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ABSTRACT vironments, the available communication and computation

We consider a wireless networked control system with mul- F€S0urces often need to be shared among different tasks. Ef-
tiple loops closing over a shared wireless medium. To avoid fiCIENt resource management in such setups is important to

interferences a centralized scheduler decides whichaontr Meetdesirable stability and control performance requeets

task accesses the channel at each time step, opportunistil? Particular, when multiple control loops need to commu-
cally based on the random wireless channel conditions thatNicate over a shared medium or execute on a shared CPU,
systems experience. We formulate the problem of design_schedullng access to the resource becomes instrumental.
ing channel-aware scheduling and transmit power allogatio 10 @nalyze and design such scheduling mechanisms, pre-
mechanisms that guarantee Lyapunov-like performances for//0us Works have related the resource utilization to some
all control tasks in expectation over the channel condition Control performance metric or stability requirement, iret!
while they also minimize the total power expenditures. Ex- IN9: €.0-, linear quadratic cosis(|311], decrease rateganf
ploiting the zero duality gap, optimal variables are okgdin ~ PUNoVv functions|[5, 10], reachability and observability re

by solving at the dual domain either offline, or online based auirementsi[16], sampling rates, maximum allowed trans-
on the observed random channel sequence. Simulations il-Missionintervals and delays|[2]17], or automata execs{ibg].

lustrate the power savings of the opportunistic scheme. Resource utilization on the other hand is generally expabss
as the average resource time spent on each task — e.g., how
Categories and Subject Descriptors often a task accesses a communication mediurn [11], or the

ratio of execution time over each sampling period in a CRU [3]

1.2.8 [Artificial Intelligence ]: Problem Sol_ving, ControlMeth- the form of the proposed schedulers and the design method-
ods, and Search&ontrol tht.aory, Scheduling.2.1 [Computer  45ies vary depending on how this relationship between re-
Communication Networks]: Network Architecture and De- o rce allocation and control requirement is expressed. Th

sign—Wireless communicatiorG.1.6 Numerical Analy- problem of control/scheduling co-design has also been ex-
sig: Optimization—Stochastic programming amined (e.g.[[11,16]), however this often results in a hard
combinatorial optimization probler [13].

General Terms In this paper we are interested in the problem of schedul-

Theory ing control tasks over shared wireless communication medi-
ums. While the above scheduling mechanisms are designed

1. INTRODUCTION to meet control performance requirements, they lack aware-
As the number of networked control systems (NCSs) ap- N€SS 0n _the physical layer aspects of the problem. The chan-
plications increases in, e.g., smart building or indukgia nel conditions on the shared wireless medium not only change

. ” od | ¢ by NSE CNS.0931239. and b unpredictably over time but also differ among users. A cleknn
is work was supported in part by - , and by ; ; ; )
TerraSwarm, one of six centers of STARnet, a Semiconductor Re- 2Va'€ s_chedullln.g mechanism has thg potentlal to make com
search Corporation program sponsored by MARCO and DARPA. munication within the loop more efficient by, e.g., oppor-
tunistically scheduling control tasks under favorablercied
conditions, or equivalently preventing them from transmit
ting under adverse conditions. Such opportunistic resourc
Permission to make digital or hard copies of all or part of thiknfor allocat'.on mechamsms have b(.aen.developed in the context
personal or classroom use is granted without fee providatdbpies are of multi-user wireless communication networks[[8,/12, 14],
not made or distributed for profit or commercial advantage aatidbpies where the objective is typically to maximize some user util-
bear this notice and the full citation on the first page. Toyootherwise, to ity measure, e.g communication rate Additionally these

republish, to post on servers or to redistribute to listguies prior specific > L o .
permission and/or a fee. mechanisms offer efficient utilization of the available com
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C T T T T T C T T T T T is computationally demanding and requires knowledge of
the probability distribution of the channel states, whish i
not available in most practical setups. Hence we develop a
stochastic subgradient algorithm in Secfidn 4 which iz
the observed channel sequence during execution to solve the
dual problem online. Moreover we establish in Theofém 1
that if the scheduling and power allocation variables are se
lected online according to the algorithm, the required Lya-
punov performance constraints are metin the limitin a gfron
sense (almost surely). Finally, we present simulationbef t
proposed design methodology in Secfidn 5 and we observe a
significant reduction to the magnitude &% in the power
consumption compared to non-channel-aware mechanisms
for a simple wireless NCS example. We conclude with a
discussion on our results in Sect{dn 6.

o - = » Il _ _ 2 Notation: We denote the reak-dimensional non-negative
orthant withR", and the element-wise comparison with re-
spect to the orthant by, i.e.,x > yifandonly ifx — y €

R™'. The set ofn x n real symmetric positive semi-definite
(respectively definite) matrices is denoted By (respec-
tively S* . ), and with:= the comparison with respect to the
coneS%. We denote then-dimensional probability simplex

by A™ ie, A" ={a>0:) o; <1}
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Figure 1: Opportunistic scheduling of control tasks over

a shared wireless medium. Independent control systems
close the loop by transmitting over the shared medium to

a common receiver/access point. Each control systein
experiences random channel condition;. A centralized
scheduler located at the access point observes the vector
of channel statesh and opportunistically decides which
system is scheduled to transmit and close the loop. 2. PROBLEM DESCRIPTION

Consider the wireless control architecture of Eig. 1 con-
sisting of m independent networked control systems. At
each timek, by z; ,, € R™ we denote the state of the system
i (1 =1,2,....,m). To keep the framework general we as-
sume that different descriptions of the system evolutiomfr
x;r t0 z; 41 at timek are given depending on whether a
transmission occurs at time or not. Let us indicate with
vix € {0,1} the event that such a transmission occurs at
time k for the subsystem. For simplicity then we describe
the system evolution by a linear time invariant model,

munication power resources.

