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ABSTRACT
We consider a wireless networked control system with mul-
tiple loops closing over a shared wireless medium. To avoid
interferences a centralized scheduler decides which control
task accesses the channel at each time step, opportunisti-
cally based on the random wireless channel conditions that
systems experience. We formulate the problem of design-
ing channel-aware scheduling and transmit power allocation
mechanisms that guarantee Lyapunov-like performances for
all control tasks in expectation over the channel conditions,
while they also minimize the total power expenditures. Ex-
ploiting the zero duality gap, optimal variables are obtained
by solving at the dual domain either offline, or online based
on the observed random channel sequence. Simulations il-
lustrate the power savings of the opportunistic scheme.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Meth-
ods, and Search—Control theory, Scheduling; C.2.1 [Computer
Communication Networks]: Network Architecture and De-
sign—Wireless communication; G.1.6 [Numerical Analy-
sis]: Optimization—Stochastic programming

General Terms
Theory

1. INTRODUCTION
As the number of networked control systems (NCSs) ap-

plications increases in, e.g., smart building or industrial en-
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vironments, the available communication and computation
resources often need to be shared among different tasks. Ef-
ficient resource management in such setups is important to
meet desirable stability and control performance requirements.
In particular, when multiple control loops need to commu-
nicate over a shared medium or execute on a shared CPU,
scheduling access to the resource becomes instrumental.

To analyze and design such scheduling mechanisms, pre-
vious works have related the resource utilization to some
control performance metric or stability requirement, includ-
ing, e.g., linear quadratic costs [3,11], decrease rates ofLya-
punov functions [5, 10], reachability and observability re-
quirements [16], sampling rates, maximum allowed trans-
mission intervals and delays [2,17], or automata executions [15].
Resource utilization on the other hand is generally expressed
as the average resource time spent on each task – e.g., how
often a task accesses a communication medium [11], or the
ratio of execution time over each sampling period in a CPU [3].
The form of the proposed schedulers and the design method-
ologies vary depending on how this relationship between re-
source allocation and control requirement is expressed. The
problem of control/scheduling co-design has also been ex-
amined (e.g. [11, 16]), however this often results in a hard
combinatorial optimization problem [13].

In this paper we are interested in the problem of schedul-
ing control tasks over shared wireless communication medi-
ums. While the above scheduling mechanisms are designed
to meet control performance requirements, they lack aware-
ness on the physical layer aspects of the problem. The chan-
nel conditions on the shared wireless medium not only change
unpredictably over time but also differ among users. A channel-
aware scheduling mechanism has the potential to make com-
munication within the loop more efficient by, e.g., oppor-
tunistically scheduling control tasks under favorable channel
conditions, or equivalently preventing them from transmit-
ting under adverse conditions. Such opportunistic resource
allocation mechanisms have been developed in the context
of multi-user wireless communication networks [8, 12, 14],
where the objective is typically to maximize some user util-
ity measure, e.g., communication rate. Additionally these
mechanisms offer efficient utilization of the available com-



Plant/Control
System 1 · · ·

Plant/Control
System m

Access Point/
Channel-aware Scheduler

h1 hm

Shared
Wireless
Medium

Figure 1: Opportunistic scheduling of control tasks over
a shared wireless medium. Independent control systems
close the loop by transmitting over the shared medium to
a common receiver/access point. Each control systemi
experiences random channel conditionshi. A centralized
scheduler located at the access point observes the vector
of channel statesh and opportunistically decides which
system is scheduled to transmit and close the loop.

munication power resources.
A proliferation of opportunistic resource allocation into

wireless NCSs requires a suitable interface that would bridge
control performance requirements with the wireless physical
layer design aspects of the problem. In this paper we con-
sider a set of independent NCSs closing their loops by trans-
mitting over a shared wireless channel (see Fig. 1) and we ab-
stract their control performance requirements as desired de-
crease rates of given Lyapunov functions (Section 2). When
a system transmits, the probability of successful deliveryat
the receiver depends on the allocated transmit power as well
as the current channel conditions, following a model exam-
ined in our previous work [6, 7]. An opportunistic sched-
uler then allocates channel access among systems by observ-
ing the random channel conditions experienced by each of
them, and needs to guarantee the prescribed Lyapunov de-
crease rates of each systemin expectationover the possible
channel states.

Furthermore, we formulate the design of channel-aware
scheduling and transmit power allocation as a stochastic op-
timization problem in Section 2.1 where the objective is to
minimize the expected total power expenditures subject to
the expected Lyapunov decrease rate constraints. By ex-
ploiting the zero duality gap of the problem, in Section 3 we
present a subgradient algorithm that solves the dual problem
and we show how the optimal scheduling and power alloca-
tion can be derived from the dual optimal solution.

Implementing the subgradient algorithm on the other hand

is computationally demanding and requires knowledge of
the probability distribution of the channel states, which is
not available in most practical setups. Hence we develop a
stochastic subgradient algorithm in Section 4 which utilizes
the observed channel sequence during execution to solve the
dual problem online. Moreover we establish in Theorem 1
that if the scheduling and power allocation variables are se-
lected online according to the algorithm, the required Lya-
punov performance constraints are met in the limit in a strong
sense (almost surely). Finally, we present simulations of the
proposed design methodology in Section 5 and we observe a
significant reduction to the magnitude of80% in the power
consumption compared to non-channel-aware mechanisms
for a simple wireless NCS example. We conclude with a
discussion on our results in Section 6.

Notation: We denote the realm-dimensional non-negative
orthant withRm

+ , and the element-wise comparison with re-
spect to the orthant by≥, i.e.,x ≥ y if and only if x − y ∈
R

m
+ . The set ofn × n real symmetric positive semi-definite

(respectively definite) matrices is denoted bySn
+ (respec-

tively Sn
++), and with� the comparison with respect to the

coneSn
+. We denote them-dimensional probability simplex

by ∆m, i.e.,∆m = {α ≥ 0 :
∑

i αi ≤ 1}.

2. PROBLEM DESCRIPTION
Consider the wireless control architecture of Fig. 1 con-

sisting of m independent networked control systems. At
each timek, byxi,k ∈ R

ni we denote the state of the system
i (i = 1, 2, ...,m). To keep the framework general we as-
sume that different descriptions of the system evolution from
xi,k to xi,k+1 at timek are given depending on whether a
transmission occurs at timek or not. Let us indicate with
γi,k ∈ {0, 1} the event that such a transmission occurs at
time k for the subsystemi. For simplicity then we describe
the system evolution by a linear time invariant model,

xi,k+1 =

{

Ac,i xi,k + wi,k, if γi,k = 1
Ao,i xi,k + wi,k, if γi,k = 0

. (1)

At a successful transmission the system dynamics are de-
scribed by the matrixAc,i ∈ R

ni×ni , where ’c’ stands for
closed-loop, and otherwise byAo,i ∈ R

ni×ni , where ’o’
stands for open-loop. We assume thatAc,i is asymptotically
stable, implying that if systemi were to transmit at each slot
its respective state evolution is stable. The open loop ma-
trix Ao,i could be unstable. The additive termswi,k model
an independent identically distributed (i.i.d.) noise process
with mean zero and covarianceWi � 0. It is worth not-
ing that closed-loop dynamics for all of them controllers are
fixed (meaning that adequate controllers have been already
designed), and thus in this work we focus on designing the
wireless communication aspects of system.

