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Abstract— In this work, we synthesize collaboration protocols
for human-unmanned aerial vehicle (H-UAV) command and
control systems, where the human operator aids in securing the
UAV by intermittently performing geolocation tasks to confirm
its reported location. We first present a stochastic game-based
model for the system that accounts for both the operator and an
adversary capable of launching stealthy false-data injection at-
tacks, causing the UAV to deviate from its path. We also describe
a synthesis challenge due to the UAV’s hidden-information con-
straint. Next, we perform human experiments using a developed
RESCHU-SA testbed to recognize the geolocation strategies that
operators adopt. Furthermore, we deploy machine learning
techniques on the collected experimental data to predict the
correctness of a geolocation task at a given location based
on its geographical features. By representing the model as a
delayed-action game and formalizing the system objectives, we
utilize off-the-shelf model checkers to synthesize protocols for
the human-UAV coalition that satisfy these objectives. Finally,
we demonstrate the usefulness of the H-UAV protocol synthesis
through a case study where the protocols are experimentally
analyzed and further evaluated by human operators.

I. INTRODUCTION

Contrary to what the terminology may suggest, autono-
mous systems mostly involve human presence; from actively
engaging with the system to merely monitoring the system
status or intervening whenever necessary [1]. A typical
example is the human-unmanned aerial vehicle (H-UAV)
command and control system, where various deployed ap-
plications depend on having human operators responsible for
supervising a fleet of UAVs during a mission. The operator
performs various supervisory tasks including, for example,
updating mission goals, monitoring agent status, and adjust-
ing flight plans [2]. The operator can also be assigned pri-
mary tasks that are mission relevant, such as imagery tasks.

With the human presence, considering human factors be-
comes an essential part of the modeling and design of those
systems, for which several attempts have been introduced
in literature. The reliance on experimental data has been
proposed to model human-autonomy interactions in various
applications such as autonomous cars [3], [4], industrial [5],
[6] and social robotics [7]. Due to their ability to model reac-
tive systems, Markovian formalisms, e.g., markov decisions
processes (MDPs) and stochastic games, were exploited for
the theoretical exploration of human-robot interactions [8].

On the other hand, UAV navigational systems have been
recently proven to be vulnerable to cyber and physical
attacks, such as false-data injection attacks that target GPS
receivers [9], [10], raising security concerns in this domain.
A number of studies have focused on attack detection via
sensor redundancy (e.g., [11-14]). Yet a class of these attacks
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can remain stealthy by introducing non-aggressive and in-
cremental deviations [15-18]. Although humans are likely to
surpass autonomy in such situations of high uncertainty [19],
no research has addressed the human role in ensuring the
security of H-UAV systems; such as, whether we can improve
the overall security guarantees by harnessing the human
power of inductive reasoning and the ability to provide
context and additional information to the system in real-time.

In this paper, we focus on synthesis of protocols for H-
UAV systems where the operator can intermittently perform
geolocation tasks to aid in detection of possible attacks.
First, the system dynamics, operator geolocation task, and
the adversarial behavior are modeled using stochastic games.
By developing RESCHU-SA testbed, experiments were con-
ducted to understand operators strategies during geolocation
tasks. Next, we use machine learning to predict correctness
of a geolocation task at a given location. Note that in
security problems, the system (i.e., UAV) is not aware of
the information related to attacker’s actions, which presents a
significant synthesis challenge. Thus, we construct the model
as a delayed-action game, which allows for the use of off-the-
shelf tools (PRISM-games) to synthesize security-aware H-
UAV protocols; such protocols provide UAV path plans that
increase chances of attack detection. Moreover, the protocols
specify time instances at which the operator is advised to
perform a geolocation task, maximizing its correctness. The
formal synthesis of the advisory system guarantees a limit to
the workload level to avoid performance deterioration with-
out compromising the system security. Finally, we present a
case study where the synthesized protocols are analyzed and
subjectively evaluated by human operators.

The rest of this paper is organized as follows. Section
provides a background on stochastic games and H-UAV
control systems before formulating the problem statement.
Section [Tl presents the system modeling using stochastic and
delayed-action games, while Section [[V|describes the exper-
iments used to realize the model parameters. The protocol
synthesis framework is illustrated in Section [V} Section
provides a case study where the synthesized protocols are
analyzed and evaluated. Finally, Section concludes the
paper and provides a discussion and future directions.

II. BACKGROUND AND PROBLEM STATEMENT

We start with the related background on stochastic games
and strategy synthesis, followed by the problem statement.