A proliferation of opportunistic resource allocation into
wireless NCSs requires a suitable interface that wouldjerid
control performance requirements with the wireless phajsic
layer design aspects of the problem. In this paper we con-
sider a set of independent NCSs closing their loops by trans-
mitting over a shared wireless channel (seelBig. 1) and we ab
stract their control performance requirements as desieed d
crease rates of given Lyapunov functions (Sedfion 2). When
a system transmits, the probability of successful deliary B { ApiTip +wig, ifyp=1
the receiver depends on the allocated transmit power as well Tkl = Agizin +wig, fy,=0
as the current channel conditions, following a model exam-
ined in our previous work [6,7]. An opportunistic sched- At a successful transmission the system dynamics are de-
uler then allocates channel access among systems by obsenscribed by the matrid. ; € R"*":, where 'c’ stands for
ing the random channel conditions experienced by each ofclosed-loop, and otherwise by, ; € R"*", where 0’
them, and needs to guarantee the prescribed Lyapunov destands for open-loop. We assume tHay; is asymptotically
crease rates of each systémexpectatiorover the possible  stable, implying that if systemwere to transmit at each slot
channel states. its respective state evolution is stable. The open loop ma-

Furthermore, we formulate the design of channel-aware trix A, ; could be unstable. The additive terms; model
scheduling and transmit power allocation as a stochastic op an independent identically distributed (i.i.d.) noiseq&ss
timization problem in Sectiof 2.1 where the objective is to With mean zero and covariand®; = 0. It is worth not-
minimize the expected total power expenditures subject to ing that closed-loop dynamics for all of the controllers are
the expected Lyapunov decrease rate constraints. By exfixed (meaning that adequate controllers have been already
ploiting the zero duality gap of the problem, in Secfion 3 we designed), and thus in this work we focus on designing the
present a subgradient algorithm that solves the dual proble Wireless communication aspects of system.
and we show how the optimal scheduling and power alloca-
tion can be derived from the dual optimal solution. Example 1.The above networked control system descrip-

Implementing the subgradient algorithm on the other hand tion models various control architectures. For example sup

)



pose each closed Ioo‘p:onsists of a linear p|ant of the form Probability of successful decoding for practical FEC codes
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Ti k1 = Aixi g + Biwi i + Wik, (2

and a wireless sensor transmitting the plant state measure-
mentz; j, to a controller/actuator which provides input.

Let then the controller apply a linear feedbagk, = K;z; 1

when a measurement is received, otherwise apply= 0.

The resulting closed loop is of the fofm 1) with,; =

A; + B;K; and A, ; = A;. Dynamic controllers, e.g., using
some local plant state estimate when packets are dropped,
can also be expressed in fofm](1) by gnlarging the state OfFigure 2: Complementary error function for practical
the overall closed loop system to contain both plant and con- FEC codes. The probability of successful decoding

troller states. for a FEC code is a sigmoid function of the received

We now describe the wireless communication system and SNR~ A p.
model how it determines the packet transmission indicators
vi,k. We describe the wireless channel conditions for a sys- () for anyy > 0 and for almost all values € H the set
tem: at timek by the channel fading coefficieht ; that sys- ST o) i inal
. ) o . > : ; argming<, <, p— pgq(hp) is a singleton.
tems experiences if it transmits at timke Due to propagation

effects the channel gairis . change unpredictably|[9, Ch. 3] Parts (a),(b) of this assumption state that the probalaifity
and take values in a subsht C R of the positive reals.  gyccessful decoding(h p) will be zero when the received
Channel states; ;. for all systems < i < m aregroupedin  power levelh p is small, and it becomes positiyéh p) > 0
a vectorh;, € H™. We adopt a block fading model whereby  ang strictly increasing for larger values bf. Part (c) is
channel stateg;, are modeled as random variables indepen- more stringent, stating essentially thgh p) cannot behave
dent across different t|me Sloksa.nd identica"y diStributed |inear|y |np for a range Of Channe| Va|ués As Shown in
according to some joint distributiohon ™. They are also  Fig. [ for cases of practical interegthp) has a sigmoid
independent of the plant process noise,. We assume the  form and all the above requirements are expected to hold.
channel states are available before transmission — see Re- Apart from packet drops due to low received SNR, packet
mark[1 for a discussion on practical implementation. We cqlisions may occur if more than one of the control sys-
also make the following technical assumption on their joint tems transmit at a given time slot over the shared wireless
distribution to avoid degeneracies. medium. For this reason we are interested in designing a
mechanism to select which system will access the channel,
i.e., which system ischeduledo transmit. We allow for
a randomized selection, hence let us denote with the

If system: transmits at time: a transmit power levep; ;. probability of scheduling systeirat timek. The scheduling
taking values im0 < p; » < pmax is selected. Then chan-  variables satisfy
nel fading and transmit power affect the probability of suc- m
cessful decoding of the transmitted packet at the recediver. i >0, Z g <1, (3)
particular given the forward error-correcting code (FER) i =1
use, the probability; that a packet is successfully decoded
is a function of the received signal-to-noise ratio (SNRj)e T
SNR is proportional to the received power level expressed
by the product: p of the channel fading state and the allo-
cated transmit power. Overall we express the probability of
success by some given relationship of the faih; 1, p; r)
(see, e.g.[17] for more details on this model). An illustra-
tion of this relationship is shown in Figl 2. The following
assumption on the form of the functig@hp) will be helpful Plyige = 1| his @iier Do) = o @(higs pik)  (4)
in the subsequent sections.
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ASSUMPTION 1. The joint distributiony of channel states
hi has a probability density function cH™.

or in other wordsy,, belongs in the probability simpleX™.
Note that this implicitly models a centralized schedulinggim-
anism that by design avoids packet collisions since at most
one plant is scheduled to transmit.

