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ABSTRACT
The use of Neural Network (NN)-based controllers has at-

tracted significant attention in recent years. Yet, due to the

complexity and non-linearity of suchNN-based cyber-physical

systems (CPS), existing verification techniques that employ

exhaustive state-space search, face significant scalability

challenges; this effectively limits their use for analysis of real-

world CPS. In this work, we focus on the use of Statistical

Model Checking (SMC) for verifying complex NN-controlled

CPS. Using an SMC approach based on Clopper-Pearson con-

fidence levels, we verify from samples specifications that are

captured by Signal Temporal Logic (STL) formulas. Specifi-

cally, we consider three CPS benchmarks with varying levels

of plant and controller complexity, as well as the type of con-

sidered STL properties – reachability property for amountain

car, safety property for a bipedal robot, and control perfor-

mance of the closed-loop magnet levitation system. On these

benchmarks, we show that SMC methods can be successfully

used to provide high-assurance for learning-based CPS.

CCS CONCEPTS
• Computer systems organization → Robotic auton-
omy; Embedded and cyber-physical systems.

KEYWORDS
Cyber-physical systems verification, high-assurance learning-

based control, Statistical Model Checking
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1 INTRODUCTION
Modern Cyber-Physical Systems (CPSs) are increasingly us-

ing Neural Network (NN)-based controllers. Yet, despite the

tremendous promise that the use of such controllers would

have on performance of CPS, providing assurance for such

learning-based systems presents significant challenges. As a

result, verifying learning-based CPS has attracted significant

attention in recent years (e.g., [6, 7, 10, 19, 20, 23]).

The use of barrier functions is one of the common ap-

proaches to obtain safety guarantees for dynamical systems

controlled by deep neural networks (DNNs) (e.g., [17, 21]).

A disadvantage of this method is the reliance on an accurate

system model. Furthermore, it can only deal with simple

specifications, like safety and robustness, and does not easily

support general temporal logic specifications.

Recent advancements in verification and reachabilitymeth-

ods have resulted in new tools for verification of NN-based

CPS [9]. For all these methods, in addition to the commonly

exhibited scalability problems, there exist additional con-

straints imposed on the underlying NN structure; these con-

straints usually depend on the type of specifications sup-

ported by the employed verification or reachability tools. For

example in [10], NN-controlled CPSs with sigmoid activa-

tion functions are verified based on a reachability analysis

that is performed for NNs with only differentiable activa-

tion functions; this means the Rectified Linear Unit (ReLU),

which is a common activation function for most NN-based

controllers, cannot be supported. Satisfiability modulo the-

ory (SMT) based methods or mixed-integer linear program

(MILP) optimizer approaches, such as [8, 11, 19], commonly

transform the considered DNN as an input to the SMT/MILP

solvers; to achieve this, the piecewise-linear nature of the

ReLUs is used to verify linear properties of the NN’s output

when the constraints on the inputs are linear. This, on the

other hand, means they do not capture nonlinear properties

of the considered physical plants.

Consequently, to avoid the aforementioned limitations,

such as scalability and nonlinearity, we adopt a Statistical
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Model Checking (SMC) approach to verify the desired specifi-

cations, formally defined in Signal Temporal Logic (STL) [15].

The main contribution of this works is to show the capability

of SMC for verifying complex NN-controlled CPS. Building

on an SMC approach based on Clopper-Pearson confidence

levels, which we recently introduced in [22], we statistically

verify STL specifications on three CPS benchmarks with

varying levels of plant and controller complexity (including

controllers with several layers containing several hundred

of neurons per layer). Specifically, we verified a reachability

property for a mountain car, safety property for a bipedal

robot, and control performance of a closed-loop magnet levi-

tation system, and showed how SMC can be used to provide

high-assurance for learning-based CPS of realistic size. On

the other hand, the bipedal robot verification problem is be-

yond the capability of the state-of-the-art verification tools,

such as Verisig [10], due to the 400-neurons layers in the

controlling neural network.

Compared to direct testing [23], our SMC approach pro-

vides guarantees on statistical accuracy of the results, with

provable bounds on their significance levels. Unlike existing

SMC methods that rely on sequential probability ratio tests

[12, 16, 18], our method is based on Clopper-Pearson bounds,

thus requiring no assumption on the “indifferent region”.