A. Stochastic Games

Stochastic multiplayer games (SMGs) can model reactive
systems with both stochastic and nondeterministic transi-
tions, where the latter are resolved by more than one player.
Stochasticity arises when the system evolution cannot be pre-
cisely predicted, yet a probabilistic profile can be assumed.



Conversely, nondeterminism abstracts players’ decisions, ei-
ther to incorporate a family of behaviors or to reason about
a winning strategy. A turn-based game is played such that,
at each state, only one player at most can make decisions.
Turn-based SMGs have proven to be useful for modeling
reactive systems [20].

Definition 1 (Turn-Based SMGs). A turn-based SMG over
players T' = {LII,O} is a tuple G = (S, (S, Su, So),
A,¢,0), where S is a finite set of states, partitioned into
players’ and stochastic states Sy, Su and So; A is a finite
set of actions; ¢ € Dist(Sn) is an initial distribution over
Su; §:8 xS —[0,1] is a transition function s.t. (s, s’) €
{0,1}, Vs € SiUSnand s € S, and 6(s,s') € [0,1], Vs €
So and s' € Sy U Sy, where ), 5 0(s,s") =1 holds.

In contrast to SMGs where the game state is visible to all
players, in [21] we introduced delayed-action games (DAGs)
that partially obscure the game state from one player by
substituting the hidden information (i.e., the truth) regarding
some states with the player’s belief for these hidden states.

Definition 2 (Delayed Action Game). A delayed-action
game (DAG) is a tuple G = (G, V,T") where G is a turn-based
SMG over a set of game variables V = V3-UVg and players
I' = {L,LII, O}, such that S C Eval (V) x P(Eval (V1)) x .
In addition, V1 is the set of variables holding the true values
of the game, known to player 1; and V3 is the set of variables
holding player 11 beliefs about the values of the game.

In Definition @, for any variable var from a set V,
Eval (var) denotes the set of evaluations that assign values
to var. Also, for a set A, P(A) refers to the power set 24,

Intuitively, a player’s strategy is how she resolves non-
determinism throughout the game, while a profocol is a
set of strategies adopted by a coalition of players. The
synthesis problem seeks a winning strategy (protocol); that
is, it resolves choices for a player (coalition) such that some
objectives are satisfied. Synthesis objectives can be specified
using temporal logic such as ATL and rPATL [22].

B. Human-UAV Supervisory Systems

This work is motivated by H-UAV supervisory systems,
where the UAV is supervised by a human operator [1]. A
typical mission is for the UAVs to reach a number of targets
to perform imagery tasks. While an autonomous planner
automatically assigns UAVs to target locations, the operator
can override these assignments or the path plan if necessary.
Once a target is reached, the operator is notified to assist
with the imagery task by analyzing the live camera feed [2].

UAVs are prone to adversarial attacks, such as GPS spoof-
ing, that can drive the UAV away from its planned path [9],
[10], [23]. Several techniques have been proposed to aid
with detecting such attack by relying on redundant sensors
(e.g., [11-14]). Nevertheless, when a sufficient number of
sensors is compromised, a smart attacker can remain stealthy
by injecting non-aggressive and incremental deviations in
sensor measurements, which can still force the UAV into any
undesired state through the actions of controller [15-18].

On the other hand, a geolocation task ultimately aims at
localizing the UAV through side channel information. For
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Fig. 1. SMG-based model components: (a) UAV (Myay) and adversary

(Mdv), and (b) human geolocation (Myg)).

example, we showed that landmarks and other geo-features
from a UAV’s camera feed can be used to estimate the UAV’s
location in real time by a human-operator [24]. Thus, in this
work, we address the problem of synthesizing protocols for
the Human-UAV supervisory system that employs the human
operator for attack detection. The synthesized protocols shall
provide the UAV path plan, as well as the time instances at
which the operator shall be advised to perform a geolocation
task, while ensuring that a given set of performance objec-
tives (e.g., time, safety, workload) is satisfied.

III. SYSTEM MODELING

In this section, we describe a system model, before show-
ing how it can form a DAG used for the protocol synthesis.

A. SMG-Based Model

Due to the stealthy nature of cyber attacks considered
in this study, one should differentiate between the UAV
belief about its location, which may not be accurate, and
the ground fruth, which is assumed to be known to the
adversary. Fig. [I[(a) shows a standard UAV model M,y
(e.g., as in [25]) where the UAV movement is discretized
into action set A,y = {N,S, E, W, NE, NW, SE, SW}. Note
that the UAV’s actions affect its belief 5. Conversely, M4+
shows how the adversary’s stealthy actions are constrained
by the UAV movements, influencing the ground truth a7
to avoid detection, only slowly increasing deviations from
the planned trajectory can be achieved by the attacker; e.g.,
through GPS spoofing and actions of the low-level controller,
small errors are added to the desired commands in each step.
If, for example, the UAV is heading N, then the adversary
available actions are A,q,(N) = {NE,N,NW}. Note that
more aggressive attacks can be detected as in e.g., [11], [12].

