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Abstract— In this work, we synthesize collaboration protocols
for human-unmanned aerial vehicle (H-UAV) command and
control systems, where the human operator aids in securing the
UAV by intermittently performing geolocation tasks to confirm
its reported location. We first present a stochastic game-based
model for the system that accounts for both the operator and an
adversary capable of launching stealthy false-data injection at-
tacks, causing the UAV to deviate from its path. We also describe
a synthesis challenge due to the UAV’s hidden-information con-
straint. Next, we perform human experiments using a developed
RESCHU-SA testbed to recognize the geolocation strategies that
operators adopt. Furthermore, we deploy machine learning
techniques on the collected experimental data to predict the
correctness of a geolocation task at a given location based
on its geographical features. By representing the model as a
delayed-action game and formalizing the system objectives, we
utilize off-the-shelf model checkers to synthesize protocols for
the human-UAV coalition that satisfy these objectives. Finally,
we demonstrate the usefulness of the H-UAV protocol synthesis
through a case study where the protocols are experimentally
analyzed and further evaluated by human operators.

I. INTRODUCTION

Contrary to what the terminology may suggest, autono-
mous systems mostly involve human presence; from actively
engaging with the system to merely monitoring the system
status or intervening whenever necessary [1]. A typical
example is the human-unmanned aerial vehicle (H-UAV)
command and control system, where various deployed ap-
plications depend on having human operators responsible for
supervising a fleet of UAVs during a mission. The operator
performs various supervisory tasks including, for example,
updating mission goals, monitoring agent status, and adjust-
ing flight plans [2]. The operator can also be assigned pri-
mary tasks that are mission relevant, such as imagery tasks.

With the human presence, considering human factors be-
comes an essential part of the modeling and design of those
systems, for which several attempts have been introduced
in literature. The reliance on experimental data has been
proposed to model human-autonomy interactions in various
applications such as autonomous cars [3], [4], industrial [5],
[6] and social robotics [7]. Due to their ability to model reac-
tive systems, Markovian formalisms, e.g., Markov Decisions
Processes (MDPs) and stochastic games, were exploited for
the theoretical exploration of human-robot interactions [8].

On the other hand, UAV navigational systems have been
recently proven to be vulnerable to cyber and physical
attacks, such as false-data injection attacks that target GPS
receivers [9], [10], raising security concerns in this domain.
A number of studies have focused on attack detection via
sensor redundancy (e.g., [11–17]). Yet a class of these attacks
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can remain stealthy by introducing non-aggressive and in-
cremental deviations [17–20]. Although humans are likely to
surpass autonomy in such situations of high uncertainty [21],
no research has addressed the human role in ensuring the
security of H-UAV systems; such as, whether we can improve
the overall security guarantees by harnessing the human
power of inductive reasoning and the ability to provide
context and additional information to the system in real-time.

Hence, in this paper, we focus on synthesis of protocols for
H-UAV systems where the operator can intermittently per-
form geolocation tasks to aid in detection of possible attacks.
First, the system dynamics, operator geolocation task, and
the adversarial behavior are modeled using stochastic games.
By developing RESCHU-SA testbed, experiments were con-
ducted to understand operator strategies during geolocation
tasks. Next, we use machine learning to predict correctness
of a geolocation task at a given location. Note that in
security problems, the system (i.e., UAV) is not aware of
the information related to attacker’s actions, which presents a
significant synthesis challenge. Thus, we construct the model
as a delayed-action game, which allows for the use of off-the-
shelf tools (PRISM-games) to synthesize security-aware H-
UAV protocols; such protocols provide UAV path plans that
increase chances of attack detection. Moreover, the protocols
specify time instances at which the operator is advised
to perform a geolocation task, maximizing its correctness.
The formal synthesis of the advisory system guarantees a
limit to the workload level, in order to avoid performance
deterioration without compromising system security. Finally,
we present a case study where the synthesized protocols are
analyzed and subjectively evaluated by human operators.