To sum up, we can model transmission suceggsgiven
scheduling variables, power allocation, and channel state
Bernoulli random variables with success probability

This expression states that the probability that systenc-
AssSUMPTION 2. The functiong(.) as a function of the  cessfully transmits and closes the loop equals the prababil

productr = hp for r > 0 satisfies: thats is scheduled to transmit, multiplied by the probability
. that the message is correctly decoded. For compactness we
(2) ¢(0) =0, 19e 18 COr ;
group scheduling decisions and power allocations of al sys
(b) ¢(r) is continuous, and strictly increasing whe(r) > tems: at timek into vectorsay, € A™, andpy, € [0, Prmax]™

0, i.e., for anyr’ > r it holds thatg(r’) > q(r), respectively.



Our goal is to design the wireless communication variables
of the system opportunistically, that is to select appiateri
scheduling and power allocation variables adapting to the
current wireless channel conditions describedipy Over-
all we express the scheduling and power decisiopspx
respectively as mappings of the form

A={a:H"— A"}, P={p:H™ — [0, pmax]"},

(5)
so thatay, = a(hg), pr = p(hi). Since channel statés,
are independent over timethese mappings do not need to
change over time. Substituting the scheduling and power al-
location mappingsxy(.),p(.) in our communication model
described by (4) the probability of successful transmissio
for each system at any given slok becomes

P(vik = 1) = En, {Plvik = 1| hi, oi(he), pi(hi)] }
= Enai(h) q(hi, pi(h)). (6)

Here the expectation is with respect to the joint distrititi

¢ of the vector channel realizatiol, which we assumed

to be identical for any timé:, hence we dropped the index
k. Note also that the communication process modeled by
the sequencéy; r,1 < ¢ < m, k > 0} depends only on
variables related to the wireless communication counterpa
of the overall system, and is in particular independent ef th
system states; ;.

Our primary goal in designing the communication vari-
ables of the system is to guarantee a level of closed loop
performance for each subsystem. To motivate a more for-
mal problem description we consider Lyapunov-like perfor-
mance requirements for the control systems. In particular
suppose quadratic Lyapunov functions of the fdriw:) =
2T Pz, x € R™, with P; € S’ , are given for each system
i. A Lyapunov-like requirement then states that these func-
tions should decrease at given rapes< 1 during the execu-
tion of each subsystem This evolution however is random
because of the stochastic nature of the overall wireless com
munication/control system, i.e., due to process noise, ran
dom channel states, randomized channel access, and pack

drops. To take these effects into account we require that at

any valuez; , € R™ of system staté at time k the Lya-

punov functions at the next time step decrease at the desired

ratep; < 1in expectationthat is
E [Vi(zigt1) | @in] < piVilzig) + Tr(PBW;).  (7)

The expectation over the next system statg, ; on the left

hand side accounts vja [1) for the randomness introduced

by the process noise; ;, as well as the transmission suc-
cessy; .. The effect of process noise appears on the right
hand side as the constant teffn(P;1V;), while the trans-

mission success is expressed in (6) and depends on the ob-

served channel stafg, as well as the communication deci-
sionsay, pr. The intuition behind requiremeht (7) is that if

it holds on each timé it follows that

N 1- Piv
E [Vi(zin) | zio] < pi Vi(zio)+ 1

Tr(PW;) (8)

3

meaning that system states have second moments that decay
exponentially and in the limit remain bounded by the con-
StantTr(PiWi)/(l — pi)-

On the other hand, apart from control performance require-
ments an efficient communication design should make an ef-
ficient use of the available power resources at the devices.
The induced overall expected power consumption on each
slot k is given by

Ep, Z o1 (M) pi ke (i),
i=1

summing up the transmit power of each systgifrthe sys-
tem is scheduled to transmit. The expectation here is with
respect to the joint channel distributidnn, ~ ¢. The ap-
proach we take in designing scheduling and power allocation
(cf. [(5)) that are control-performance aware[(cl.(7)) alsd a
energy-efficient (cf_(9)) is through a stochastic optirtiza
framework that we present next.

9)

Remark 1.The centralized channel-aware scheduler can
be implemented in a multiple access channel architecture as
shown in Fig[dL, where each control system transmits to a
common access point. For example each plant state is mea-
sured by a sensor, and all sensors transmit plant measure-
ments to a centralized controller responsible for progdin
plant inputs at each plant. The channel conditions for each
system can be measured at the access point by pilot signals
sent from the sensors to the access point. Depending on the
measured channel states the access point decides whith plan
is scheduled to close the loop.