This paper is organized as follows. After preliminaries in

Section 2, Section 3 elaborates on the SMC method. In Sec-

tion 4, the SMC method is employed on three CPS with

learning-based controllers, before concluding in Section 5.

2 PRELIMINARIES
We denote the set of natural, rational, real numbers and non-

negative real numbers by N, Q, R and R≥0, respectively. For
n ∈ N, let [n] = {1, . . . ,n}.

An STL formula is defined by

φ F f (σ ) > 0 | ¬φ | φ ∧ φ | φU[t1,t2]φ,

where σ denotes an n-dimensional signal, f : Rn → R
and t1, t2 ∈ Q with t2 > t1 ≥ 0. Other temporal opera-

tors are defined as 3[t1,t2]φ = TrueU[t1,t2]φ and □[t1,t2]φ =
¬(3[t1,t2]¬φ), where 3 and □ stand for “finally” and “al-

ways”, respectively.

The satisfaction of an STL formula on a given signal σ :

R≥0 → R
n
is defined by

σ |= µ ⇔f (σ (0)) > 0

σ |= ¬φ ⇔σ ̸ |= φ

σ |= φ ∧ψ ⇔σ |= φ ∧ σ |= ψ

σ |= φU[t1,t2]ψ ⇔∃t ∈ [t1, t2] such that σ (t ) |= ψ

∧ ∀t ′ < t,σ (t
′) |= φ.

Here, σ (t ) denotes the t-shift of σ , defined by σ (t )(t ′) = σ (t +
t ′) for any t ′ ∈ R≥0.

Figure 1: SMC of NN-controlled CPS; σ is the path of
the controlled plant.

3 OVERVIEW OF SMC METHOD
As illustrated in Figure 1, we consider a NN-controlled CPS

S = P||C, similarly to e.g., [10]; the system is derived by

the (closed-loop) composition of a plant modeled as a hybrid

system P and a controller C that is a (trained) neural net-

work. In general, our goal is to check whether a given STL

specification φ holds on S for all possible paths/signals σ
of S. However, when the initial state of S is uncertain, and

the NN-based controller is of realistic size, the problem is

currently out of reach of existing verification tools.

Consequently, as previously proposed for analysis of non-

learning-based embedded systems [16], we draw the initial

states of S from a probability distribution to model the un-

certainty. This allows us to map the considered verification

problem into reasoning whether the given STL specification

φ holds on S with probability greater than p for a random

initial state; this can be specified as

pφ = Pr(σ |= φ) > p (1)

where σ : R≥0 → R
n
is a path/signal of S from a random

initial state and p ∈ [0, 1] is a probability threshold.

To statistically verify (1), we build on our SMC approach

based on the Clopper-Pearson significance levels from [22].

Compared to the SMCmethods based on sequential probabil-

ity ratio test (SPRT), this approach requires no assumption

on the indifference margin [5, 13]. For i ∈ [N ], let σi be a
sample path of the systemS from an initial state drawn as an

i.i.d. sample. For each σi , with a slight abuse of notation, let

φ(σi ) =

{
1, if φ is true on σi ,

0, otherwise.

(2)

ThenT =
∑

i ∈[N ] φ(σi ) should obey the binomial distribution

Binom(n,pφ ), and the average statistics T /N is an unbiased

estimator for pφ . Intuitively, whenT /N < p, it is more likely

that pφ < p; and the same holds for the other case. Therefore,

we define the statistical assertion for problem (1) as

A
(
Pr(σ |= φ) < p

)
=

{
1, if T /N < p

0, otherwise.

(3)
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Algorithm 1 SMC of Pr(σ |= φ) < p on S.

Require: CPS , desired significance level αd , batch size B.
1: N ← 0, T ← 0, initial significance level αCP ← 1

2: while αCP > αd do
3: for i ∈ [n] do
4: Draw σN+1, . . . σN+B from S in S.

5: T ← T +
∑N+B

i=N+1 φ(σi ); N ← N + B.
6: end for
7: Update A by (3) and αCP by (4) and (5).

8: end while
9: return A and αCP.

This maps a formula Pr(σ |= φ) < p to 0 (“false”) or 1 (“true”).