The rest of this paper is organized as follows. Section II
provides a background on stochastic games and H-UAV
control systems before formulating the problem statement.
Section III presents the system modeling using stochastic
and delayed-action games, while Section IV describes the
experiments used to obtain model parameters. The protocol
synthesis framework is provided in Section V. Section VI
presents a case study where the synthesized protocols are
analyzed and evaluated. Finally, Section VII concludes the
paper and provides avenues for future work.

II. BACKGROUND AND PROBLEM STATEMENT

We start with the related background on stochastic games
and strategy synthesis, followed by the problem statement.

A. Stochastic Games

Stochastic multiplayer games (SMGs) can model reactive
systems with both stochastic and nondeterministic transi-
tions, where the latter are resolved by more than one player.
Stochasticity arises when the system evolution cannot be pre-
cisely predicted, yet a probabilistic profile can be assumed.



Conversely, nondeterminism abstracts players’ decisions, ei-
ther to incorporate a family of behaviors or to reason about
a winning strategy. A turn-based game is played such that,
at each state, only one player at most can make decisions.
Turn-based SMGs have proven to be useful for modeling
reactive systems [22].

Definition 1 (Turn-Based SMGs). A turn-based SMG over
players Γ = {I, II,©} is a tuple G = 〈S, (SI, SII, S©),
A, ς, δ〉, where S is a finite set of states, partitioned into
players’ and stochastic states SI, SII and S©; A is a finite
set of actions; ς ∈ Dist(SII) is an initial distribution over
SII; δ : S × S → [0, 1] is a transition function s.t. δ(s, s′) ∈
{0, 1}, ∀s ∈ SI∪SII and s′ ∈ S, and δ(s, s′) ∈ [0, 1] , ∀s ∈
S© and s′ ∈ SI ∪ SII, where

∑
s′∈S δ(s, s

′) = 1 holds.

In contrast to SMGs where the game state is visible to all
players, in [23] we introduced delayed-action games (DAGs)
that partially obscure the game state from one player by
substituting the hidden information (i.e., the truth) regarding
some states with the player’s belief for these hidden states.

Definition 2 (Delayed Action Game). A delayed-action
game (DAG) is a tuple Ĝ = (G, V,Γ) where G is a turn-based
SMG over a set of game variables V = VT ∪VB and players
Γ = {I, II,©}, such that S ⊆ Eval (V )×P(Eval (VT ))×Γ.
In addition, VT is the set of variables holding the true values
of the game, known to player I; and VB is the set of variables
holding player II beliefs about the values of the game.

In Definition 2, for any variable var from a set V ,
Eval (var) denotes the set of evaluations that assign values
to var. Also, for a set A, P(A) refers to the power set 2A.

Intuitively, a player’s strategy is how she resolves non-
determinism throughout the game, while a protocol is a
set of strategies adopted by a coalition of players. The
synthesis problem seeks a winning strategy (protocol); that
is, it resolves choices for a player (coalition) such that some
objectives are satisfied. Synthesis objectives can be specified
using temporal logic such as ATL and rPATL [24].

B. Human-UAV Supervisory Systems

This work is motivated by H-UAV supervisory systems,
where the UAV is supervised by a human operator [1]. A
typical mission is for the UAVs to reach a number of targets
to perform imagery tasks. While an autonomous planner
automatically assigns UAVs to target locations, the operator
can override these assignments or the path plan if necessary.
Once a target is reached, the operator is notified to assist
with the imagery task by analyzing the live camera feed [2].

UAVs are prone to adversarial attacks, such as GPS spoof-
ing, that can drive the UAV away from its planned path [9],
[10], [25]. Several techniques have been proposed to aid
with detecting such attack by relying on redundant sensors
(e.g., [11–17]). Nevertheless, when a sufficient number of
sensors is compromised, a smart attacker can remain stealthy
by injecting non-aggressive and incremental deviations in
sensor measurements, which will still force the UAV into any
undesired state through the actions of controller [18–20].