Example 1.The above networked control system descrip-
tion models various control architectures. For example sup-



pose each closed loopi consists of a linear plant of the form

xi,k+1 = Aixi,k +Biui,k + wi,k, (2)

and a wireless sensor transmitting the plant state measure-
mentxi,k to a controller/actuator which provides inputui,k.
Let then the controller apply a linear feedbackui,k = Kixi,k

when a measurement is received, otherwise applyui,k = 0.
The resulting closed loop is of the form (1) withAc,i =
Ai +BiKi andAo,i = Ai. Dynamic controllers, e.g., using
some local plant state estimate when packets are dropped,
can also be expressed in form (1) by enlarging the state of
the overall closed loop system to contain both plant and con-
troller states.

We now describe the wireless communication system and
model how it determines the packet transmission indicators
γi,k. We describe the wireless channel conditions for a sys-
temi at timek by the channel fading coefficienthi,k that sys-
temi experiences if it transmits at timek. Due to propagation
effects the channel gainshi,k change unpredictably [9, Ch. 3]
and take values in a subsetH ⊆ R+ of the positive reals.
Channel stateshi,k for all systems1 ≤ i ≤ m are grouped in
a vectorhk ∈ Hm. We adopt a block fading model whereby
channel stateshk are modeled as random variables indepen-
dent across different time slotsk and identically distributed
according to some joint distributionφ onHm. They are also
independent of the plant process noisewi,k. We assume the
channel states are available before transmission – see Re-
mark 1 for a discussion on practical implementation. We
also make the following technical assumption on their joint
distribution to avoid degeneracies.

ASSUMPTION 1. The joint distributionφ of channel states
hk has a probability density function onHm.

If systemi transmits at timek a transmit power levelpi,k
taking values in0 ≤ pi,k ≤ pmax is selected. Then chan-
nel fading and transmit power affect the probability of suc-
cessful decoding of the transmitted packet at the receiver.In
particular given the forward error-correcting code (FEC) in
use, the probabilityq that a packet is successfully decoded
is a function of the received signal-to-noise ratio (SNR). The
SNR is proportional to the received power level expressed
by the producth p of the channel fading state and the allo-
cated transmit power. Overall we express the probability of
success by some given relationship of the formq(hi,k, pi,k)
(see, e.g., [7] for more details on this model). An illustra-
tion of this relationship is shown in Fig. 2. The following
assumption on the form of the functionq(hp) will be helpful
in the subsequent sections.

ASSUMPTION 2. The functionq(.) as a function of the
productr = h p for r ≥ 0 satisfies:

(a) q(0) = 0,

(b) q(r) is continuous, and strictly increasing whenq(r) >
0, i.e., for anyr′ > r it holds thatq(r′) > q(r),
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Figure 2: Complementary error function for practical
FEC codes. The probability of successful decodingq
for a FEC code is a sigmoid function of the received
SNR∼ h p.

(c) for anyµ ≥ 0 and for almost all valuesh ∈ H the set
argmin0≤p≤pmax

p− µq(h p) is a singleton.

Parts (a),(b) of this assumption state that the probabilityof
successful decodingq(h p) will be zero when the received
power levelh p is small, and it becomes positiveq(h p) > 0
and strictly increasing for larger values ofh p. Part (c) is
more stringent, stating essentially thatq(h p) cannot behave
linearly in p for a range of channel valuesh. As shown in
Fig. 2 for cases of practical interestq(h p) has a sigmoid
form and all the above requirements are expected to hold.

Apart from packet drops due to low received SNR, packet
collisions may occur if more than one of the control sys-
tems transmit at a given time slot over the shared wireless
medium. For this reason we are interested in designing a
mechanism to select which system will access the channel,
i.e., which system isscheduledto transmit. We allow for
a randomized selection, hence let us denote withαi,k the
probability of scheduling systemi at timek. The scheduling
variables satisfy

αi,k ≥ 0,

m
∑

i=1

αi,k ≤ 1, (3)

or in other wordsαk belongs in the probability simplex∆m.
Note that this implicitly models a centralized scheduling mech-
anism that by design avoids packet collisions since at most
one plant is scheduled to transmit.

To sum up, we can model transmission successγi,k given
scheduling variables, power allocation, and channel state, as
Bernoulli random variables with success probability

P[γi,k = 1
∣

∣hi,k, αi,k, pi,k] = αi,k q(hi,k, pi,k) (4)

This expression states that the probability that systemi suc-
cessfully transmits and closes the loop equals the probability
that i is scheduled to transmit, multiplied by the probability
that the message is correctly decoded. For compactness we
group scheduling decisions and power allocations of all sys-
temsi at timek into vectorsαk ∈ ∆m, andpk ∈ [0, pmax]

m

respectively.



Our goal is to design the wireless communication variables
of the system opportunistically, that is to select appropriate
scheduling and power allocation variables adapting to the
current wireless channel conditions described byhk. Over-
all we express the scheduling and power decisionsαk, pk
respectively as mappings of the form

A = {α : Hm 7→ ∆m}, P = {p : Hm 7→ [0, pmax]
m},

(5)
so thatαk = α(hk), pk = p(hk). Since channel stateshk

are independent over timek these mappings do not need to
change over time. Substituting the scheduling and power al-
location mappingsα(.), p(.) in our communication model
described by (4) the probability of successful transmission
for each systemi at any given slotk becomes

P(γi,k = 1) = Ehk

{

P[γi,k = 1
∣

∣hi,k, αi(hk), pi(hk)]
}

= Ehαi(h) q(hi, pi(h)). (6)

Here the expectation is with respect to the joint distribution
φ of the vector channel realizationhk which we assumed
to be identical for any timek, hence we dropped the index
k. Note also that the communication process modeled by
the sequence{γi,k, 1 ≤ i ≤ m, k ≥ 0} depends only on
variables related to the wireless communication counterpart
of the overall system, and is in particular independent of the
system statesxi,k.