2.1 Scheduling and power allocation as stochas-
tic optimization

We pose the problem of designing the scheduling and power
allocation mappingsy(.), p(.) as an optimization problem

g\(here at each slot we minimize the total expected power

consumptiof (9) of the design while satisfying the Lyapunov
requirements (7), i.e.,

minimize E;, Zm:ai(hk)pi(hk) (10)

a€cA, peP P
subjectto E [Vi(xi.,kJrl) | xi,k} < piVi(zix) + Tr(P,W;)
forallz; , € R™, i =1 (11)

To make explicit how the functions(.), p(.) appear in the
constraints observe that py (1) we have

E [Vi(zig41) | zin] =Plyik = 1) &) AL PiAcizik
+ ]P)(’Yi,k: = 0) kaAziPiAo,ixi,k + T’I”(PiWi)7 (12)

where we used the fact that the random variaflg is in-
dependent of the system statg; as it depends only on the

RN )



communication variables (cf._(f)-(6)). Plugging (12) & th
left hand side of the constraints[in (10) we get

(]. — ]P)('Yz = 1)) xz:kAZiPiAo,ixi,k
+P(vig =1) &) L AL PAcimi e < ps (13)

The decision variable in this constraint is the sc@ay; =
1) which depends om(.),p(.) by[(6). Note that we may
assum¢ (I3) holds whek(y; = 1) = 1. This corresponds
to the ideal case that systeémloses the loop on each slot (cf.
and we have assumed thég; is stable, so we may take
the matrixP; to satisfy the control requiremeﬂﬁiPiAm =
p; P; in this case.

Moreover the left hand side pf (13) is a linear function of
6 = P(v; x = 1) at anyx; &, hence if it holds for somé, it
holds for the whole intervaly < 8 < 1, as we assumed that
it also holds ford = 1. Finally observe th4gt (1B) according
to problen (10) needs to hold at any valuexgf, € R™:.
Combining these observations, constraintj(13) can be equiv
alently written as:; < P(; = 1) where

¢; =min{f > 0: yT [0AZ¢P2'AC,¢ +(1- G)AOTJPiAoJ] y
(14)

Computinge; is a simple semidefinite optimization program
which can be easily solved using available convex optimiza-
tion software. The value; represents the minimum required
probability of transmission for each systenthat guaran-
tees the desired Lyapunov decay rateAlternatively it can
be thought of as a minimum required utilization factor of
the shared wireless channel, analogously to a utilizatf@n o
shared CPU in, e.gl,][3]. Intuitively, large valuegfimplies
that system requires more resources, i.e., more frequent
channel access and possibly higher power expenditures.
To sum up, the Lyapunov constraints in problem}10) can
be simplified by the auxiliary problenjs (14) for eaghso
that{(10) equivalently becomes

m

T
xi,kpixi,k-

<piy' Py foralycR™}

EnS oi(h)pi(h 15

minimize ;;a( )pi(h) (15)

subjectto ¢; < Epa;(h) q(hi,pi(h)), i=1,...,m
(16)

This is the optimal scheduling and power allocation prob-
lem that we examine in this paper. Before proceeding to
solve this problem let us make a final constraint qualifica-
tion assumption that is typical in optimization theory,.,i.e
that a strictly feasible point exists.

ASSUMPTION 3. There exist variablea’ € A andp’ ¢
P that satisfy the constraints of the optimization problem
[(T5) with strict inequality, i.e.,

¢ < Eha;(h) Q(hzﬁp;(h))v i=1,... (7)

Since the problerp (Ip) is feasible we denote the optimal
value with P and an optimal solution with*(.), p*(.). Sim-
ilar optimization problems in the context of wireless com-

,m

munication networks have been considered.in [14] where it (c) (a*, p*)

is shown that they have zero duality gap. This fact will be
exploited in the following sections to solve the problem of
designing optimal scheduling and power allocation padicie

3. OPTIMAL SCHEDULING AND POWER
ALLOCATION

In this section we exploit the fact that the problem of de-
signing optimal channel-dependent scheduling and power al
location variables has zero duality gap. In particular weeso
the problem in the dual domain using a subgradient method,
and once the optimal dual variables are obtained we describe
how the optimal variables of the original problem can be re-
covered.

First to derive the Lagrange dual problenj of {15) consider
non-negative dual variablgs € R’ corresponding to each
of them constraints of (15). The Lagrangian is written

m

Eh Z az pz

L(a,p, p

+ Z :uz 7 Ehaz h) Q(hi7pi(h))] ) (18)
while the dual funct|on is defined as
p— 1 L . 1
g(p) i (o, p, ) (19)

For convenience let us also denote the set of pairs of func-
tionsa, p that minimize the Lagrangian atby

(A, P)(p) = argmin L(a,p,p), (20)
aEA, peEP

whenever such solutions exist. In general this set might con

tain multiple solutions. We will refer to any such solution

pair asa(u), p(p). We define then the Lagrange dual prob-

lem as follows.

D = maximize g(u).
HER +

(21)

The standard Lagrange duality theory informs us that the
dual functiong(u) is a lower bound on the optimal cost

of problen{ (15) for any:, so that the dual optimal value also
satisfiesD < P (weak duality). The following proposition
however establishes a strong duality reshit£ P) for the
problem under consideration and provides a relationship be
tween the optimal primal and dual variables.

PrRoOPOSITION 1. Let Assumption§]1 arid 3 hold. L&t
be the optimal value of the optimization problgm [15) and
(a*,p*) be an optimal solution, and leb be the optimal
value of the dual problem (21) and be an optimal solution.
Then

(a) P = D (strong duality)

(0) pi i — Ena; (k) q(hi, pj ()] =
(complementary slackness)

€ (A, P)(n")

Ofori =1,....,m



PROOF Statement (a) under assumptidhs 1[and 3 follows

A projected dual subgradient ascent method to maximize

immediately from([14, Theorem 1] where a similar optimiza- the concave dual functiog(x) is described as follows:

tion setup is examined. The proof is omitted due to space

limitations.