On the other hand, a geolocation task ultimately aims at
localizing the UAV through side channel information. For
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Fig. 1. SMG-based model components: (a) UAV (Muav) and adversary
(Madv), and (b) human geolocation (Mhgl).

example, we showed that landmarks and other geo-features
from a UAV’s camera feed can be used to estimate the UAV’s
location in real time by a human-operator [26]. Thus, in
this work, we address the problem of synthesizing protocols
for the Human-UAV supervisory system that also employs
the human operator for attack detection. The synthesized
protocols shall provide the UAV path plan, as well as the time
instances at which the operator shall be advised to perform
a geolocation task, while ensuring that a given set of perfor-
mance objectives (e.g., time, safety, workload) is satisfied.

III. SYSTEM MODELING

In this section, we describe a system model, before show-
ing how it can form a DAG used for the protocol synthesis.

A. SMG-Based Model
Due to the stealthy nature of cyber attacks considered

in this study, one should differentiate between the UAV
belief about its location, which may not be accurate, and
the ground truth, which is assumed to be known to the
adversary. Fig. 1(a) shows a standard UAV model Muav

(e.g., as in [27]) where the UAV movement is discretized
into action set Auav = {N,S,E,W,NE,NW,SE,SW}. Note
that the UAV’s actions affect its belief xB. Conversely,Madv

shows how the adversary’s stealthy actions are constrained
by the UAV movements, influencing the ground truth xT
to avoid detection, only slowly increasing deviations from
the planned trajectory can be achieved by the attacker; e.g.,
through GPS spoofing and actions of the low-level controller,
small errors are added to the desired commands in each step.
If, for example, the UAV is heading N, then the adversary
available actions are Aadv(N) = {NE,N,NW}. Note that
more aggressive attacks can be detected as in e.g., [11], [12].

As in Fig. 1(b), the human geolocation model Mhgl can
initiate a geolocation task via the action start . The outcome
of the task, however, can be successful or not with proba-
bilities p(xT , xB) and 1−p(xT , xB), respectively, depending
primarily on both xB and xT 1 — detailed probability model-
ing is provided in Section IV. While the presented model is a
standard SMG, since xT is unknown to the UAV — and thus
so is p(xT , xB) — the model cannot be used to reason about
strategies. Moreover, if SMG semantics are used (i.e., the
truth is implicitly known to the UAV), a synthesized strategy
becomes a function of the adversarial specific actions —
which are unknown — thus, rendering the strategy useless.

1Other factors affecting p, such as operator skills and the current
workload, are not considered in this study. Also, the model assumes that
task repetition has no impact on p. See the discussion in Section VII.
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Fig. 2. DAG-based model with the UAV (Muav); adversary (Madv); hu-
man geolocation (Mhgl); and DAG memory read (Mmrd), write (Mmwr).

B. DAG-Based Model

To overcome these challenges, a DAG variation of the
SMG model can be used (Fig. 2). The basic idea is that,
during a mission, the UAV is unaware of differences between
its belief and the ground truth until a geolocation task is
correctly done. Thus, although we model missions as the
players taking turns (SMG model), the same behavior can
be captured if the UAV makes its moves, updating only
the belief state, until a geolocation occurs; followed by the
adversary’s corresponding actions, updating the ground truth.
With such a DAG model, the UAV takes a number of
actions ahead of the adversary; that is, the adversary’s actions
are hidden from the UAV as they have not occurred yet
in the model. Since the UAV decisions are made without
knowing the adversary’s specific actions, a UAV synthesized
strategy becomes independent of those actions. Hence, the
DAG model provides a different representation of the system
without altering its behavior, as we show in [23], and thus can
be used to synthesize strategies for the original SMG model.
This mechanism is realized by the auxiliary components
Mmwr and Mmrd that model write and read operations,
respectively, on a FIFO memory stack (mi)