From [22], the significance level of A – i.e., the probability

that A
(
Pr(σ |= φ) < p

)
disagrees with the truth value of

Pr(σ |= φ) < p, is given by the Clopper-Pearson (CP) bounds

as follows

αCP(a,b |T ,N ) = 1−
(1 − a)N − (1 − b)N , if T = 0

bN − aN , if T = N

FB(b |T + 1,N −T ) − FB(a |T ,N −T + 1), else,

(4)

where FB(· |T1,T2) is the cumulative probability function of

the beta distribution with the shape parameters (T1,T2), and

[a,b] =

{
[0,p], if T /N < p,

[p, 1], if T /N > p.
(5)

Compared to theHoeffding bounds, the CP bounds are tighter,

as they are specialized for Bernoulli distributions.

For a desired significance level αd > 0, which captures

the upper bound of the probability that the SMC algorithm

returns a wrong answer, we design the following sequential
SMC algorithm. Specifically, at each iteration, we draw B
new samples to compute the significance level using (4), until

it becomes less than αd . This sequential approach is needed

to exactly achieve the desired significance level αd [5]. The

detailed algorithm for verifying (1) on the NN-controlled

CPS S is provided in Algorithm 1. Finally, from [22] the

following holds.

Theorem 1 ([22]). Algorithm 1 terminates with probability
1 and gives the correct statistical assertion with probability at
least 1 − αd , when pφ , p for (1).

4 CASE STUDIES
We statistically verified three NN-controlled CPS models

implemented in Simulink on a desktop with 16 GB RAM

and Intel Xeon E-2176 CPU; specifically, a mountain car, the

bipedal robot [3], and the magnetic levitation [4], differing

in model complexity and type of employed controller, with

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

x

Goal
sin(3x)

Figure 2: Mountain Car.

the latter two models being built-in Matlab/Simulink models.

All models and SMC source code are available at [1].

For each set of considered parameters and properties of

interest, we executed SMC Algorithm 1 exactly 100 times;

note that the number of samples used in each algorithm

execution may vary, based on the model and the considered

property. From each of these 100 algorithm runs, the majority

vote on whether a property of interest is violated or satisfied

captures the final SMC result, while the ratio of those 100

runs that align with the final SMC result is regarded as the

accuracy (thus, the accuracy cannot go below 50%). For each

case study, we report the accuracy (Acc.), average number

of samples (Sam.) used in the SMC analysis, average SMC

execution time (Time), and SMC results (Ans.); all these are

reported for SMC with different significance levels α .

4.1 Mountain Car
As illustrated in Figure 2, the dynamics of a mountain car is

Ûx = v, Ûv = Fu/m −mд cos(3x) − Bf v

where F = 0.2, m = 0.2, д = 9.81, Bf = 0.5 denote the time

step, force, mass, standard gravity, and friction factor, respec-

tively. In addition, x(t) and v(t) are position and velocity of

the car at time t step, andu(t) is the controller input. To meet

the constraints at the beginning of simulation, the initial po-

sition and velocity were chosen from a normal distribution

with mean parameters µx = 0, and µv = 0 and standard

deviation parameters σx = 0.1 and σv = 0.05. Furthermore,

the car’s position, velocity, and input are constrained within

[−1.2, 0.6], [−1, 1], and [−1, 1], respectively.
We trained a controller using an actor-critic learning [14].

The actor’s DNN structure contains two fully connected

layers; the first has 25 neurons, and the ReLU activation

function, and the second one consists of 15 neurons and

tanh activation function. During learning, the employed con-

trol action reward was −0.1u(t)2, penalizing larger control
inputs to avoid a ‘bang-bang’ strategy. The reward on the
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system states was −0.03E2, where E = 0.6 − x(t). Further-
more, a reward of 100 was added when the car reached its

goal, and the total reward was the summation of the afore-

mentioned rewards. Finally, we set the maximal simulation

time to 10 seconds; if the car reaches the top before that, the

simulation stops.

We considered the property that the car reaches the top of

the right mountain (x = 0.6 at Fig. 2) within time δ , when the
car’s initial position and velocity are selected from Gauss-

ian distributionsNx (−0.3, 0.42
2) andNv (0, 0.46

2), subjecting

to the above constraints on the car’s position and velocity,

respectively; i.e.,

Pr
(
σ |= 3[0,δ ](x > 0.6)

)
> 1 − ε . (6)

To statistically verify (6), we used Algorithm 1 with parame-

ters ε ∈ {0.7, 0.4, 0.1} and δ ∈ {4, 7, 10}, under the desired
significance levels α ∈ {0.01, 0.05}; the obtained result are

summarized in Table 1. As can be observed, the desired con-

fidence level can be achieved with a relatively small number

of samples (at most a few hundred samples for each setup).