To show (b) and (c) consider a primal optimal solution
(a*,p*). This gives an optimal valu® for problem[(15).
It is also feasible, so the constraint slack given in the lorac
ets of part (b), which we will denote as for compactness
within this proof, is non-positive. The Lagrangian thenegiv
in[(18) evaluates to

La*,p*.p*) =P+ > s < P, (22)
K3

where the lastinequality follows because< 0 andp; > 0.

On the other hand by definition of the dual functigfu)
in[(19) atu* we have that

L(a*,p*,p*) > g(u*) = P (23)

where we used that(p*) = D = P by part (a) at the left
hand side df (23). Combinirig (32) and (P3) we conclude that
all the included inequalities hold with equality. This mean
that) ", ufs; = 0, which is part (b), and also that", p* are
Lagrangian optimizers at*, which verifies (c). [

Interestingly this proposition states that strong dudiaids
regardless of the form of functiog(’, p) appearing in the

1. Atiterationt given u(t) compute primal optimizers of
the Lagrangian gt (t)

p()(@), a()(t) € (A, P)(u(t))

2. Evaluate the subgradient vectdy:(t)) by[(25) and up-
date the dual variables by an ascent step
plt+1) = [u(t) +e®s(u®)ly (28)

where[ |, denotes the projection on the non-negative
orthant and(t) > 0 is the stepsize.

(27)

It is well established that the above algorithm converges to
an optimal solution.* for stepsizes that are square summable
but not summable, i.e.,

z:e(t)2 < 00, Ze(t) = o0. (29)
t=1 t=1

In that case we have thatt) — u* andg(u(t)) — g(p*)
D = P. For a proof see, e.gL,l[1, Prop. 8.2.6].

In order to implement the subgradient algorithm above we
need an efficient way to compute primal Lagrange optimiz-
ers in[(27) solving (20). Note that this problem also relates
to our capability of finding the optimal primal variables of

constraints (note that we have not enforced Assumpiion 2 interesta*, p* as we have shown in Propositioh 1(c). Hence

yet). More importantly, as we follow next, it suggests the
possibility of solving first the dual problem instead of thie p
mal, find the optimal dual variablgs®, and via (c) attempt
to recover the optimal primal variables, p*.

To maximize the dual functiop(u) for the dual problem
[(21) we employ a dual projected subgradient algorithin [1,
Ch. 8]. A subgradient directios(:) € R™ for the (concave)
functiong () with respect tq. € R’ is a vector that satisfies

g(u') —g(u) < (p (24)

If we pick a(p), p(p) € (A, P)(r) by[(20] then a subgradi-
ents(u) can be found as the constraint slack of the primal
problen] (15) evaluated at these points,

si(p) = ¢i — Enai(p; h) q(hi, pi(p; h)). (25)

To show this observe that for any oth€rin general we have
g(') < L(a(p),p(p), ). Subtracting from each side of
this inequality the terny(u) = L(a(u),p(n), 1) and ex-
panding the terms of the Lagrangian af in[18) we get

/

—w)¥s(p) forally/ € RT.

g(1)—g(p) < Z(M%ui)[cﬁEhai(u; hY q(hi, pi(; 1)),

(26)
which is exactly the definition of the subgradienfin {24). We
also note for future reference that for gmyhe subgradients

we turn our focus to problefn (20). A more convenient ex-
pression for the Lagrangian definedin (18) can be obtained
by rearranging terms to get

L(ev,p, ) = p"c+Ey, Z ai(h) [pi(h) — pig(hi, pi(h))] .
= (30)

This form provides a useful separation of the primal vari-
ables first across channel realizatignsand second across
systems. We exploit this structure in the following lemma
to design primal Lagrangian optimizers.

LEmMmMA 1. Solutionsa(u),p(p) € (A, P)(p) of prob-
lem[(20) for anyu € R can be obtained at each € H™
as:

pi(p; h) = pi(pis hi) = argmin p — w;q(hi,p), (31)
0<p<pmax
and
m
a(p; h) = argmin Y o (hi, pus), (32)
acam =
where
E(hiy ) = OS%I;}MX p — wiq(hi, p). (33)

s(u) are bounded because at the right hand side of (25) theMoreover if Assumptioris 1 afél 2 hold, then for ang R”

terme; is bounded (df.(I4)) and the term in the expectation
corresponds to a probability (cf.{6)).

anda(u),p(p) € (A, P)(1) the vectors(u) defined inf (25)
has a unique value.



PrROOF See Appendik/All O

The first clause of the lemma provides through equations
[3I) and (39) a method to obtain primal Lagrange optimizers
that can be used in stép (25) of the subgradient algorithm.

Additionally an interesting separability result for thewmsr
allocation across systemss revealed — see Remadrk 2.

The second clause of the lemma states that under Assump

tions[1 and R, for any dual variablec R’ the subgradient
vectors(u) in[(25), which is also the constraint slack of any
Lagrange optimizera(u), p(1) of[(I5), is unique. Consider
then the case for the optimal dual variapte By Prop.[1(c)
the optimal primal variables*, p* are Lagrange optimizers

at 1*, and since they are feasible they have a non-positive

slacks(u*) < 0. Hence by the above lemma we conclude
that all Lagrange optimizera(u*), p(p*) at u* have the
same non-positive slack, i.e., they are feasible for thaalri

problem, and they also have the same objective value for the

primal problem asg*, p*, hence they are optimal too. This,
along with the subgradient algorithm to fipd, completes
the method for solving the optimal scheduling and power al-

location problenf (1I%). We summarize these findings in the

following proposition.