As in Fig. the human geolocation model My,g can
initiate a geolocation task via the action start. The outcome
of the task, however, can be successful or not with proba-
bilities p(x7, ) and 1—p(z7, xp), respectively, depending
primarily on both x5 and z7|'|— detailed probability model-
ing is provided in Section [IV] While the presented model is a
standard SMG, since z7 is unknown to the UAV — and thus
s0 is p(z7, xp) — the model cannot be used to reason about
strategies. Moreover, if SMG semantics are used (i.e., the
truth is implicitly known to the UAV), a synthesized strategy
becomes a function of the adversarial specific actions —
which are unknown — thus, rendering the strategy useless.

'Other factors affecting p, such as operator skills and the current
workload, are not considered in this study. Also, the model assumes that
task repetition has no impact on p. See the discussion in Section
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Fig. 2. DAG-based model with the UAV (M yav); adversary (M ,q4+); hu-
man geolocation (My,g1); and DAG memory read (M rq), write (Mmwr).

B. DAG-Based Model

To overcome these challenges, a DAG variation of the
SMG model can be used (Fig. E]) The basic idea is that,
during a mission, the UAV is unaware of differences between
its belief and the ground truth until a geolocation task is
correctly done. Thus, although we model missions as the
players taking turns (SMG model), the same behavior can
be captured if the UAV makes its moves, updating only
the belief state, until a geolocation occurs; followed by the
adversary’s corresponding actions, updating the ground truth.
With such a DAG model, the UAV takes a number of
actions ahead of the adversary; that is, the adversary’s actions
are hidden from the UAV as they have not occurred yet
in the model. Since the UAV decisions are made without
knowing the adversary’s specific actions, a UAV synthesized
strategy becomes independent of those actions. Hence, the
DAG model provides a different representation of the system
without altering its behavior, as we show in [21], and thus can
be used to synthesize strategies for the original SMG model.
This mechanism is realized by the auxiliary components
Mipwr and M, q that model write and read operations,
respectively, on a FIFO memory stack (m;)?=) € A7, as
shown in Fig. By synchronizing with write, My
saves the last UAV action in memory location m;, executing
5% 5041, €40, ...,n—1}. Similarly, M,,.q synchronizes
with the action read to read the saved UAV action from
memory location 1, executing s; ~*% 5,1, € {0, ..., n1}.

The DAG is formed by composing both the model and
auxiliary components using the procedure summarized in
Algorithm [I| The composed DAG allows the UAV (M ay)
to play a finite number of actions before attempting a geolo-
cation task, updating its belief x5. Based on these actions,
the adversary (M,q4v) plays her delayed actions, updating
the ground truth z7. Hence, the probability of performing a
correct geolocation task is given by some function f(x7, zg)
— the realization of the function f(x7,xz5) is discussed
in Section If the geolocation task is unsuccessful, the
adversarial actions are discarded and the UAV can continue
to move or attempt another task. Otherwise, the UAV belief
is updated to match the ground truth, at which point the
game is repeated with a new starting location. In the rest

Algorithm 1: DAG construction procedure

Input: Initial SMG model: <o, Madv, Muav, Mhgl, Mmwr; Mmra

Result: G: DAG construct

while end criterion not met do

while ayayv # geolocation task do /* UAV turn */
Muay .z  effect (auav, ) UAV moves, updating belief
Mumwr.write(auav, ++wr) write action to memory

while wr < rd do /* ADV turn */
M pra.read(auav, ++rd) read UAV action from memory
Mgy + effect (B(auav)a -T'T)

8 if draw x ~ Brn(f(x7,xp)) then /* Stochastic turn */
9 Mauav.-xp — Maqy-x7 update belief to match truth

10 reset(wr, rd) reset memory

1 | else reset(rd) forget (hide) ADV actions

N

a w

of the paper, we will refer to each of these repetitions as a
subgame G;, where i is the subgame index, and to the set of
all subgames of interest as the supergame G. Intuitively, each
subgame explores the possible adversarial effect for each
UAV sequence of actions, while the supergame examines the
collective behavior of those subgames.

IV. HUMAN GEOLOCATION MODEL

As the presented DAG-based model is characterized by the
probabilities f(x,zg), in this section we present the exper-
imental platform and evaluations used to obtain this function.