The estimated SMC accuracy complies with the desired sig-

nificance levels, except for a small deviation for the boldface

entry (which is caused by the fact that only 100 executions

of Algorithm 1 were used).

Finally, Figure 3 shows whether STL property 3[0,δ ](x >
0.6) is satisfied or violated (green/red dots) for different initial
states (x(0),v(0)) of the plant (i.e., car). The results show

that (6) is true if the horizon δ = 10 and false if δ = 7. This

means that the exact δ to make the satisfaction probability

be 0.9 is somewhere between [7, 10].

4.2 Bipedal Robot
The bipedal robot model [3] emulates human motions by a

complex dynamical system of 5-links connected by revolute

joints (2-links for each leg, and 1-link for the torso). As shown

in Fig. 4a, each of the two identical legs is composed of the hip

joint between the torso and thigh, knee joints between the

thigh and shank, ankle joint between shank and foot, and a

rigid body forms the torso. This joint structure has 5 Degrees

of Freedom (DOF) for each leg and 1 DOF for waist or torso.

The DOF for the waist is shared between legs. Also, the hip

joint has 2-DOF, which allows its motion in the sagittal and

the lateral plane. The employed (forward) kinematics for a

geometric configuration of the robot determines the position

and orientation of a foot with reference to the torso for the

known values of the joint variables of the kinematic chain.

To support the SMC analysis and allow us to randomly

reinitialize the initial state of the robot, we developed a sim-

plified robot model based on the model’s inverse kinematics

(IK); the model captures the values of the joint variables,

when the position and orientation of the feet are given. The

simplified model has 25 joint variables, whose values depend

-1 -0.5 0 0.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

[0, ]
(x>0.6)

[0, ]
(x>0.6)

Figure 3: Initial states of themountain car resulting in
satisfaction/violation of the property 3[0,δ ](x > 0.6).

δ 1 − ε α Acc. Sam. Time (s) Ans.

4 0.3 0.01 1.00 3.4e+01 3.8e-02 True

4 0.3 0.05 1.00 2.1e+01 4.2e-02 True

4 0.6 0.01 1.00 8.9e+00 8.4e-03 True

4 0.6 0.05 1.00 5.4e+00 4.6e-03 True

4 0.9 0.01 1.00 3.5e+00 2.7e-03 True

4 0.9 0.05 1.00 2.2e+00 1.7e-03 True

7 0.3 0.01 0.98 1.2e+02 1.5e-01 False

7 0.3 0.05 0.98 5.3e+01 6.8e-02 False

7 0.6 0.01 1.00 3.5e+01 4.4e-02 True

7 0.6 0.05 0.99 2.1e+01 2.6e-02 True

7 0.9 0.01 1.00 5.4e+00 5.6e-03 True

7 0.9 0.05 1.00 4.0e+00 4.3e-03 True

10 0.3 0.01 1.00 6.6e+00 6.5e-03 False

10 0.3 0.05 1.00 4.3e+00 3.8e-03 False

10 0.6 0.01 1.00 2.4e+01 2.7e-02 False

10 0.6 0.05 1.00 1.6e+01 1.8e-02 False

10 0.9 0.01 0.99 1.6e+02 2.0e-01 True

10 0.9 0.05 0.99 7.2e+01 8.8e-02 True

Table 1: SMC results for the mountain car case study –
the property of interest is captured by (6).

on different randomly sampled initial positions and orienta-

tions of the feet. Specifically, as the Simulink model captures

the 2D dynamics of the robot, the designed controller only

controls the sagittal movement of the robot. Therefore, the

initial state of the robot only contains the initial position and

velocity in x-direction, while the initial position and velocity

in y-direction are set to zero. Moreover, the heights of the

torso h is a constant value h = 22.66. Thus, the following
dynamics based on the Zero Moment Point (ZMP) and the
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Center of Mass (CoM) positions was used

Üx(t) =
д

h
(x(t) − px ), Üy(t) =

д

h
(y(t) − py ).