PROPOSITION 2. Consider the optimization probldm (15)
and its dual derived ip (Z21) and let Assumptidhk]L]2, 3 hold.
Then the iteratew(¢) of the algorithni (21)-(28) with step-
sizeg (29) converge to an optimal dual solutioh and opti-
mal primal solutionsy*, p* can be obtained by solvifg (31)-

[(33) at the poinf.*.

Motivated by the presented offline methodology to solve
for the optimal scheduling and power allocation, in the next

section we develop an online algorithm to solve the same
problem by observing the sequence of channel realizations

during system execution.

Remark 2.The optimal scheduling and power allocation
mappingsy*, p* according to Propl2 can be obtained by solv-
ing [(3T}f(33) at the poini*. In particular, givenu* and
channel states the optimal power allocatiop (k) by|[(31)
depends only on the variables, h; pertinent to system
and not on the whole vectogs' or h. Hence power alloca-
tion exhibits a completely decentralized structure, whigh
have made explicit in (3IL) by denoting it ag 12:; h;). Simi-
lar separability results are also known in the context oéwir
less communication networks [14]. Note however that the
optimal scheduling if (3P) is centralized since it depenus o
the whole vectop* and the channel realizationsof all sys-
tems. Finally observe that the optimal scheduling is toctele
the system with the minimum valué (h;, 1), i.e., schedul-
ing is in general deterministic given the channel obseovati
h. Randomization is introduced by the stochasticity of the
channel realization.

4. STOCHASTIC ONLINE SCHEDULING AND
POWER ALLOCATION

Implementing the subgradient algorithm presented in the
previous section to solve for the optimal scheduling andgrow
allocation is challenging in practice. In the primal steg)(2
one needs to solve far(h), p(h) for a continuum of vari-
ablesh € H™, while for the dual step ip (2B) one needs to
compute the subgradient directisfy) in[(25) by integrating
over the channel distributiof. A practical implementation
would require drawing a sufficiently large number of sam-
ples from¢ and solving for primal variables at these sam-
ples to obtain an estimate of the actual subgradient dinecti
This in turn is computationally intensive, does not scateafo
large number of systems, while also in most cases of prac-
tical interest the channel distribution is not availabléie¥e
drawbacks motivate us to develop @mine algorithm.

The algorithm we propose is a stochastic version of the
primal/dual step§ (2F], (28) of the subgradient method of
the previous section and does not rely on knowledge of the
channel distribution. It is instead based only on the olesbrv
channel realizatioth,, at each step. The proposed algorithm
is summarized as follows.

1. At time slotk observe the channel realizatidén, and
given the variableg:,, computeay,pi as primal La-

grangian optimizers dt, by[(3I)[(32), i.e.,

pik = pi(ftigs i), 1=1,...,m,
ar = a(pg; hi) (34)
2. Compute the vector
Sik=0¢ —&rqhigpik), 1=1,...,m, (35)
and update the variables, by
Pt = [1k + €xSk] 4 (36)

where[ |, denotes the projection on the non-negative
orthant and;, > 0 is the stepsize.

To emphasize that this is an online algorithm we have ex-
plicitly indexed the variables witl: corresponding to real
time slots. This algorithm gives a sequence of scheduling
and power variable$ay, px, £ > 0} as well as (dual) vari-
ables{u, k& > 0} which are random because they depend
on the random observed sequence of channel realizations
{h, k > 0}. The main difference compared to the sub-
gradient algorithm of the previous section is that it folfow
random directions;, by[(35] instead of the exact subgradient
directionss(u) by[(25). Comparing these two expressions
it is immediate that the expected valuesafcoincides with
the subgradient(;), so it is reasonable to conjecture that
the online algorithm is expected to move towards the maxi-
mum of the dual function, as the subgradient method does.
The following proposition indeed establishes convergémce
a strong sense.

PropPOSITION 3. Consider the optimization probldm (15)
and its dual derived if (Z1) and let Assumptidn 3 hold. Based



on a sequencéh, k > 0} of i.i.d. random variables with  theoretical results, and also indicating that the converge
distribution ¢, let the algorithm described in steps (34)-(36) of the algorithm is relatively fast enough so that online-con
be employed using stepsizes satisf§ing](29). Then almostrol performance is not severely affected.

surely we have that

5. SIMULATIONS

In this section we illustrate the advantages of the proposed
wherep* is an optimal solution of the dual problem aiiel opportunistic resource allocation methodology in wirgles
is the optimal value of the dual problem. NCSs. Recall that by solving the auxiliary problems]14),
PROOF. See AppendiKAR [ control systems with vector states are equivalently caader
into scalar constraints [n (1l5). Hence without loss of gener
The proposition states that the stochastic online algorith  ality we examine scalar control systems.
yields a random sequence of dual variahlgghat converge Consider a heating system application controlling the tem-
to the optimal dual variables* in a strong sense, i.e., al- perature in two independent rooms of a building. Assuming
most surely for any sequence of channel realizations that isthe wireless NCS architecture of Hig. 1 with= 2, wireless
observed. However the original problem of interest as ex- Sensors transmit the temperatures of each room to a central
pressed il (I0) is that of selecting scheduling and power all  location (access point) responsible for adjusting theihgat
cation policies that satisfy the given Lyapunov perforneanc in the rooms. For simplicity suppose both systems have iden-
requirement§ (7). Hence the following Theorem character- tical dynamics and are of the fom [1) with statg;, denot-
izes the performance of the control systems if the commu- ing the difference between current and desired temperature
nication variables are selected online according to the pro for rooms. In particular suppose that when systénans-
posed algorithm. mits (y; x = 1), heating is activated for systeirand results
in stable dynamicsl, ; = 0.4 in[(I). Otherwise ify; , = 0
THEOREM 1. Consider a shared wireless control archi-  the system is open loop unstable with ; = 1.1 in[(T), e.g.,
tecture composed of. systems described py 1), communi- because heating is deactivated.
cation modeled by (#) depending on channel staieshich For symmetry let also channel states;, andh;  be in-
are i.i.d. with distribution¢, as well as on scheduling and dependent for each system, both having an exponential dis-
power allocation variablesy, pr chosen according to the tribution with mean1. The functiong(h,p) is shown in
algorithm described by steps (§4)-(B6). Also considermive Fig.[2. For these scalar systems it suffices to consider Lya-
quadratic Lyapunov performance requiremejntg (7) and let punov functions/;(z) = x2. We require then that system 1
Assumption§]1.12] 3 hold. Then almost surely with respectguarantees a high Lyapunov decrease- 0.75 rate accord-
to the channel sequendé.,, k > 0} for anye > 0 there ing to[(7), while system 2 only requirgs = 0.90. In this