Our primary goal in designing the communication vari-
ables of the system is to guarantee a level of closed loop
performance for each subsystem. To motivate a more for-
mal problem description we consider Lyapunov-like perfor-
mance requirements for the control systems. In particular
suppose quadratic Lyapunov functions of the formVi(x) =
xTPix, x ∈ R

ni , with Pi ∈ Sni

++, are given for each system
i. A Lyapunov-like requirement then states that these func-
tions should decrease at given ratesρi < 1 during the execu-
tion of each subsystemi. This evolution however is random
because of the stochastic nature of the overall wireless com-
munication/control system, i.e., due to process noise, ran-
dom channel states, randomized channel access, and packet
drops. To take these effects into account we require that at
any valuexi,k ∈ R

ni of system statei at timek the Lya-
punov functions at the next time step decrease at the desired
rateρi < 1 in expectation, that is

E
[

Vi(xi,k+1)
∣

∣xi,k

]

≤ ρiVi(xi,k) + Tr(PiWi). (7)

The expectation over the next system statexi,k+1 on the left
hand side accounts via (1) for the randomness introduced
by the process noisewi,k as well as the transmission suc-
cessγi,k. The effect of process noise appears on the right
hand side as the constant termTr(PiWi), while the trans-
mission success is expressed in (6) and depends on the ob-
served channel statehk as well as the communication deci-
sionsαk, pk. The intuition behind requirement (7) is that if

it holds on each timek it follows that

E
[

Vi(xi,N )
∣

∣xi,0

]

≤ ρNi Vi(xi,0)+
1− ρNi
1− ρi

Tr(PiWi) (8)

meaning that system states have second moments that decay
exponentially and in the limit remain bounded by the con-
stantTr(PiWi)/(1− ρi).

On the other hand, apart from control performance require-
ments an efficient communication design should make an ef-
ficient use of the available power resources at the devices.
The induced overall expected power consumption on each
slotk is given by

Ehk

m
∑

i=1

αi,k(hk)pi,k(hk), (9)

summing up the transmit power of each systemi if the sys-
tem is scheduled to transmit. The expectation here is with
respect to the joint channel distributionhk ∼ φ. The ap-
proach we take in designing scheduling and power allocation
(cf. (5)) that are control-performance aware (cf.(7)) and also
energy-efficient (cf. (9)) is through a stochastic optimization
framework that we present next.

Remark 1.The centralized channel-aware scheduler can
be implemented in a multiple access channel architecture as
shown in Fig. 1, where each control system transmits to a
common access point. For example each plant state is mea-
sured by a sensor, and all sensors transmit plant measure-
ments to a centralized controller responsible for providing
plant inputs at each plant. The channel conditions for each
system can be measured at the access point by pilot signals
sent from the sensors to the access point. Depending on the
measured channel states the access point decides which plant
is scheduled to close the loop.

2.1 Scheduling and power allocation as stochas-
tic optimization

We pose the problem of designing the scheduling and power
allocation mappingsα(.), p(.) as an optimization problem
where at each slot we minimize the total expected power
consumption (9) of the design while satisfying the Lyapunov
requirements (7), i.e.,

minimize
α∈A, p∈P

Ehk

m
∑

i=1

αi(hk)pi(hk) (10)

subject to E
[

Vi(xi,k+1)
∣

∣xi,k

]

≤ ρiVi(xi,k) + Tr(PiWi)

for all xi,k ∈ R
ni , i = 1, . . . ,m (11)

To make explicit how the functionsα(.), p(.) appear in the
constraints observe that by (1) we have

E
[

Vi(xi,k+1)
∣

∣xi,k

]

= P(γi,k = 1) xT
i,kA

T
c,iPiAc,ixi,k

+ P(γi,k = 0) xT
i,kA

T
o,iPiAo,ixi,k + Tr(PiWi), (12)

where we used the fact that the random variableγi,k is in-
dependent of the system statexi,k as it depends only on the



communication variables (cf. (4)-(6)). Plugging (12) at the
left hand side of the constraints in (10) we get

(1− P(γi = 1)) xT
i,kA

T
o,iPiAo,ixi,k

+ P(γi,k = 1) xT
i,kA

T
c,iPiAc,ixi,k ≤ ρi x

T
i,kPixi,k. (13)

The decision variable in this constraint is the scalarP(γi =
1) which depends onα(.), p(.) by (6). Note that we may
assume (13) holds whenP(γi = 1) = 1. This corresponds
to the ideal case that systemi closes the loop on each slot (cf.
(1)) and we have assumed thatAc,i is stable, so we may take
the matrixPi to satisfy the control requirementAT

c,iPiAc,i �
ρiPi in this case.

Moreover the left hand side of (13) is a linear function of
θ = P(γi,k = 1) at anyxi,k, hence if it holds for someθ0 it
holds for the whole intervalθ0 ≤ θ ≤ 1, as we assumed that
it also holds forθ = 1. Finally observe that (13) according
to problem (10) needs to hold at any value ofxi,k ∈ R

ni .
Combining these observations, constraint (13) can be equiv-
alently written asci ≤ P(γi = 1) where

ci = min{θ ≥ 0 : yT
[

θAT
c,iPiAc,i + (1− θ)AT

o,iPiAo,i

]

y

≤ ρi y
TPiy for all y ∈ R

ni} (14)

Computingci is a simple semidefinite optimization program
which can be easily solved using available convex optimiza-
tion software. The valueci represents the minimum required
probability of transmission for each systemi that guaran-
tees the desired Lyapunov decay rateρi. Alternatively it can
be thought of as a minimum required utilization factor of
the shared wireless channel, analogously to a utilization of a
shared CPU in, e.g., [3]. Intuitively, large value ofci implies
that systemi requires more resources, i.e., more frequent
channel access and possibly higher power expenditures.

To sum up, the Lyapunov constraints in problem (10) can
be simplified by the auxiliary problems (14) for eachi, so
that (10) equivalently becomes

minimize
α∈A, p∈P

Eh

m
∑

i=1

αi(h)pi(h) (15)

subject to ci ≤ Ehαi(h) q(hi, pi(h)), i = 1, . . . ,m
(16)

This is the optimal scheduling and power allocation prob-
lem that we examine in this paper. Before proceeding to
solve this problem let us make a final constraint qualifica-
tion assumption that is typical in optimization theory, i.e.,
that a strictly feasible point exists.

ASSUMPTION 3. There exist variablesα′ ∈ A andp′ ∈
P that satisfy the constraints of the optimization problem
(15) with strict inequality, i.e.,

ci < Ehα
′
i(h) q(hi, p

′
i(h)), i = 1, . . . ,m (17)

Since the problem (15) is feasible we denote the optimal
value withP and an optimal solution withα∗(.), p∗(.). Sim-
ilar optimization problems in the context of wireless com-
munication networks have been considered in [14] where it

is shown that they have zero duality gap. This fact will be
exploited in the following sections to solve the problem of
designing optimal scheduling and power allocation policies.

3. OPTIMAL SCHEDULING AND POWER
ALLOCATION

In this section we exploit the fact that the problem of de-
signing optimal channel-dependent scheduling and power al-
location variables has zero duality gap. In particular we solve
the problem in the dual domain using a subgradient method,
and once the optimal dual variables are obtained we describe
how the optimal variables of the original problem can be re-
covered.