Furthermore, the robot’s IK was used to calculate the joint

space parameters – i.e., for each leg, it holds that

xf oot = l1 sin(θ1) + l2 sin(θ1 + θ2) (7)

yf oot = −l1 cos(θ1) − l2 cos(θ1 + θ2),

From (7), we find the hip pitch (θ1) and knee pitch (θ2). The an-
kle pitch (θ3) is obtained by θ3 = −(θ2+θ1). Finally, the initial
position and velocity for each legs are chosen from a nor-

mal distribution with mean parameters µxf oot = −0.05, and
µvf oot = −0.05 and standard deviation parameters σxf oot =
0.08 and σvf oot = 0.08. And the feet are symmetrically posi-

tioned for stability.

We verified safety of the actor-critic learning-based con-

troller from the Simulink Reinforcement Learning Toolbox [2].

This verification problem is beyond the capability of the

state-of-the-art verification tools (e.g., Verisig [10]), due to

the 400-neurons layers in the controlling neural network.

The actor and critic’s DNN structures are depicted in Figs. 4b

and 4c, respectively. The actor structure contains three layers

NN where the first and second layers are fully connected,

and each of them has 400 neurons employing the ReLU ac-

tivation function. On the other hand, the third layer is a

fully-connected layer with six neurons, and its activation

function is tanh. The critic is constructed by concatenating

two parallel layers – action layer, whose inputs are the con-

trol outputs, and observation layer, whose inputs are the

system states (i.e., plant outputs). The action space contains

6 torques (on the ankle, knee, and hip for each leg) within

[−3, 3] (N ·m). The action layer contains two fully connected

layers; the first one has 400 neurons employing the ReLU

activation function, and the second one has 300 neurons. The

concatenated layers are passed through a ReLU activation

function to generate the output.

The following conditions were used to capture the safe

properties of interest:

• η1 : The lateral movement is greater than a thresh-

old (|y | > 0.5),
• η2 : The robot has fallen (z < 0.1),
• η3 : The robot’s roll, pitch, or yaw are greater than a

threshold (|ϕ | > π
4
, |θ | > π

4
, |ψ | > π

4
).

Specifically, we considered whether the robot reaches the

desired goal position while the errors in angles and move-

ment direction stay less than the predefined thresholds; the

desired specification may be captured as

Pr
(
3[0,5](x > δ ) ∧□[0,5]

(
¬η1 ∧ ¬η2 ∧ ¬η3

) )
> 1 − ε . (8)

We statistically verified property (8) using Algorithm 1

with parameters ε ∈ {0.02, 0.12, 0.2} and δ ∈ {3.0, 2.4}, with

δ 1 − ε α Acc. Sam. Time (s) Ans.

2.4 0.02 0.01 1.00 7.4e+01 3.0e-01 False

2.4 0.02 0.05 0.99 4.4e+01 1.4e-01 False

2.4 0.12 0.01 1.00 4.2e+01 1.2e-01 True

2.4 0.12 0.05 1.00 2.1e+01 7.0e-02 True

2.4 0.20 0.01 1.00 1.3e+01 4.0e-02 True

2.4 0.20 0.05 1.00 6.7e+00 1.4e-02 True

3.0 0.02 0.01 1.00 1.1e+01 2.4e-02 False

3.0 0.02 0.05 1.00 6.5e+00 1.1e-02 False

3.0 0.12 0.01 1.00 1.4e+02 4.3e-01 False

3.0 0.12 0.05 0.98 7.0e+01 2.3e-01 False

3.0 0.20 0.01 1.00 1.6e+02 5.5e-01 True

3.0 0.20 0.05 0.98 1.0e+02 2.9e-01 True

Table 2: SMC results for the bipedal robot case study –
the property of interest is captured by (8).

the desired significance levels α ∈ {0.01, 0.05}; the obtained
results are summarized in Table 2. As can be seen, while the

robot satisfies the safety conditions, its walking distance is

greater than δ = 2.4 with probability 1 − ε = 0.12, but not
greater than δ = 3.0 with the same probability, showing that

the 0.12 percentile is between [2.4, 3.0].

4.3 Magnet Levitation
The Magnet Levitation Simulink model [4] captures the con-

trol of the magnet in a power transformer, with dynamics

Üy(t) = −д +
αi2(t)

My(t)
−
β

M
Ûy(t), (9)

Here, y(t) is the distance of the magnet above the electro-

magnet, i(t) is the current flowing in the electromagnet,M
is denoted the mass of the magnet, and д is the gravitational

constant. The parameter β is a viscous friction coefficient,

and α is a field strength constant.