n−1
i=0 ∈ Anuav as

shown in Fig. 2(c). By synchronizing with write , Mmwr

saves the last UAV action in memory location mi, executing
si

write // si+1, i∈{0, ..., n−1}. Similarly, Mmrd synchronizes
with the action read to read the saved UAV action from
memory location mj , executing sj

read // sj+1, j∈{0, ..., n−1}.
The DAG is formed by composing both the model and

auxiliary components using the procedure summarized in
Algorithm 1. The composed DAG allows the UAV (Muav)
to play a finite number of actions before attempting a geolo-
cation task, updating its belief xB. Based on these actions,
the adversary (Madv) plays her delayed actions, updating
the ground truth xT . Hence, the probability of performing a
correct geolocation task is given by some function f(xT , xB)
— the realization of the function f(xT , xB) is discussed
in Section IV. If the geolocation task is unsuccessful, the
adversarial actions are discarded, and the UAV can continue
to move or attempt another task. Otherwise, the UAV belief
is updated to match the ground truth, at which point the
game is repeated with a new starting location. In the rest

Algorithm 1: DAG construction procedure
Input: Initial SMG model: ς̂0,Madv,Muav,Mhgl,Mmwr,Mmrd

Result: Ĝ: DAG construct
1 while end criterion not met do
2 while auav 6= geolocation task do /* UAV turn */
3 Muav.xB←effect (auav, xB) UAV moves, updating belief
4 Mmwr.write(auav,++wr) write action to memory

5 while wr 6 rd do /* ADV turn */
6 Mmrd.read(auav,++rd) read UAV action from memory
7 Madv.xT ← effect (β(auav), xT )

8 if draw x ∼ Brn(f(xT , xB)) then /* Stochastic turn */
9 Muav.xB ←Madv.xT update belief to match truth

10 reset(wr , rd) reset memory
11 else reset(rd) forget (hide) ADV actions

of the paper, we will refer to each of these repetitions as a
subgame Ĝi, where i is the subgame index, and to the set of
all subgames of interest as the supergame Ĝ. Intuitively, each
subgame explores the possible adversarial effect for each
UAV sequence of actions, while the supergame examines the
collective behavior of those subgames.

IV. HUMAN GEOLOCATION MODEL

As the presented DAG-based model is characterized by the
probabilities f(xT , xB), in this section we present the exper-
imental platform and evaluations used to obtain this function.

A. Experimental Platform and Design
The aim of this experiment was twofold. First, we wanted

to validate the hypothesis that UAV operators can suc-
cessfully perform geolocation tasks. Second, we wanted to
understand what strategies the operators adopt to perform the
geolocation tasks and their relevant factors.

To test our hypothesis, we developed Security-Aware
RESCHU extension (RESCHU-SA),2 a virtual platform for
studying the security aspects of human-UAV supervisory sys-
tems prone to cyber attacks. Fig. 3 shows RESCHU-SA oper-
ator interface (OI) with the map area displaying flight plans,
target locations, and threat zones. While the map shows a
UAV’s reported location, which may be compromised, the
camera feed displays the live video stream from the selected
UAV, from the UAV’s true location. Through the OI, the
operator can supervise a fleet of UAVs on a timed mission
where a number of target locations should be visited by the
UAVs, and a visual task should be completed by the operator
through the UAV camera feed once each location is reached.

Each experiment consisted of two missions with high and
low workloads. During each mission, a number of geoloca-
tion requests are randomly introduced, where the operator
can respond by activating the camera feed to perform a
geolocation task and further report whether the reported
location is correct.3 After the two missions are done, the
operator is interviewed and a retrospective verbal protocol
analysis is performed to elicit more insights on their behavior
and decisions made during the experiment.

2Research Environment for Supervisory Control of Heterogeneous Un-
manned Vehicles (RESCHU) was originally developed to evaluate Human-
UV supervisory systems [28], [29]. The initial platform does not support
attack modeling or real-time video feed from any location from a map,
based on UAVs’ trajectories that the user can change during experiments.