First to derive the Lagrange dual problem of (15) consider
non-negative dual variablesµ ∈ R

m
+ corresponding to each

of them constraints of (15). The Lagrangian is written

L(α, p, µ) = Eh

m
∑

i=1

αi(h)pi(h)

+

m
∑

i=1

µi [ci − Ehαi(h) q(hi, pi(h))] , (18)

while the dual function is defined as

g(µ) = min
α∈A, p∈P

L(α, p, µ). (19)

For convenience let us also denote the set of pairs of func-
tionsα, p that minimize the Lagrangian atµ by

(A,P)(µ) = argmin
α∈A, p∈P

L(α, p, µ), (20)

whenever such solutions exist. In general this set might con-
tain multiple solutions. We will refer to any such solution
pair asα(µ), p(µ). We define then the Lagrange dual prob-
lem as follows.

D = maximize
µ∈R

m

+

g(µ). (21)

The standard Lagrange duality theory informs us that the
dual functiong(µ) is a lower bound on the optimal costP
of problem (15) for anyµ, so that the dual optimal value also
satisfiesD ≤ P (weak duality). The following proposition
however establishes a strong duality result (D = P ) for the
problem under consideration and provides a relationship be-
tween the optimal primal and dual variables.

PROPOSITION 1. Let Assumptions 1 and 3 hold. LetP
be the optimal value of the optimization problem (15) and
(α∗, p∗) be an optimal solution, and letD be the optimal
value of the dual problem (21) andµ∗ be an optimal solution.
Then

(a) P = D (strong duality)

(b) µ∗
i [ci − Ehα

∗
i (h) q(hi, p

∗
i (h))] = 0 for i = 1, . . . ,m

(complementary slackness)

(c) (α∗, p∗) ∈ (A,P)(µ∗)



PROOF. Statement (a) under assumptions 1 and 3 follows
immediately from [14, Theorem 1] where a similar optimiza-
tion setup is examined. The proof is omitted due to space
limitations.

To show (b) and (c) consider a primal optimal solution
(α∗, p∗). This gives an optimal valueP for problem (15).
It is also feasible, so the constraint slack given in the brack-
ets of part (b), which we will denote assi for compactness
within this proof, is non-positive. The Lagrangian then given
in (18) evaluates to

L(α∗, p∗, µ∗) = P +
∑

i

µ∗
i si ≤ P, (22)

where the last inequality follows becausesi ≤ 0 andµ∗
i ≥ 0.

On the other hand by definition of the dual functiong(µ)
in (19) atµ∗ we have that

L(α∗, p∗, µ∗) ≥ g(µ∗) = P (23)

where we used thatg(µ∗) = D = P by part (a) at the left
hand side of (23). Combining (22) and (23) we conclude that
all the included inequalities hold with equality. This means
that

∑

i µ
∗
i si = 0, which is part (b), and also thatα∗, p∗ are

Lagrangian optimizers atµ∗, which verifies (c).

Interestingly this proposition states that strong dualityholds
regardless of the form of functionq(h, p) appearing in the
constraints (note that we have not enforced Assumption 2
yet). More importantly, as we follow next, it suggests the
possibility of solving first the dual problem instead of the pri-
mal, find the optimal dual variablesµ∗, and via (c) attempt
to recover the optimal primal variablesα∗, p∗.

To maximize the dual functiong(µ) for the dual problem
(21) we employ a dual projected subgradient algorithm [1,
Ch. 8]. A subgradient directions(µ) ∈ R

m for the (concave)
functiong(µ)with respect toµ ∈ R

m
+ is a vector that satisfies

g(µ′)− g(µ) ≤ (µ′ − µ)T s(µ) for all µ′ ∈ R
m
+ . (24)

If we pick α(µ), p(µ) ∈ (A,P)(µ) by (20) then a subgradi-
ent s(µ) can be found as the constraint slack of the primal
problem (15) evaluated at these points,

si(µ) = ci − Ehαi(µ;h) q(hi, pi(µ;h)). (25)

To show this observe that for any otherµ′ in general we have
g(µ′) ≤ L(α(µ), p(µ), µ′). Subtracting from each side of
this inequality the termg(µ) = L(α(µ), p(µ), µ) and ex-
panding the terms of the Lagrangian as in (18) we get

g(µ′)−g(µ) ≤
m
∑

i=1

(µ′
i−µi)[ci−Ehαi(µ;h) q(hi, pi(µ;h))],

(26)
which is exactly the definition of the subgradient in (24). We
also note for future reference that for anyµ the subgradients
s(µ) are bounded because at the right hand side of (25) the
termci is bounded (cf.(14)) and the term in the expectation
corresponds to a probability (cf.(6)).

A projected dual subgradient ascent method to maximize
the concave dual functiong(µ) is described as follows:

1. At iterationt givenµ(t) compute primal optimizers of
the Lagrangian atµ(t)

p(.)(t), α(.)(t) ∈ (A,P)(µ(t)) (27)

2. Evaluate the subgradient vectors(µ(t)) by (25) and up-
date the dual variables by an ascent step

µ(t+ 1) = [µ(t) + ǫ(t)s(µ(t))]+ (28)

where[ ]+ denotes the projection on the non-negative
orthant andǫ(t) > 0 is the stepsize.

It is well established that the above algorithm converges to
an optimal solutionµ∗ for stepsizes that are square summable
but not summable, i.e.,

∞
∑

t=1

ǫ(t)2 < ∞,

∞
∑

t=1

ǫ(t) = ∞. (29)

In that case we have thatµ(t) → µ∗ andg(µ(t)) → g(µ∗) =
D = P . For a proof see, e.g., [1, Prop. 8.2.6].

In order to implement the subgradient algorithm above we
need an efficient way to compute primal Lagrange optimiz-
ers in (27) solving (20). Note that this problem also relates
to our capability of finding the optimal primal variables of
interestα∗, p∗ as we have shown in Proposition 1(c). Hence
we turn our focus to problem (20). A more convenient ex-
pression for the Lagrangian defined in (18) can be obtained
by rearranging terms to get

L(α, p, µ) = µT c+ Eh

m
∑

i=1

αi(h) [pi(h)− µiq(hi, pi(h))] .

(30)

This form provides a useful separation of the primal vari-
ables first across channel realizationsh, and second across
systemsi. We exploit this structure in the following lemma
to design primal Lagrangian optimizers.

LEMMA 1. Solutionsα(µ), p(µ) ∈ (A,P)(µ) of prob-
lem (20) for anyµ ∈ R

m
+ can be obtained at eachh ∈ Hm

as:

pi(µ;h) = pi(µi;hi) = argmin
0≤p≤pmax

p− µiq(hi, p), (31)

and

α(µ;h) = argmin
α∈∆m

m
∑

i=1

αi ξ(hi, µi), (32)

where

ξ(hi, µi) = min
0≤p≤pmax

p− µiq(hi, p). (33)

Moreover if Assumptions 1 and 2 hold, then for anyµ ∈ R
m
+

andα(µ), p(µ) ∈ (A,P)(µ) the vectors(µ) defined in (25)
has a unique value.