A. Experimental Platform and Design

The aim of this experiment was twofold. First, we wanted
to validate the hypothesis that UAV operators can suc-
cessfully perform geolocation tasks. Second, we wanted to
understand what strategies the operators adopt to perform the
geolocation tasks and their relevant factors.

To test our hypothesis, we developed Security-Aware
RESCHU extension (RESCHU-SA)P| a virtual platform for
studying the security aspects of human-UAV supervisory sys-
tems prone to cyber attacks. Fig.[3|shows RESCHU-SA oper-
ator interface (OI) with the map area displaying flight plans,
target locations, and threat zones. While the map shows a
UAV’s reported location, which may be compromised, the
camera feed displays the live video stream from the selected
UAYV, from the UAV’s true location. Through the OI, the
operator can supervise a fleet of UAVs on a timed mission
where a number of target locations should be visited by the
UAVs, and a visual task should be completed by the operator
through the UAV camera feed once each location is reached.

Each experiment consisted of two missions with high and
low workloads. During each mission, a number of geoloca-
tion requests are randomly introduced, where the operator
can respond by activating the camera feed to perform a
geolocation task and further report whether the reported
location is correct (see the attached video). After the two mis-
sions are done, the operator is interviewed and a retrospective
verbal protocol analysis is performed to elicit more insights
on their behavior and decisions made during the experiment.

2Research Environment for Supervisory Control of Heterogeneous Un-
manned Vehicles (RESCHU) was originally developed to evaluate Human-
UV supervisory systems [26], [27]. The initial platform does not support
attack modeling or real-time video feed from any location from a map,
based on UAVs’ trajectories that the user can change during experiments.
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Fig. 4. Human geolocation strategies observed during the experiments.

A true positive (TP) refers to a geolocation task confirming discrepancies
while a GPS spoofing attack is active.

B. Human Geolocation Strategies

With 36 participants and a total of 641 geolocation at-
tempts, the results of this experiment are summarized in
Fig. ] due to space limitations, the full results can be found
in [28]. Participants were found to adopt 3 main strategies for
geolocationing: comparing road patterns (59.3%), observing
terrains (23.7%), and examining landmarks (17.0%). Note
that the road pattern-based strategy was used more than half
of the time, with the lowest error rate (15.0%) compared to
strategies based on terrains (20.4%) and landmarks (19.3%).

Since the results suggest that the operator’s ability to
compare the map with the camera feed depends heavily on
the discrepancies between the geographic features of both
scenes, capturing the map’s geographic information system
(GIS) in the model becomes critical to the synthesis problem.
To this end, we represent a GIS layer as a labeling function
that maps a location on the grid to a set of labels (i.e., atomic
propositions) capturing the features of interest for that loca-
tion. Table [[] lists the GIS layers relevant to the geolocation
strategies, as obtained from our experiments, while Fig. 3]
shows a 4-map example segments and their associated labels.

TABLE I
LIST OF THE GIS LAYERS AND THEIR SEMANTICS.
GIS Layer Labels Set Labeling Function
Terrains Ytr = {rural, urban, water, ...} Ly : Eval (z) — P(X¢r)
Roads 3,4 = {rect, star, dense, ...} Lyq : Eval (z) = P(Z,q)
Landmarks Sim = {building, tower, block, ...} Ly, : Eval () — P(2im)
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Fig. 5. An example of map segments and their associated GIS labels.

C. Human Geolocation Task (GT) Predictor

The abstract goal of a geolocation task is to determine
whether the UAV’s reported belief 25 = Zmap (see Fig.[I(D))
matches the ground truth x7 = z..n observed via the
camera feed{’| The operator’s ability to correctly perform
the task is affected by the GIS features of both x.., and
ZTmap- FOr instance, if Tcam = Tmap (i.€., they refer to the
same location), the presence of distinctive features is likely
to increase the chances of a correct decision. Conversely,
if Tcam 7 ZTmap, then the probability of a correct decision
relies heavily on the relative distinctiveness between both
locations. Thus, we define a GT predictor as follows.

Definition 3. GT predictor is a tuple K = (X, H, f) where &
is the set of GIS layers, H = {r; | r;: X*> 5 R,i=1,...,n}
is a set of n numerical measures of similarity between two
locations in X, and f: P(X)? x R — [0,1] is a prediction
function of the GT correctness.

Given two sets of labels and a tuple of numeric measures
of similarity between two given locations, the function f
predicts the correctness of a GT. In this case-study, we used
% = Uje{tr,rd,im}2j5 as a similarity measure we used the
maximum normalized 2D cross-correlation coefficient 7.4 €
[0, 1] between the road patterns of two locations- H = {r,.4}.