3See the attached video, also available at: https://cpsl.pratt.
duke.edu/research/security-aware-human-loop-cps.
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Fig. 3. RESCHU-SA operator interface (OI) elements. A UAV placement
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Fig. 4. Human geolocation strategies observed during the experiments.
A true positive (TP) refers to a geolocation task confirming discrepancies
while a GPS spoofing attack is active.

B. Human Geolocation Strategies

We performed experiments with 36 participants and a total
of 641 geolocation attempts; the results of this experiment
are summarized in Fig. 4 – due to space limitations, the full
results can be found in [30]. Participants were found to adopt
three main strategies for geolocationing: comparing road
patterns (59.3%), observing terrains (23.7%), and examining
landmarks (17.0%). Note that the road pattern-based strategy
was used more than half of the time, with the lowest error
rate (15.0%) compared to the strategies based on terrains
(20.4%) and landmarks (19.3%).

Since the results suggest that the operator’s ability to
compare the map with the camera feed depends heavily
on the discrepancies between the geographic features of
both scenes, capturing the map’s geographic information
system (GIS) in the model becomes critical to the synthesis
problem. To this end, we represent a GIS layer as a labeling
function that maps a location on the grid to a set of labels
(i.e., atomic propositions) capturing the features of interest
for that location. Table I lists the GIS layers relevant to
the geolocation strategies, as obtained from our experi-
ments, while Fig. 5 presents a 4-map example segments and
their associated labels.

TABLE I
LIST OF THE GIS LAYERS AND THEIR SEMANTICS.

GIS Layer Labels Set Labeling Function

Terrains Σtr = {rural , urban,water , . . .} Ltr : Eval (x)→ P(Σtr)
Roads Σrd = {rect , star , dense, . . .} Lrd : Eval (x)→ P(Σrd)
Landmarks Σlm = {building, tower , block , . . .} Llm : Eval (x)→ P(Σlm)
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Fig. 5. An example of map segments and their associated GIS labels.

C. Human Geolocation Task (GT) Predictor

The abstract goal of a geolocation task is to determine
whether the UAV’s reported belief xB = xmap (see Fig. 1(b))
matches the ground truth xT = xcam observed via the
camera feed.4 The operator’s ability to correctly perform
the task is affected by the GIS features of both xcam and
xmap. For instance, if xcam = xmap (i.e., they refer to the
same location), the presence of distinctive features is likely
to increase the chances of a correct decision. Conversely,
if xcam 6= xmap, then the probability of a correct decision
relies heavily on the relative distinctiveness between both
locations. Therefore, we define a GT predictor as follows.

Definition 3. GT predictor is a tuple K = (Σ,H, f) where Σ
is the set of GIS layers,H =

{
ri | ri : X2 → R, i = 1, ..., n

}
is a set of n numerical measures of similarity between two
locations in X , and f : P(Σ)2×Rn → [0, 1] is a prediction
function of the GT correctness.

Given two sets of labels and a tuple of numeric measures
of similarity between two given locations, the function f
predicts the correctness of a GT. In this case-study, we used
Σ = ∪j∈{tr,rd,lm}Σj ; as a similarity measure we used the
maximum normalized 2D cross-correlation coefficient rrd ∈
[0, 1] between the road patterns of two locations, H = {rrd}.

We derive the prediction function f (and hence K) using
machine learning-based techniques. Basically, a predictive
model is trained on a database of image pairs, where the
training inputs are the GIS labels and similarity measures
of each pair; the training output is the corresponding human
estimation of the similarity of each pair; and the model out-
come is f̂ : P(Σ)2×Rn → [0, 1]. A survey was administrated
to human participants to collect their opinion of how similar
two locations are. During the survey, each participant was
shown a total of 100 pairs of locations. For each pair, the par-
ticipant was asked to select their estimation on a scale from
1 (very similar) to 5 (very dissimilar), as shown in Fig. 6.
Next, labels from Σ were manually assigned to the selected
locations. The function f̂ was realized using a bagged-trees
ensemble learner (RMSE = 0.635, RS = 0.650).