PROOF. See Appendix A.1

The first clause of the lemma provides through equations
(31) and (32) a method to obtain primal Lagrange optimizers
that can be used in step (25) of the subgradient algorithm.
Additionally an interesting separability result for the power
allocation across systemsi is revealed – see Remark 2.

The second clause of the lemma states that under Assump-
tions 1 and 2, for any dual variableµ ∈ R

m
+ the subgradient

vectors(µ) in (25), which is also the constraint slack of any
Lagrange optimizersα(µ), p(µ) of (15), is unique. Consider
then the case for the optimal dual variableµ∗. By Prop. 1(c)
the optimal primal variablesα∗, p∗ are Lagrange optimizers
at µ∗, and since they are feasible they have a non-positive
slacks(µ∗) ≤ 0. Hence by the above lemma we conclude
that all Lagrange optimizersα(µ∗), p(µ∗) at µ∗ have the
same non-positive slack, i.e., they are feasible for the primal
problem, and they also have the same objective value for the
primal problem asα∗, p∗, hence they are optimal too. This,
along with the subgradient algorithm to findµ∗, completes
the method for solving the optimal scheduling and power al-
location problem (15). We summarize these findings in the
following proposition.

PROPOSITION 2. Consider the optimization problem (15)
and its dual derived in (21) and let Assumptions 1, 2, 3 hold.
Then the iteratesµ(t) of the algorithm (27)-(28) with step-
sizes (29) converge to an optimal dual solutionµ∗, and opti-
mal primal solutionsα∗, p∗ can be obtained by solving (31)-
(33) at the pointµ∗.

Motivated by the presented offline methodology to solve
for the optimal scheduling and power allocation, in the next
section we develop an online algorithm to solve the same
problem by observing the sequence of channel realizations
during system execution.

Remark 2.The optimal scheduling and power allocation
mappingsα∗, p∗ according to Prop.2 can be obtained by solv-
ing (31)-(33) at the pointµ∗. In particular, givenµ∗ and
channel statesh the optimal power allocationp∗i (h) by (31)
depends only on the variablesµi, hi pertinent to systemi
and not on the whole vectorsµ∗ or h. Hence power alloca-
tion exhibits a completely decentralized structure, whichwe
have made explicit in (31) by denoting it aspi(µi;hi). Simi-
lar separability results are also known in the context of wire-
less communication networks [14]. Note however that the
optimal scheduling in (32) is centralized since it depends on
the whole vectorµ∗ and the channel realizationsh of all sys-
tems. Finally observe that the optimal scheduling is to select
the systemi with the minimum valueξ(hi, µ

∗
i ), i.e., schedul-

ing is in general deterministic given the channel observation
h. Randomization is introduced by the stochasticity of the
channel realization.

4. STOCHASTIC ONLINE SCHEDULING AND
POWER ALLOCATION

Implementing the subgradient algorithm presented in the
previous section to solve for the optimal scheduling and power
allocation is challenging in practice. In the primal step (27)
one needs to solve forα(h), p(h) for a continuum of vari-
ablesh ∈ Hm, while for the dual step in (28) one needs to
compute the subgradient directions(µ) in (25) by integrating
over the channel distributionφ. A practical implementation
would require drawing a sufficiently large number of sam-
ples fromφ and solving for primal variables at these sam-
ples to obtain an estimate of the actual subgradient direction.
This in turn is computationally intensive, does not scale for a
large number of systemsm, while also in most cases of prac-
tical interest the channel distribution is not available. These
drawbacks motivate us to develop anonlinealgorithm.

The algorithm we propose is a stochastic version of the
primal/dual steps (27), (28) of the subgradient method of
the previous section and does not rely on knowledge of the
channel distribution. It is instead based only on the observed
channel realizationhk at each step. The proposed algorithm
is summarized as follows.

1. At time slotk observe the channel realizationhk, and
given the variablesµk computeαk, pk as primal La-
grangian optimizers athk by (31)-(32), i.e.,

pi,k = pi(µi,k;hi,k), i = 1, . . . ,m,

αk = α(µk;hk) (34)

2. Compute the vector

si,k = ci − αi,k q(hi,k, pi,k), i = 1, . . . ,m, (35)

and update the variablesµk by

µk+1 = [µk + ǫksk]+. (36)

where[ ]+ denotes the projection on the non-negative
orthant andǫk > 0 is the stepsize.

To emphasize that this is an online algorithm we have ex-
plicitly indexed the variables withk corresponding to real
time slots. This algorithm gives a sequence of scheduling
and power variables{αk, pk, k ≥ 0} as well as (dual) vari-
ables{µk, k ≥ 0} which are random because they depend
on the random observed sequence of channel realizations
{hk, k ≥ 0}. The main difference compared to the sub-
gradient algorithm of the previous section is that it follows
random directionssk by (35) instead of the exact subgradient
directionss(µk) by (25). Comparing these two expressions
it is immediate that the expected value ofsk coincides with
the subgradients(µk), so it is reasonable to conjecture that
the online algorithm is expected to move towards the maxi-
mum of the dual function, as the subgradient method does.
The following proposition indeed establishes convergencein
a strong sense.

PROPOSITION 3. Consider the optimization problem (15)
and its dual derived in (21) and let Assumption 3 hold. Based



on a sequence{hk, k ≥ 0} of i.i.d. random variables with
distributionφ, let the algorithm described in steps (34)-(36)
be employed using stepsizes satisfying (29). Then almost
surely we have that

lim
k→∞

µk = µ∗, and lim
k→∞

g(µk) = D (37)

whereµ∗ is an optimal solution of the dual problem andD
is the optimal value of the dual problem.

PROOF. See Appendix A.2

The proposition states that the stochastic online algorithm
yields a random sequence of dual variablesµk that converge
to the optimal dual variablesµ∗ in a strong sense, i.e., al-
most surely for any sequence of channel realizations that is
observed. However the original problem of interest as ex-
pressed in (10) is that of selecting scheduling and power allo-
cation policies that satisfy the given Lyapunov performance
requirements (7). Hence the following Theorem character-
izes the performance of the control systems if the commu-
nication variables are selected online according to the pro-
posed algorithm.