We derive the prediction function f (and hence K) using
machine learning-based techniques. Basically, a predictive
model is trained on a database of image pairs, where the
training inputs are the GIS labels and similarity measures
of each pair; the training output is the corresponding human
estimation of the similarity of each pair; and the model out-
come is f: P(X)2xR™ — [0,1]. A survey was administrated
to human participants to collect their opinion of how similar
two locations are. During the survey, each participant was
shown a total of 100 pairs of locations. For each pair, the par-
ticipant was asked to select their estimation on a scale from
1 (very similar) to 5 (very dissimilar), as shown in Fig. [6]
Next, labels from 3 were manually assigned to the selected
locations. The function f was realized using a bagged-trees
ensemble learner (RMSE = 0.635, RS = 0.650). Finally, for
two locations Team and Tp,,, we have thaﬂ

f (xcilm7 xmap)

T T =
f( cam) map) { 1— f (l'cam,mmap)
That is, the measure of correctness is the human tendency to

consider two images similar or dissimilar if they represent
the same or different locations, respectively.

Lcam = Lmap

otherwise.

31n this work, we only address the determination of whether two locations
are the same, rather than how the actual coordinates can be found.

“For notational simplicity, we employ f (Zcam,Zmap) to refer to
f (L (zcam) s L (map) » H (Zcam; Tmap)), Where L(z) is the suitable
layer-labeling function, capturing the GIS layers at location x (as in Table@.



1 Very Similar

2 Somewhat Similar

4 Somewhat Different

5 Very Different

Submit

Fig. 6. Survey interface where image similarity is rated on a 5-point scale.

V. PROTOCOL SYNTHESIS

A. Synthesis Objectives

The primary synthesis objective is to find protocols for the
H-UAV coalition based on the following requirements.

(a) Reach the target location. As one subgame may not
yield a feasible flight plan to directly reach the target,
checkpoints can be set as intermediate targets to render the
objective feasible. By assigning the label reach to the set
of states with acceptable checkpoint locations, the objective
can then be formalized as Pry,ax [F reach] > pmin for some
bound ppyin, and has to hold for all encountered subgames.

(b) Avoid hazard zones. To reach the target, the UAV must
avoid all known hazard zones, where the UAV is likely
to endure damage. If the corresponding states are as-
signed the label hazard, the objective can formalized as
Prmax [G ~hazard] > pmin for some bound pp,i,. We
assume here that encountering a hazard zone results in
losing the asset, hence the global operator. Consequently,
this objective has to hold for all encountered subgames.

These objectives are refined to elicit rPATL queries.
Specifically, for a subgame G;, the following query is used

Psyn (k) = ((nav))Prmax—r [~hazard US¥ (locate A reach)|

i.e., find a strategy that maximizes the probability of not
encountering a hazard until a checkpoint is reached (reach)
and a geolocation task is successful (locate) within a horizon
k.The procedure described in Algorithm [2] is then used to
solve the synthesis problem. Starting with the initial sub-
game, the procedure checks for each horizon whether ¢gyy,
is satisfied (hence a strategy exists) if the geolocation task
is performed at the last stage. These checks are terminated
when reaching the maximum search horizon or failing to
satisfy the objectivesﬂ Next, subgames are pruned to discard
strategies that fail to satisfy local bounds. The remaining
strategies are used to populate the set of end locations, where
each end-location represents an initial location to a reachable
subgame that needs to be explored. The procedure is repeated
for all subgames with initial state in the end locations set to
obtain a strategy 7; for each reachable subgame G;. Thus,
for a ¢ number of reachable subgames, the supergame is
reduced to an MDP G{™i}i=1 (whose states are the reachable
subgames) which is checked against the query

Gimitico. Gana(n) = {adv))Prmin=2 [an target]

STf no strategy exists for a stage 4, the same holds for all horizons of size
Jj >

Algorithm 2: Protocol synthesis procedure

Input: Initial location g, synthesis query ¢syn, max horizon hmax
Output: H-UAV protocols IT = {(muav, )}

1 X < {xo} initialize set of initial locations (subgames)

2 foreach unexplored initial location x; € X do

3 80 < (UAV, z;, €) set subgame initial state

4 stop <— L, h < 1 reset stopping flag and horizon

5 while & < hmax A —stop do

6 (Truav, @) < synth (G;’Oh s ¢syn) find a winning strategy
if Tuav exists then

8 IT + IT U (muav, Th, ) add to the protocol

9 X + X U reach (Tuav) update reachability set

10 h < h + 1 explore next horizon

1 else stop < T

2 | prune(II)

sk

(a) Mission setup.