lim pu, =p*, and lim g(ux) =D (37)
k—o0 k—ro0

exists a time slof such that for anyk > K the control case system 1 has a higher transmission success requirement
performances satisfy ¢1 =~ 0.44 by[(T4) compared to, ~ 0.30 of system 2.
After solving proble offline according to the subgra-
EVi(2ik+1) | Tik, hos - - - 5 hie—1] gp n (13) g d

dient method of Sectidd 3, the optimal channel-aware sdhedu
< (pi + )Vilzik) + Tr(PW;),  (38) ing and power allocation variables are depicted in [Fig. 3 and
and the power consumption satisfies Fig.[4 respectively. As we observe in Fig. 3, System 1 which
requires higher transmission succes scheduled to trans-
mit for most values of the observed channel gair, h2).
System 2, which has a lower control requirement, is sched-
_ ) o uled only if its channehs is sufficiently favorableand sys-
where P is the optimal value of the optimization problem sm 1 experiences an adverse charnet see FiglB. This
[(10). illustrates how the opportunistic scheduler exploits ctehn
PROOF See AppendikAl3. O conditions to select which system will close the loop to meet
the Lyapunov constraints. Also, as we will see next, when
According to the theorem after a sufficiently large time both systems experience very adverse channels, scheduling
horizon the scheduling and power allocation variables ob- is irrelevant because the optimal transmit powers then are
tained online by the proposed stochastic algorithm reagh th zero (no transmission).
optimal performance Hy (Ip). In particular the Lyapunov re-  The optimal transmit power allocation is decentralized as
quirements of all control systems are satisfied inthe limita we noted in Remarkl2, i.ep; only depends on the channel
the optimal power expenditure is reached. Note however thath; system: experiences, and thus we plot in Hig. 4 power
the theorem does not provide any guarantee on how fast theallocation for both systems on same axes. System 1, which
solution converges to the optimal one. We discuss this issuehas a more demanding control constraint, requires in genera
along with other limitations of the algorithm in Sectidn 6. I  higher transmit power since it is scheduled to transmit even
the following section we present simulations verifying our under adverse channel states as we saw iriL.Fig. 3. This is also

m

E Q4 kPik

i=1

E Z‘i7k,h0,...,h/k_1 <P+e (39)
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Figure 3: Optimal channel-aware scheduling for the ex-
ample presented in simulations. System 1 has a harder
Lyapunov decrease rate requirement and is scheduled to
transmit for most observed channel stated, ho. System

2 is scheduled only if its channel conditiong, are much
more favorable that those of system 1. When both chan-
nels are very adverse systems select zero transmit powers
so scheduling is irrelevant.
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Figure 4: Optimal channel-aware power allocation for
the example presented in simulations. Under adverse
channel conditions systems do not transmit. The chan-
nel threshold for transmission for system 1 is lower than
that of system 2 because the former has a higher Lya-
punov decrease rate requirement. System 1 also requires
higher transmit power.

captured in the expected power consumplgey; (h) p; (h;)
of each system computed numerically -as11.2 mW for
system 1 andx 6.7 mW for system 2.

To demonstrate the power savings of the opportunistic re-

source allocation we compare to a simple non-channel-aware
communication design. In particular suppose that when sys-
tems are scheduled to transmit they select a constant tiansm

power equal to the valug, .. = 75 mW resulting in a prob-
ability of succes®;,q(hi, pmax) = 0.74. To guarantee the
Lyapunov requirements the scheduler must select constant

Online Evolution of Dual Variables
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Figure 5: After a number of steps during the online al-
gorithm the dual variables ;. remain in a neighborhood
around the optimal p*.

Online Evolution of Plants
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Figure 6: Magnitude of the control system stateg|z x|,
|lz1,%|| during the first steps of the online algorithm.

valuesa; =~ 0.6, as =~ 0.4 leading to total power consump-
tion (a1 + @2) pmax =~ 75 mW, significantly higher than the
total17.9 mW of the opportunistic case. Hence in this exam-
ple the opportunistic resource allocation succeeded dlanos
76% decrease in power consumption.

Then, for the same system parameters and Gaussian pro-
cess noisev; , with standard deviatiog/W; = 0.1, we im-
plement the stochastic online algorithm of Secfidon 4 given
by[(34)[(36). The evolution of the dual variablgs during
the simulation is shown in Figl5. After some time (here
stepsk correspond to seconds) the dual iterates remain in
a small neighborhood around the optimél, which agrees
with the theoretical a.s. convergence of Prop. 3. Equiva-
lently the scheduling and power allocation decisions taken
online after a number of iterations are almost feasible for
the constraints of problefn (35). The plant states of both
systems remain bounded during execution, as we show by
simulations in Figlb. The empirical average quadraticzost
1/N fo:l Vi(zi,) were respectively).047 for system 1
and0.088 for system 2, matching closely the constant value
Tr(P,W;)/(1 — p;) of the theoretical limit quadratic costs
by[(8] which were).04 and0.1 respectively.