THEOREM 1. Consider a shared wireless control archi-
tecture composed ofm systems described by (1), communi-
cation modeled by (4) depending on channel stateshk which
are i.i.d. with distributionφ, as well as on scheduling and
power allocation variablesαk, pk chosen according to the
algorithm described by steps (34)-(36). Also consider given
quadratic Lyapunov performance requirements (7) and let
Assumptions 1, 2, 3 hold. Then almost surely with respect
to the channel sequence{hk, k ≥ 0} for any ǫ > 0 there
exists a time slotK such that for anyk ≥ K the control
performances satisfy

E[Vi(xi,k+1)
∣

∣xi,k, h0, . . . , hk−1]

≤ (ρi + ǫ)Vi(xi,k) + Tr(PiWi), (38)

and the power consumption satisfies

E

[

m
∑

i=1

αi,kpi,k

∣

∣

∣

∣

∣

xi,k, h0, . . . , hk−1

]

≤ P + ǫ (39)

whereP is the optimal value of the optimization problem
(10).

PROOF. See Appendix A.3.

According to the theorem after a sufficiently large time
horizon the scheduling and power allocation variables ob-
tained online by the proposed stochastic algorithm reach the
optimal performance by (15). In particular the Lyapunov re-
quirements of all control systems are satisfied in the limit and
the optimal power expenditure is reached. Note however that
the theorem does not provide any guarantee on how fast the
solution converges to the optimal one. We discuss this issue
along with other limitations of the algorithm in Section 6. In
the following section we present simulations verifying our

theoretical results, and also indicating that the convergence
of the algorithm is relatively fast enough so that online con-
trol performance is not severely affected.

5. SIMULATIONS
In this section we illustrate the advantages of the proposed

opportunistic resource allocation methodology in wireless
NCSs. Recall that by solving the auxiliary problems (14),
control systems with vector states are equivalently converted
into scalar constraints in (15). Hence without loss of gener-
ality we examine scalar control systems.

Consider a heating system application controlling the tem-
perature in two independent rooms of a building. Assuming
the wireless NCS architecture of Fig. 1 withm = 2, wireless
sensors transmit the temperatures of each room to a central
location (access point) responsible for adjusting the heating
in the rooms. For simplicity suppose both systems have iden-
tical dynamics and are of the form (1) with statexi,k denot-
ing the difference between current and desired temperature
for room i. In particular suppose that when systemi trans-
mits (γi,k = 1), heating is activated for systemi and results
in stable dynamicsAc,i = 0.4 in (1). Otherwise ifγi,k = 0
the system is open loop unstable withAo,i = 1.1 in (1), e.g.,
because heating is deactivated.

For symmetry let also channel statesh1,k andh2,k be in-
dependent for each system, both having an exponential dis-
tribution with mean1. The functionq(h, p) is shown in
Fig. 2. For these scalar systems it suffices to consider Lya-
punov functionsVi(x) = x2. We require then that system 1
guarantees a high Lyapunov decreaseρ1 = 0.75 rate accord-
ing to (7), while system 2 only requiresρ2 = 0.90. In this
case system 1 has a higher transmission success requirement
c1 ≈ 0.44 by (14) compared toc2 ≈ 0.30 of system 2.

After solving problem (15) offline according to the subgra-
dient method of Section 3, the optimal channel-aware schedul-
ing and power allocation variables are depicted in Fig. 3 and
Fig. 4 respectively. As we observe in Fig. 3, System 1 which
requires higher transmission successc1 is scheduled to trans-
mit for most values of the observed channel pair(h1, h2).
System 2, which has a lower control requirement, is sched-
uled only if its channelh2 is sufficiently favorableand sys-
tem 1 experiences an adverse channelh1 – see Fig. 3. This
illustrates how the opportunistic scheduler exploits channel
conditions to select which system will close the loop to meet
the Lyapunov constraints. Also, as we will see next, when
both systems experience very adverse channels, scheduling
is irrelevant because the optimal transmit powers then are
zero (no transmission).

The optimal transmit power allocation is decentralized as
we noted in Remark 2, i.e.,pi only depends on the channel
hi systemi experiences, and thus we plot in Fig. 4 power
allocation for both systems on same axes. System 1, which
has a more demanding control constraint, requires in general
higher transmit power since it is scheduled to transmit even
under adverse channel states as we saw in Fig. 3. This is also
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Figure 3: Optimal channel-aware scheduling for the ex-
ample presented in simulations. System 1 has a harder
Lyapunov decrease rate requirement and is scheduled to
transmit for most observed channel statesh1, h2. System
2 is scheduled only if its channel conditionsh2 are much
more favorable that those of system 1. When both chan-
nels are very adverse systems select zero transmit powers
so scheduling is irrelevant.
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Figure 4: Optimal channel-aware power allocation for
the example presented in simulations. Under adverse
channel conditions systems do not transmit. The chan-
nel threshold for transmission for system 1 is lower than
that of system 2 because the former has a higher Lya-
punov decrease rate requirement. System 1 also requires
higher transmit power.

captured in the expected power consumptionEhαi(h) p
∗
i (hi)

of each system computed numerically as≈ 11.2mW for
system 1 and≈ 6.7mW for system 2.

To demonstrate the power savings of the opportunistic re-
source allocation we compare to a simple non-channel-aware
communication design. In particular suppose that when sys-
tems are scheduled to transmit they select a constant transmit
power equal to the valuepmax = 75mW resulting in a prob-
ability of successEhi

q(hi, pmax) ≈ 0.74. To guarantee the
Lyapunov requirementsci the scheduler must select constant
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Figure 6: Magnitude of the control system states‖x1,k‖,
‖x1,k‖ during the first steps of the online algorithm.

valuesα1 ≈ 0.6, α2 ≈ 0.4 leading to total power consump-
tion (α1+α2) pmax ≈ 75mW , significantly higher than the
total17.9mW of the opportunistic case. Hence in this exam-
ple the opportunistic resource allocation succeeded almost a
76% decrease in power consumption.

Then, for the same system parameters and Gaussian pro-
cess noisewi,k with standard deviation

√
Wi = 0.1, we im-

plement the stochastic online algorithm of Section 4 given
by (34)-(36). The evolution of the dual variablesµk during
the simulation is shown in Fig. 5. After some time (here
stepsk correspond to seconds) the dual iterates remain in
a small neighborhood around the optimalµ∗, which agrees
with the theoretical a.s. convergence of Prop. 3. Equiva-
lently the scheduling and power allocation decisions taken
online after a number of iterations are almost feasible for
the constraints of problem (15). The plant states of both
systems remain bounded during execution, as we show by
simulations in Fig. 6. The empirical average quadratic costs
1/N

∑N
k=1 Vi(xi,k) were respectively0.047 for system 1

and0.088 for system 2, matching closely the constant value
Tr(PiWi)/(1 − ρi) of the theoretical limit quadratic costs
by (8) which were0.04 and0.1 respectively.

6. DISCUSSION AND CONCLUSIONS
In this paper we present a framework for designing op-

portunistic channel-aware schedulers for NCSs closing their



loops over a shared wireless medium. We formulate the
scheduling and the transmit power design problem in a stochas-
tic optimization framework where the objective is to min-
imize the total expected power expenditures while guaran-
teeing that given Lyapunov functions for each of the control
systems exhibit a desired decrease rate. We presented an of-
fline optimization algorithm, as well as an online stochastic
algorithm utilizing the random observed channel sequence to
solve the problem.