(b) Synthesized protocols.

Fig. 7. The mission setup used for experimental evaluation and the
corresponding protocols. For clarity, the map colors are altered and the
protocols are partially displayed.

find the minimum probability of the UAV eventually reaching
the target within a maximum number of geolocation tasks n.

B. Synthesis Procedure

The protocol synthesis procedure is summarized in Algo-
rithm 2} Starting from the initial location xy and horizon
h = 1, the first subgame is constructed and explored. For
each horizon, the synthesizer searches for a corresponding
optimal strategy and set of reachable locations, until either
the maximum search horizon A, is reached or no feasible
strategy can be found. The same process is repeated using
unexplored locations in the reachability set. Note here that
the set IT can be pruned (e.g., by discarding strategies that
violates auxiliary requirements) to reduce computation time.

VI. EXPERIMENTAL RESULTS

Fig.[7(a)] shows the environment setup used for evaluation.
The map was discretized into a 10x 10 grid, where crossing
the map boundaries is penalized for both xp and x7. Also,
for the UAV to ever arrive to the designated target, the
adversary is prohibited from launching attacks for at least the
first horizon. The UAV mission is to reach the target without
encountering any of the hazard zones. The model shown in
Fig. 2] was implemented using the PRISM-games [22] model
checker on an Intel Core i7 4.0 GHz CPU with 16GB RAM.

From the synthesis procedure (Algorithm [2), the protocols
to complete the mission were obtained as shown in Fig. [7(b)]
For the first subgame, Fig. B(a)] shows how the horizon at
which the geolocation task is performed impacts the proba-
bility of correctness that can be guaranteed, regardless of the
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Fig. 8.  The analysis results for the synthesized protocol. Times and
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adversarial actions, while Fig. [8(b)| shows both the remaining
distance to target and the increase in traveled distance, rela-
tive to the shortest path. The trends show that, as time passes
without performing a geolocation task, the probability of its
correctness decreases, while the remaining distance mostly
decreases as the UAV approach the target. Interestingly, the
strategy where the geolocation task is scheduled at horizon
h = 6 provides a local minimum for the increase in traveled
distance while maintaining a probability of correctness close
to h = 7 and h = 8. This probability drops at h > 9 as
guaranteeing that the UAV never encounter a hazard zone
before the scheduled geolocation task becomes infeasible.

For the supergame, Fig. shows the impact of the ge-
olocation task budget on the probability of a successful mis-
sion. The graph conveys that more than 4 geolocation tasks
are required to guarantee a non-zero minimum probability
of reaching the target against the worst-case attack. Fig. [8(d)]
shows the total expected mission time given a budget for the
geolocation tasks, relative to the shortest-path time.

For subjective evaluation, an experiment was conducted
where a number of participants were shown triplets of images
(Ia, Iy, I.) as shown in Fig. Ekleft). In each triplet, I, depicts
a target location to which a shortest-path 7, and safest-path
. plans are generated, where I, and [, are the sets of
reachable locations if the UAV is under attack, respectively.
The two images I, and I. are randomly withdrawn such
that I, € I, \ I. and I. € 1.\ I},. Participants were asked
to indicate which image is less likely to be confused with
I, (and hence safer). Fig. [Qfright) shows that, while group
A selections indicated no significant difference, group B
indicated that locations from the safest-path plan are less
likely to be confused with locations from the shortest-path
plan. In retrospective interviews, group A explained that
they picked the upper right image most of the time as the
tight time constraints gave them no time to inspect the
lower right image, while group B found the time to be
adequate to inspect both. This may explain why I, and I.
had similar chances of being selected by group A since the
way they ordered was random. As these results highlight the
effect of individual imagery skills on the geolocation task,
further investigation will be done to thoroughly confirm this
observation.

The performance results obtained for this case study are
listed in Table @ Note that, for the same grid size, more
complex maps require more time for model checking, while
the state space size remains unaffected. Although the number

50% /. selected ||
40% =1, selected ||

30% == Indecisive ||
20% I I i
mml] |

Group A

10%
Group B

0%

Fig. 9.
ation, and (right) the evaluation results.

(left) An example of the image triplets used for subjective evalu-

TABLE I
PERFORMANCE RESULTS FOR USING QUERIES d)syn AND ¢ana-

Subgame ¢, Model Size Time (sec)

Map h States Transitions Choices Model Psyn Pana

10x10 3 948 1,196 1,112 2716  0.012 -
4 5,976 8,128 7,392 13.026  0.082 -
5 28,345 39,964 37,243 67.208  0.380 -
6 119,078 172,640 165,780 379.36  3.100 -
7 490,021 722,575 709,033 | 1549.176  10.739 -
8 2,165,888 3,228,811 3,203,108 | 5497.115 44.467 -

Supergame G 12,704 18,171 15,396 28.567 — 4.049

of states is O ((|Auav||Aaav|)™), the growth rate is typically
reduced by the presence of hazard zones as the game stops
branching at such states. Following the construction of the
subgames, exploring the supergame itself consumes signifi-
cantly less resources for model construction and analysis.

