalized before calculating deviations.

between MTS and class labels.

5 Conclusion and Limitation
In this paper, we proposed a MTS classification framework
called RLPAM. It first converted MTS into MPTS which con-
tain information propagated from interpretable pattern can-
didates. Then, a deep RL module was devised to iteratively
identify and refine the set of discriminative patterns in con-
current with training of a deep learning classifier. The de-
sign of the actor’s neural architecture as well as the adapted
actor-critic gradients updates were shown effective for main-
taining the set of selected patterns in a sample-agnostic man-
ner. We ran experiments on 30 UEA Archive datasets and the
MIMIC-III dataset. The results showed that RLPAM outper-
forms state-of-the-art methods as well as the ablation base-
line which directly using UCS as classification model inputs,
illustrating the importance of identifying discriminative pat-
terns. However, our performance was limited on datasets
where UCS performs extremely poor; possibly due to the lack
of graphical connectivity structure among temporal or cross-
attribute dependencies underlying the data, which makes the
cluster indices generated by TICC not informative enough for
downstream analyses. In the future, this could be resolved by
designing event clustering method that could improve the ex-
pressiveness and representational power of its UCS outputs.
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