Finally, for two locations xcam and xmap we have that5

f (xcam, xmap) =

{
f̂ (xcam, xmap) xcam = xmap

1− f̂ (xcam, xmap) otherwise.

That is, the measure of correctness is the human tendency to
consider two images similar or dissimilar if they represent
the same or different locations, respectively.

4In this work, as we focus on attack-detection, we only address the
determination of whether two locations are the same, rather than how the
actual coordinates can be found.

5For notational simplicity, we employ f (xcam, xmap) to refer to
f (L (xcam) , L (xmap) ,H (xcam, xmap)), where L(x) is the suitable
layer-labeling function, capturing the GIS layers at location x (as in Table I).



Fig. 6. Survey interface where image similarity is rated on a 5-point scale.

V. PROTOCOL SYNTHESIS

A. Synthesis Objectives
The primary synthesis objective is to find protocols for the

H-UAV coalition based on the following requirements.
(a) Reach the target location. As one subgame may not

yield a feasible flight plan to directly reach the target,
checkpoints can be set as intermediate targets to render the
objective feasible. By assigning the label reach to the set
of states with acceptable checkpoint locations, the objective
can then be formalized as Prmax [F reach] > pmin for some
bound pmin, and has to hold for all encountered subgames.

(b) Avoid hazard zones. To reach the target, the UAV must
avoid all known hazard zones, where the UAV is likely
to endure damage. If the corresponding states are as-
signed the label hazard , the objective can formalized as
Prmax [G ¬hazard ] > pmin for some bound pmin. We
assume here that encountering a hazard zone results in
losing the asset, hence the global operator. Consequently,
this objective has to hold for all encountered subgames.

These objectives are refined to elicit rPATL queries [24].
Specifically, for a subgame Ĝi, the following query is used
φsyn(k) := 〈〈uav〉〉Prmax=?

[
¬hazard U6k (locate ∧ reach)

]
,

i.e., find a strategy that maximizes the probability of not en-
countering a hazard until a checkpoint is reached (reach) and
a geolocation task is successful (locate) within a horizon k.

The procedure described in Algorithm 2 is then used to
solve the synthesis problem. Starting with the initial sub-
game, the procedure checks for each horizon whether φsyn
is satisfied (hence a strategy exists) if the geolocation task
is performed at the last stage. These checks are terminated
when reaching the maximum search horizon or failing to
satisfy the objectives.6 Next, subgames are pruned to discard
strategies that fail to satisfy local bounds. The remaining
strategies are used to populate the set of end locations, where
each end-location represents an initial location to a reachable
subgame that needs to be explored. The procedure is repeated
for all subgames with initial state in the end locations set to
obtain a strategy πi for each reachable subgame Ĝi. Thus,
for a q number of reachable subgames, the supergame is
reduced to an MDP Ĝ{πi}qi=1 (whose states are the reachable
subgames); the MDP is then checked against the query
Ĝ{πi}qi=0 : φana(n) := 〈〈adv〉〉Prmin=?

[
F6n target

]
to find the minimum probability of eventually reaching the
target within a maximum number of geolocation tasks n.

6If no strategy exists for a stage i, it holds for all stages of size j > i.

Algorithm 2: Protocol synthesis procedure
Input: Initial location x0, synthesis query φsyn, max horizon hmax

Output: H-UAV protocols Π = {(πuav, πh)}
1 X ← {x0} initialize set of initial locations (subgames)
2 foreach unexplored initial location xi ∈ X do
3 ŝ0 ← (UAV, xi, ε) set subgame initial state
4 stop ← ⊥, h← 1 reset stopping flag and horizon
5 while h 6 hmax ∧ ¬stop do
6 (πuav, ϕ)← synth

(
Ĝπh
ŝ0
, φsyn

)
find a winning strategy

7 if πuav exists then
8 Π← Π ∪ (πuav, πh, ϕ) add to the protocol
9 X ← X ∪ reach (πuav) update reachability set

10 h← h+ 1 explore next horizon
11 else stop ← >
12 prune (Π)

UAV

Target

Hazard

Hazard

(a) Mission setup.