The magnet (9) is controlled by the Nonlinear Auto Re-

gressive Moving Average (NARMA-L2) NN-controller shown

in Figure 5. The NN-controller has seven hidden layers,

with five nodes per layer, as well as three delayed plant

inputs and two delayed outputs. The activation functions

are all tansig functions. Moreover, the sampling interval is

0.01s . The training is carried out with 100 epochs with the

Levenberg-Marquardt back-propagation method, and the

maximum number of samples is set to 10000. Besides, the

system’s inputs are set within [0.5, 4].
The NARMA-L2 NN-controller is evaluated using the In-

tegral Absolute Error (IAE) of the magnet’s y-position for

random reference inputs. Formally, the desired specification

for the IAE is expressed as

Pr(□[0,5](IAE < δ )
)
> 1 − ε, (10)
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Figure 4: The bipedal robot case study – the number above each layer captures the number of neurons in the layer.
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Figure 5: NARMA-L2 controller for magnetic levita-
tion, with seven hidden layers, eachwith five neurons.

and the reference input of the NARMA-L2 NN-controller

(r (t) in Figure 5) is set to be a random step function whose

amplitude obeys the normal distribution with mean µy = 2

and standard deviation σy = 0.7, subjecting to the input

constraint [0.5, 4]. The specification (10) is statistically ver-

ified using Algorithm 1, with parameters ε ∈ {0.5, 0.3, 0.1}
and δ ∈ {1, 1.05, 1.1}, under the desired significance levels

α ∈ {0.01, 0.05}.
Summary of the obtained results is presented in Table 3.

As can be observed, within 5 seconds., the IAE index
1
for the

closed-loop system stays less than δ = 1.05 with probability

1−ε = 0.5, but not less than δ = 1.1with the same probability,

showing that the 0.5 percentile is between [1, 1.1].

5 CONCLUSIONS
In this work, we have shown feasibility of statistical verifi-

cation of learning-enabled CPSs for specifications captured

using Signal Temporal Logic (STL) formulas. We have ad-

dressed the inherent scalability problems of the conventional

methods based on the use of reachability analysis or SMT

solvers; this is achieved by implementing a Statistical Model

Checking (SMC) framework for Neural Networks (NN)-based

1
Since IAE is monotone, we checked the values at the end of simulations.

δ 1 − ε α Acc. Sam. Time (s) Ans.

1.00 0.50 0.01 1.00 1.6e+01 2.6e+00 True

1.00 0.50 0.05 1.00 1.1e+01 1.7e+00 True

1.00 0.70 0.01 1.00 6.6e+00 1.3e+00 True

1.00 0.70 0.05 1.00 4.9e+00 7.8e-01 True

1.00 0.90 0.01 1.00 3.6e+00 6.5e-01 True

1.00 0.90 0.05 1.00 2.5e+00 4.4e-01 True

1.05 0.50 0.01 1.00 3.6e+01 5.9e+00 True

1.05 0.50 0.05 0.99 1.9e+01 3.8e+00 True

1.05 0.70 0.01 1.00 9.7e+00 1.8e+00 True

1.05 0.70 0.05 1.00 6.3e+00 1.3e+00 True

1.05 0.90 0.01 1.00 4.6e+00 8.1e-01 True

1.05 0.90 0.05 1.00 3.1e+00 5.6e-01 True

1.10 0.50 0.01 1.00 3.3e+02 5.5e+01 False

1.10 0.50 0.05 0.92 1.2e+02 2.3e+01 False

1.10 0.70 0.01 1.00 5.6e+01 9.6e+00 True

1.10 0.70 0.05 0.99 2.9e+01 5.0e+00 True

1.10 0.90 0.01 1.00 8.9e+00 1.5e+00 True

1.10 0.90 0.05 1.00 6.6e+00 1.1e+00 True

Table 3: SMC results for the magnetic levitation study
– the property of interest is captured by (10).

CPS using Clopper-Pearson confidence levels. On three CPS

real-world benchmarks (mountain car, bipedal robot, and

magnetic levitation system) with varying levels of plant and

controller complexity, as well as different types of considered

STL properties, we showed that SMC methods can be used

to reason about learning-based CPS of realistic-size.
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