While the proposed online algorithm guarantees almost
sure convergence to the optimal solution, it does not provide
a characterization of the convergence rate. This could poten-
tially introduce a long transient control system behavior be-
fore the desired performance is reached. Another drawback
is that the online algorithm uses decreasing step sizes, which
limits the ability to adapt to an environment where the chan-
nel distributions are not stationary but vary with time. These
issues will be the focus of future work. An altogether differ-
ent research direction is to include the measured plant sys-
tem states in the scheduling decisions, similarly to the power
management paradigm for a single control loop in [6,7].

APPENDIX

A. PROOFS OF STATEMENTS

A.1 Proof of Lemma 1
The variablesα, p minimizing the Lagrangian at the form

(30) for someµ ∈ R
m
+ solve

min
α∈A, p∈P

Eh

m
∑

i=1

αi(h) [pi(h)− µiq(hi, pi(h))] . (40)

Without loss of generality we can exchange the expecta-
tion and the minimization overα(.), p(.) in (40) to solve

min
α(h),p(h)

m
∑

i=1

αi(h) [pi(h)− µiq(hi, pi(h))] . (41)

This is valid because any pairα(.), p(.) that doesnot min-
imize the objective in (41) on a set of variablesh with φ-
positive measure must yield a strictly larger expected value
in the objective of (40). In other words, the minimizers of
(40) can only differ from the minimizers of (41) at a set of
valuesh with measure zero. Note then thatαi(h) ≥ 0 al-
ways so that (41) can be rearranged to

min
α(h)

m
∑

i=1

αi(h) min
pi(h)

pi(h)− µiq(hi, pi(h)). (42)

This corresponds exactly to solving (31), (32).
Now let us prove the second statement of the lemma. We

need to show that any pair(α(µ), p(µ)), which are functions
of h, solving (40) gives a unique evaluation ofs(µ), where
by (25)si(µ) involves integrating

αi(µ;h) q(hi, pi(µ;h)) (43)

with respect to distributionφ of h. Hence it suffices to show
that (43) is uniqueφ-a.s. We argued that (40) is a.s. equiva-
lent to (41), which is equivalent to (42). Note that in the spe-
cial case whereαi(µ;h) = 0 for somei the choicepi(µ;h)
does not matter insi(µ) since (43) equals zero.

Hence we only need to show that the minimizersα(µ;h),
p(µ;h) of (42) imply a.s. uniqueness of (43). By Assump-
tion 2(c) the minimizerp(µ;h) by (31) is a.s. unique so we
only examineα(µ;h) by (32). For any vectorh that has a
unique minimizerj = argmini ξ(hi, µi) it follows imme-
diately thatαj(µ;h) = 1 is the unique optimal. Thus we
are left to examine the case of multipleargmini ξ(hi, µi),
in which caseα(h) minimizing (32) is not unique, and show
that a.s. uniqueness of (43) is satisfied.

First, if for someh there are multipleargmini ξ(hi, µi)
satisfyingξ(hi, µi) = 0, by Assumption 2(c) almost surely
the minimizer in (33) is unique. Note also thatpi(µ;h) = 0
for all suchi must be a minimizer, because it gives an ob-
jective for problem (33) equal to0 − µiq(hi, 0) = 0 by
Assumption 2(a). Hencepi(µ;h) = 0 is almost surely the
unique minimizer and in that caseq(hi, pi(µ;h)) = 0, and
any choiceα(h) gives a unique value of (43), equal to 0.

Finally we argue that the event where more than one min-
imizers j, k ∈ argmini ξ(hi, µi) exist with ξ(hj , µj) =
ξ(hk, µk) < 0 has probability zero. To do so we make use
of the following fact.

Fact: If ξ(hi, µi) < 0, it must be that the argumentpi(µ;h)
by (31) of the minimization (33) satisfiesq(hi, pi(µ;h)) >
0. This is true because otherwise we would haveξ(hi, µi) ≥
0. Also by Assumption 2(b) whenq(.) > 0, it is strictly
increasing in its argument. Thus we have forh′

i > hi that

ξ(hi, µi) = pi(µ;h)− µiq(hi, pi(µ;h))

> pi(µ;h)− µiq(h
′
i, pi(µ;h)) ≥ ξ(h′

i, µi). (44)

This means that for a fixedµi, whenξ(hi, µi) is negative it
is strictly decreasing as the argumenthi increases.

By the fact above, whenξ(hj , µj) is negative it is strictly
decreasing in the argumenthj . Therefore for fixedµ the
event that{hj , hk : ξ(hj , µj) = ξ(hk, µk) < 0} defines
at most a (one dimensional) line on the setH2 of possible
values forhj , hk. By Assumption 1φ has a density onHm,
therefore it assigns zero measure on any lower-dimensional
subset ofHm. So the event of multiple equal and negative
ξ(hi, µi) has probability zero, and does not affect the a.s.
uniqueness of (43).

A.2 Proof of Proposition 3
The proof relies on a supermartingale convergence argu-

ment frequently used in stochastic optimization – see, e.g., [14].
First note that for anyk the vectorsk by (35) satisfies

g(µ′)− g(µk) ≤ (µ′ − µk)
T
E[sk

∣

∣µk] (45)

for all µ′ ∈ R
m
+ . To show this fact compare (34)-(35) with

(25) to conclude thatE[sk
∣

∣µk] = s(µk) becausehk is i.i.d
for everyk. Inequality (45) then follows directly from (24).



By Assumption 3 there exists a strictly feasible primal so-
lution α′(.), p′(.). Call P ′ the resulting objective value of
(15) and letǫ′ > 0 denote the constraint slack of (17), i.e.,
ci + ǫ′ ≤ Ehα

′
i(h) q(hi, p

′
i(h)). Then we may bound the

dual function (19) at any pointµ by

g(µ) ≤ L(α′, p′, µ) = P ′ +

m
∑

i=1

µi [ci − Ehα
′
i(h) q(hi, p

′
i(h))]

(46)

which by the assumption is upper bounded byP ′−∑m
i=1 µiǫ

′.
Rearranging terms, and sinceµ ≥ 0 it follows that for every
i, µi ≤ ∑m

j=1 µj ≤ (P ′ − g(µ))/ǫ′. In particular we find
that the optimal dual variables are finite,µ∗

i ≤ (P ′ −D)/ǫ′.
Since the optimal dual variables are finite, the distance

‖µk − µ∗‖ is a well-defined and bounded random variable
depending on the randomµk obtained by (36). The follow-
ing lemma examines how this distance evolves. Recall that
as we commented after (25) the subgradientss(µ) are always
bounded in our problem.