VII. DISCUSSION AND CONCLUSION

In this paper, we have presented an approach to synthesize
collaboration protocols for human-UAV command and con-
trol systems. The approach utilizes delayed-action games to
model the system such that the ground truth is hidden from
the UAV, rendering the model useful for synthesis using off-
the-shelf tools. As the geolocation task is used to confirm
the UAV location, the model includes a measure of geolo-
cation task correctness. Moreover, experimental results have
shown that the operators mostly adopted three geolocation
strategies. By extracting the GIS features relevant to these
strategies, machine learning techniques were deployed to
predict the aforementioned measure of correctness. Based on
the developed model and a formal representation of system
objectives, the DAG synthesis procedure uses PRISM-games
model checker to synthesize and analyze the collaboration
protocols. Finally, experimental analyses and subjective feed-
back were used to evaluate the synthesized protocols.

Though DAGs exploit parallel computation to reduce
total processing time, the time to explore subgame horizons
exponentially grows. Nevertheless, the DAGs as a formalism
can benefit from approximate model checking techniques to
explore larger horizons and higher orders of map discretiza-
tion, where accuracy is traded-off with speed [29].

Another improvement to this study would be to consider
other factors affecting operator performance, such as per-
ceived workload, operator skill level, and proper quantifica-
tion of task correctness. Albeit challenging, this may open
the door for individualized protocol synthesis. When it comes
to advisory systems, however, one must carefully examine
factors affecting human trust in autonomy — a quality that,
if absent, may render collaborative protocols ineffective.
Hence, reinforcing trust through explanatory communication
of those protocols is an avenue for future work.



[1]

[3

[t}

[4]

[5]

[8

[t}

[9]

(10]

[11]

[12]

[13]

REFERENCES

M. L. Cummings, S. Bruni, S. Mercier, and P. Mitchell, “Automation
architecture for single operator, multiple uav command and control,”
Massachusetts Inst Of Tech Cambridge, Tech. Rep., 2007.

C. E. Nehme, J. W. Crandall, and M. L. Cummings, “An operator
function taxonomy for unmanned aerial vehicle missions,” in 12th in-
ternational command and control research and technology symposium,
2007.

D. Sadigh, K. Driggs-Campbell, A. Puggelli, W. Li, V. Shia, R. Ba-
jesy, A. L. Sangiovanni-Vincentelli, S. S. Sastry, and S. A. Seshia,
“Data-driven probabilistic modeling and verification of human driver
behavior,” in Formal Verification and Modeling in Human-Machine
Systems: Papers from the AAAI Spring Symposium, 2014.

W. Li, D. Sadigh, S. S. Sastry, and S. A. Seshia, “Synthesis for human-
in-the-loop control systems,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2014, pp. 470-484.

C. Pérez-D’Arpino and J. A. Shah, “Fast target prediction of human
reaching motion for cooperative human-robot manipulation tasks using
time series classification,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on. 1EEE, 2015, pp. 6175-6182.

V. V. Unhelkar, P. A. Lasota, Q. Tyroller, R.-D. Buhai, L. Marceau,
B. Deml, and J. A. Shah, “Human-aware robotic assistant for collab-
orative assembly: Integrating human motion prediction with planning
in time,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
2394-2401, 2018.

H. Admoni and B. Scassellati, “Data-driven model of nonverbal be-
havior for socially assistive human-robot interactions,” in Proceedings
of the 16th international conference on multimodal interaction. ACM,
2014, pp. 196-199.

L. Feng, C. Wiltsche, L. Humphrey, and U. Topcu, “Synthesis of
human-in-the-loop control protocols for autonomous systems,” IEEE
Transactions on Automation Science and Engineering, vol. 13, no. 2,
pp. 450-462, 2016.

T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon,
and P. M. Kintner, “Assessing the spoofing threat: Development
of a portable gps civilian spoofer,” in Radionavigation Laboratory
Conference Proceedings, 2008.

A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal
of Field Robotics, vol. 31, no. 4, pp. 617-636, 2014.

M. Pajic, I. Lee, and G. J. Pappas, “Attack-resilient state estimation for
noisy dynamical systems,” IEEE Transactions on Control of Network
Systems, vol. 4, no. 1, pp. 82-92, March 2017.