Subgame initial location
Path plan
Geolocation task

Reachability set

(b) Synthesized protocols.

Fig. 7. The mission setup used for experimental evaluation and the
corresponding protocols. For clarity, the map colors are altered and the
protocols are partially displayed.

B. Synthesis Procedure
The protocol synthesis procedure is summarized in Algo-

rithm 2. Starting from the initial location x0 and horizon
h = 1, the first subgame is constructed and explored. For
each horizon, the synthesizer searches for a corresponding
optimal strategy and set of reachable locations, until either
the maximum search horizon hmax is reached or no feasible
strategy can be found. The same process is repeated using
unexplored locations in the reachability set. Note here that
the set Π can be pruned (e.g., by discarding strategies that
violates auxiliary requirements) to reduce computation time.

VI. EXPERIMENTAL RESULTS

Fig. 7(a) shows the environment setup used for evaluation.
The map was discretized into a 10×10 grid, where crossing
the map boundaries is penalized for both xB and xT . Also,
for the UAV to ever arrive to the designated target, the
adversary is prohibited from launching attacks for at least the
first horizon. The UAV mission is to reach the target without
encountering any of the hazard zones. The model shown in
Fig. 2 was implemented using the PRISM-games [24] model
checker on an Intel Core i7 4.0 GHz CPU with 16GB RAM.

From the synthesis procedure (Algorithm 2), the protocols
to complete the mission were obtained as shown in Fig. 7(b).
For the first subgame, Fig. 8(a) shows how the horizon at
which the geolocation task is performed impacts the proba-
bility of correctness that can be guaranteed, regardless of the
adversarial actions, while Fig. 8(b) shows both the remaining
distance to target and the increase in traveled distance, rela-
tive to the shortest path. The trends show that, as time passes



0 1 2 3 4 5 6 7 8 9

0.75

0.80

0.85

0.90

0.95

1.00

(a)
Geolocation
correctness

0 1 2 3 4 5 6 7 8 9

0.00

0.20

0.40

0.60

0.80

1.00

(b)

Geolocation horizon (h)

drem
dinc

0 1 2 3 4 5 6 7 8 9 10

0.00

0.20

0.40

0.60

0.80

1.00

(c)
φana
∆φana

0 1 2 3 4 5 6 7 8 9 10

0.00

0.40

0.80

1.20

1.60

2.00

(d)

Total number of GT (n)

maximum
mission time

Fig. 8. Analysis results for the synthesized protocol, where drem is the
remaining distance to target, and dinc is the increase in distance to target.
Times and distances are relative to those of the shortest path.

without performing a geolocation task, the probability of its
correctness decreases, while the remaining distance mostly
decreases as the UAV approach the target. Interestingly, the
strategy where the geolocation task is scheduled at horizon
h = 6 provides a local minimum for the increase in traveled
distance while maintaining a probability of correctness close
to h = 7 and h = 8. This probability drops at h > 9 as
guaranteeing that the UAV never encounter a hazard zone
before the scheduled geolocation task becomes infeasible.

For the supergame, Fig. 8(c) shows the impact of the ge-
olocation task budget on the probability of a successful mis-
sion. The graph conveys that more than 4 geolocation tasks
are required to guarantee a non-zero minimum probability
of reaching the target against the worst-case attack. Fig. 8(d)
shows the total expected mission time given a budget for the
geolocation tasks, relative to the shortest-path time.