LEMMA 2. LetD be the optimal value of the dual prob-
lem (21),µ∗ be an optimal solution, andS be the bound on
the subgradient‖s(µ)‖ ≤ S for anyµ ∈ R

m
+ . Then at each

stepk of the update (36) we have

E[‖µk+1−µ∗‖2 |µk] ≤ ‖µk−µ∗‖2+ǫ2kS
2−2ǫk(D−g(µk))

(47)

PROOF. First use the expression forµk+1 in (36) to write

‖µk+1 − µ∗‖ = ‖[µk + ǫksk]+ − µ∗‖ ≤ ‖µk + ǫksk − µ∗‖,
(48)

where the last inequality holds because projecting on the
positive orthant can only decrease the distance from a point
µ∗ in the orthant. Taking expectation on both sides givenµk

and expanding the square norm of the right hand side, we get

E[‖µk+1 − µ∗‖2 |µk] ≤‖µk − µ∗‖2 + ǫ2kS
2

+ 2ǫk(µk − µ∗)TE[sk
∣

∣µk] (49)

where we bounded‖E[sk
∣

∣µk]‖2 < S2. The statement (47)
follows from (49) by applying inequality (45) with the sub-
stitutionµ′ = µ∗.

Our goal is to use (47) to show that‖µk+1 − µ∗‖2 → 0
almost surely. First note that at anyµk the dual function is
lower than the optimal value (cf. (21)), soD − g(µk) ≥ 0.
Hence (47) can be simplified to

E[‖µk+1 − µ∗‖2 |µk] ≤ ‖µk − µ∗‖2 + ǫ2kS
2. (50)

Then define the non-negative random variable

ak = ‖µk − µ∗‖2 +
∞
∑

ℓ=k

ǫ2l S
2, (51)

which depends on the sequence (filtration)Fk = {µ0, . . . , µk}.
Note thatak is bounded becauseµk generated by (36) is
bounded at everyk and also by assumption the stepsizes are

square summable. Henceak is integrable. By the relation
(50) it easily follows thatak satisfies

E[ak+1

∣

∣Fk] ≤ ak. (52)

Such a stochastic process, i.e., integrable, adapted toFk,
and satisfying (52) is called a supermartingale [4, Ch. 5].
Moreover, a non-negative supermartingale converges almost
surely to some limit random variable [4, Th. 5.2.9]. Observe
that the second summand

∑∞

ℓ=k ǫ
2
l S

2 of ak in (51) is deter-
ministic and converges to 0 because of square summability
of the stepsizes. Hence the random variable‖µk−µ∗‖2 con-
verges almost surely (to some random variable).

To arrive at a contradiction suppose the limit random ran-
dom variable is not identically zero, i.e., it takes positive val-
ues with nonzero probability. Equivalently there existδ > 0
andǫ > 0 such that with probabilityδ we have‖µk−µ∗‖ ≥ ǫ
for all sufficiently largek. This implies thatµk are bounded
away from the optimal, i.e., that for sufficiently largek we
haveD− g(µk) ≥ ǫ′ for someǫ′ > 0. Hence with probabil-
ity δ we have

∑∞

k=0 2ǫk(D − g(µk)) = +∞. This implies

E

∞
∑

k=0

2ǫk(D − g(µk)) = +∞, (53)

which however contradicts with (47). The reason is that if
we take expectation on both sides of (47) and iterate fork =
0, . . . , N we get

0 ≤ E‖µN+1 − µ∗‖2 ≤ ‖µ0 − µ∗‖2

+
N
∑

k=0

ǫ2kS
2 − E

∞
∑

k=0

2ǫk(D − g(µk)). (54)

The right hand side then needs to be positive, but (53) implies
that in the limit asN → ∞ the right hand side becomes
negative. Therefore it must happen that‖µk−µ∗‖ converges
to zero with probability 1.

By continuity of the (concave) dual functiong(µ) we also
have thatg(µk) converges to the optimalg(µ∗) = D a.s.

A.3 Proof of Theorem 1
First note that by imitating the steps leading from (10) to

(15), the statement of (38) becomes equivalent to

ci − Ehk
[αi,k q(hi,k, pi,k)

∣

∣µk] ≤ ǫ′, (55)

for some appropriate constantǫ′ > 0. To suppress nota-
tion we have exploited the fact that according to the online
algorithm the variablesαk, pk depend just on the value of
µk and not on the whole observed channel history. Also by
the expression ofsk given in (35) equation (55) is equiva-
lent toEhk

[sk
∣

∣µk] ≤ ǫ′. Then as we argued in the proof of
Prop. 3Ehk

[sk
∣

∣µk] = s(µk) wheres(µk) is given by (25).
To sum up, we have shown so far that (38) is equivalent to
s(µk) ≤ ǫ′.

Under Assumption 3 we have established in Proposition 3
that for the online algorithmµk → µ∗ almost surely with
respect to the channel sequence{hk, k ≥ 0}. Then we note



a convex analysis fact by [1, Prop. 4.2.3]. Ifg is concave,
andµk → µ∗, ands(µk) is selected as a subgradient ofg
at µk, then every limit point ofs(µk) is a subgradient of
g at µ∗. Hence for the sequence ofµk obtained by the on-
line algorithm we have that almost surely the sequences(µk)
converges to a subgradient ofg atµ∗.

Then under Assumptions 1, 2, 3 we can combine Prop.
1(c) with Lemma 1 to conclude that all subgradients atµ∗

satisfys(µ∗) ≤ 0 - a detailed argument was given preceding
Prop. 2. Hence for the sequence ofµk obtained by the on-
line algorithm we have that almost surelylim sup s(µk) ≤ 0.
This proves statement (38) via the equivalence we estab-
lished above betweens(µk) ≤ ǫ′ and (38).

Finally let us prove (39). Recall that the dual function
equalsg(µ) = L(α(µ), p(µ), µ) whereα(µ), p(µ) are La-
grange optimizers atµ according to (20). Using the defini-
tion of the Lagrangian at (18) and the interpretation of the
subgradients(µ) at (25) as the constraint slack, we have that
for anyµk

g(µk) = Eh

m
∑

i=1

αi(µk;h)pi(µk;h) + µT
k s(µk) (56)

Now observe that the expectation in (39) equals the expecta-
tion given in (56) because by step (34) the primal variables
are selected as Lagrange optimizers atµk. Therefore to show
that (39) holds a.s. it suffices to show that the expectation in
(56) converges a.s. toD, which equalsP by duality.

Proposition 3 establishes that the left hand side of (56) sat-
isfies g(µk) → D, and also thatµk → µ∗ a.s. We have
also already argued thats(µk) → s(µ∗) a.s. Therefore also
µT
k s(µk) → µ∗T s(µ∗) a.s. But by Prop. 1(b)µ∗T s(µ∗) = 0.

This completes the proof.
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