M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and
I. Lee, “Design and implementation of attack-resilient cyberphysical
systems: With a focus on attack-resilient state estimators,” IEEE
Control Systems, vol. 37, no. 2, pp. 66-81, April 2017.

R. Ivanov, M. Pajic, and I. Lee, “Attack-resilient sensor fusion
for safety-critical cyber-physical systems,” ACM Transactions on

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Embedded Computing Systems, vol. 15, no. 1, pp. 21:1-21:24, Feb.
2016. [Online]. Available: http://doi.acm.org/10.1145/2847418

J. Park, R. Ivanov, J. Weimer, M. Pajic, S. H. Son, and I. Lee, “Security
of cyber-physical systems in the presence of transient sensor faults,”
ACM Transactions on Cyber-Physical Systems, vol. 1, no. 3, pp. 15:1-
15:23, May 2017.

C. Kwon, W. Liu, and I. Hwang, “Analysis and design of stealthy
cyber attacks on unmanned aerial systems,” Journal of Aerospace
Information Systems, vol. 11, no. 8, pp. 525-539, 2014. [Online].
Available: https://doi.org/10.2514/1.1010201

Y. Mo and B. Sinopoli, “False data injection attacks in control
systems,” in First Workshop on Secure Control Systems, 2010.

Y. Mo, R. Chabukswar, and B. Sinopoli, “Detecting integrity attacks
on scada systems,” Control Systems Technology, IEEE Transactions
on, vol. 22, no. 4, pp. 1396-1407, 2014.

I. Jovanov and M. Pajic, “Relaxing integrity requirements for resilient
control systems,” CoRR, vol. abs/1707.02950, 2017. [Online].
Available: https://arxiv.org/abs/1707.02950

M. L. Cummings, “Man versus machine or man+ machine?” IEEE
Intelligent Systems, vol. 29, no. 5, pp. 62-69, 2014.

T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis,
“Automatic verification of competitive stochastic systems,” Formal
Methods in System Design, vol. 43, no. 1, pp. 61-92, 2013.

M. Elfar, Y. Wang, and M. Pajic, “Security-aware synthesis using
delayed-action games,” Duke University, Tech. Rep., 2019. [Online].
Available: https://cpsl.pratt.duke.edu/files/images/elfar2019dag.pdf

T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis,
“Prism-games: A model checker for stochastic multi-player games,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2013, pp. 185-191.

C. Kwon, S. Yantek, and I. Hwang, “Real-time safety assessment of
unmanned aircraft systems against stealthy cyber attacks,” Journal of
Aerospace Information Systems, vol. 13, no. 1, pp. 2745, 2015.

H. Zhu, M. Elfar, M. Pajic, Z. Wang, and M. L. Cummings, “Human
augmentation of uav cyber-attack detection,” in Human-Computer
Interaction International, 2018.

S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

C. E. Nehme, “Modeling human supervisory control in heterogeneous
unmanned vehicle systems,” Massachusetts Institute of Technology,
Tech. Rep., 2009.

B. Donmez, C. Nehme, and M. L. Cummings, “Modeling workload
impact in multiple unmanned vehicle supervisory control,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 40, no. 6, pp. 1180-1190, 2010.

H. Zhu, M. L. Cummings, M. Elfar, Z. Wang, and M. Pajic,
“Operator strategy model development in uav hacking detection,”
IEEE Transactions on Human-Machine Systems, 2018. [Online].
Available: https://cpsl.pratt.duke.edu/files/images/zhu2018operator.pdf
Y. Kantaros and M. M. Zavlanos, “Sampling-based optimal control
synthesis for multi-robot systems under global temporal tasks,” IEEE
Transactions on Automatic Control, 2018.


http://doi.acm.org/10.1145/2847418
https://doi.org/10.2514/1.I010201
https://arxiv.org/abs/1707.02950
https://cpsl.pratt.duke.edu/files/images/elfar2019dag.pdf
https://cpsl.pratt.duke.edu/files/images/zhu2018operator.pdf

	I Introduction
	II Background and Problem Statement
	II-A Stochastic Games
	II-B Human-UAV Supervisory Systems

	III System Modeling
	III-A SMG-Based Model
	III-B DAG-Based Model

	IV Human Geolocation Model
	IV-A Experimental Platform and Design
	IV-B Human Geolocation Strategies
	IV-C Human Geolocation Task (GT) Predictor

	V Protocol Synthesis
	V-A Synthesis Objectives
	V-B Synthesis Procedure

	VI Experimental Results
	VII Discussion and Conclusion
	References