For subjective evaluation, an experiment was conducted
where a number of participants were shown triplets of images
(Ia, Ib, Ic) as shown in Fig. 9(left). In each triplet, Ia depicts
a target location to which a shortest-path πb and safest-path
πc plans are generated, where Ib and Ic are the sets of
reachable locations if the UAV is under attack, respectively.
The two images Ib and Ic are randomly withdrawn such that
Ib ∈ Ib \ Ic and Ic ∈ Ic \ Ib, i.e., each image is exclusive to
the corresponding reachability set. Participants were asked
to indicate which image from (Ib, Ic) is less likely to be
confused with Ia (and hence safer). Fig. 9(right) shows that,
while group A selections indicated no significant difference,
group B indicated that locations reachable by the safest-path
plan are less likely to be mistaken with Ia. In retrospective
interviews, group A explained that they picked the upper
right image most of the time as the tight time constraints
gave them no time to inspect the lower right image, which
may explain why Ib and Ic had similar chances of being
selected since they were randomly ordered. On the contrary,
group B found the given time to be sufficient to inspect both
images. As these results highlight the effect of individual
imagery skills on the geolocation task, further investigation
may be needed to confirm this observation.

The performance results obtained for this case study are
listed in Table II. Note that, for the same grid size, more
complex maps require more time for model checking, while
the state space size remains unaffected. Although the number
of states is O

(
(|Auav||Aadv|)h

)
, the growth rate is typically

reduced by the presence of hazard zones as the game stops
branching at such states. Following the construction of the
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Fig. 9. (left) An example of the image triplets used for subjective evalu-
ation, and (right) the evaluation results.

TABLE II
PERFORMANCE RESULTS FOR USING QUERIES φsyn AND φana .

Subgame Ĝ0 Model Size Time (sec)
Map h States Transitions Choices Model φsyn φana

10×10 3 948 1,196 1,112 2.716 0.012 –
4 5,976 8,128 7,392 13.026 0.082 –
5 28,345 39,964 37,243 67.208 0.380 –
6 119,078 172,640 165,780 379.36 3.100 –
7 490,021 722,575 709,033 1549.176 10.739 –
8 2,165,888 3,228,811 3,203,108 5497.115 44.467 –

Supergame Ĝ 12,704 18,171 15,396 28.567 – 4.049

subgames, exploring the supergame itself consumes signifi-
cantly less resources for model construction and analysis.

VII. DISCUSSION AND CONCLUSION

In this paper, we have presented an approach to synthesize
collaboration protocols for human-UAV command and con-
trol systems. The approach utilizes delayed-action games to
model the system such that the ground truth is hidden from
the UAV, rendering the model useful for synthesis using off-
the-shelf tools. As the geolocation task is used to confirm
the UAV location, the model includes a measure of geolo-
cation task correctness. Moreover, experimental results have
shown that the operators mostly adopted three geolocation
strategies. By extracting the GIS features relevant to these
strategies, machine learning techniques were deployed to
predict the aforementioned measure of correctness. Based on
the developed model and a formal representation of system
objectives, the DAG synthesis procedure uses PRISM-games
model checker to synthesize and analyze the collaboration
protocols. Finally, experimental analyses and subjective feed-
back were used to evaluate the synthesized protocols.

Though DAGs exploit parallel computation to reduce
total processing time, the time to explore subgame horizons
exponentially grows. Nevertheless, the DAGs as a formalism
can benefit from approximate model checking techniques to
explore larger horizons and higher orders of map discretiza-
tion, where accuracy is traded-off with speed [31].

Another improvement to this study would be to consider
other factors affecting the operator’s performance, such as
perceived workload, operator skill level, map complexity, and
proper quantification of task correctness. Albeit challenging,
this may open the door for individualized protocol synthesis.
Moreover, available datasets for aerial images [32] can be
examined to study the proposed approach on a wider scale.
When it comes to advisory systems, however, one must
carefully examine factors affecting human trust in auton-
omy — a quality that, if absent, may render collaborative
protocols ineffective. Therefore, reinforcing trust through
explanatory communication of those protocols is an avenue
for future work.
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