6. DISCUSSION AND CONCLUSIONS

In this paper we present a framework for designing op-
portunistic channel-aware schedulers for NCSs closinig the



loops over a shared wireless medium. We formulate the with respect to distributiog of . Hence it suffices to show
scheduling and the transmit power design problem in a seachahat[(43) is unique-a.s. We argued that (40) is a.s. equiva-
tic optimization framework where the objective is to min- lent to[(4I), which is equivalent fo (42). Note that in the-spe
imize the total expected power expenditures while guaran- cial case wherey;(u; h) = 0 for somei the choicep; (u; h)
teeing that given Lyapunov functions for each of the control does not matter in; (1) sincd (43) equals zero.
systems exhibit a desired decrease rate. We presented an of- Hence we only need to show that the minimize(g; i),
fline optimization algorithm, as well as an online stoct@asti  p(u; k) of [(4Z) imply a.s. uniqueness pf (43). By Assump-
algorithm utilizing the random observed channel sequemce t tion[2(c) the minimizep(u; k) by[(31) is a.s. unique so we
solve the problem. only examinea(u; k) by[(32). For any vectoh that has a
While the proposed online algorithm guarantees almost unique minimizerj = argmin; £(h, ;) it follows imme-
sure convergence to the optimal solution, it does not peovid diately thata,(p; h) = 1 is the unique optimal. Thus we
a characterization of the convergence rate. This coulchpote are left to examine the case of multiplegmin, £(h;, p;),
tially introduce a long transient control system behavier b in which casex(k) minimizing[(32) is not unique, and show
fore the desired performance is reached. Another drawbackthat a.s. uniqueness|of (43) is satisfied.
is that the online algorithm uses decreasing step sizeshwhi First, if for somefh there are multiplewrgmin, &(h;, i;)
limits the ability to adapt to an environment where the chan- satisfyingé(h;, p;) = 0, by AssumptioiP(c) almost surely
nel distributions are not stationary but vary with time. $&e  the minimizer if(33) is unique. Note also thafu; k) = 0
issues will be the focus of future work. An altogether differ for all suchi must be a minimizer, because it gives an ob-
ent research direction is to include the measured plant sys-jective for problen{ (33) equal t6 — p;q(h;,0) = 0 by
tem states in the scheduling decisions, similarly to theggow Assumptiof2(a). Hencg;(u; k) = 0 is almost surely the
management paradigm for a single control loop. in|6, 7]. unique minimizer and in that cagéh;, p;(u; h)) = 0, and
any choicex(h) gives a unique value ¢f (43), equal to 0.
Finally we argue that the event where more than one min-
imizers j,k € argmin; {(h;, 1s) exist with (hy, 1) =

APPENDIX

A. PROOFS OF STATEMENTS

A.1 Proof of Lemmal[l
The variablesy, p minimizing the Lagrangian at the form
[(30] for someu € R solve

Ep, Z a;(h) [ps(h) — piq(hs,pi(h))] . (40)

min
aEA, peEP

Without loss of generality we can exchange the expecta-
tion and the minimization ovex(.), p(.) in[(40) to solve

m

Zai(h) [pi(h) — psq(hi, ps(R))] .

=1

min 41
a(h),p(h) (41)

This is valid because any pair(.), p(.) that doesnot min-
imize the objective ifi (41) on a set of variableswith ¢-

&(hg, px) < 0 has probability zero. To do so we make use
of the following fact.

Fact: If £(h;, u;) < 0, it must be that the argumepnt(y; )
by [(31] of the minimizatiof (33) satisfiegh,, pi(u; h)) >
0. This is true because otherwise we would héife,, 11;) >
0. Also by Assumptioi2(b) when(.) > 0, it is strictly
increasing in its argument. Thus we have igr> h, that

§(his i) = pi(p; h) — piq(hy, pi(ps h))
> pi(ps h) — paq(hi, pips ) > E(RG, ). (44)

This means that for a fixed,, when¢&(h;, ;) is negative it
is strictly decreasing as the arguménincreases.

By the fact above, whe&i(h;, 11,) is negative it is strictly
decreasing in the argument. Therefore for fixedu the
event that{h;, hi, : £(hy, 1) = &E(he, k) < 0} defines
at most a (one dimensional) line on the $£t of possible

positive measure must yield a strictly larger expectedevalu values forh;, hy,. By Assumptiorilly has a density of(™,

in the objective of (40). In other words, the minimizers of therefore it assigns zero measure on any lower-dimensional
[(40] can only differ from the minimizers ¢f (41) at a set of subset ofH™. So the event of multiple equal and negative
valuesh with measure zero. Note then that(h) > 0 al- &(h;, p;) has probability zero, and does not affect the a.s.
ways so thet (41) can be rearranged to uniqueness ¢f (4B).

A.2 Proof of Proposition[3

The proof relies on a supermartingale convergence argu-
ment frequently used in stochastic optimization — see, [A.4].
First note that for any the vectors;, by[(35] satisfies

;(h) 11711(1}{1) pi(h) — piq(hi, pi(h)). (42)
This corresponds exactly to solvipg (B), (32).

Now let us prove the second statement of the lemma. We
need to show that any pdit (1), p()), which are functions
of h, solving[(40) gives a unique evaluation &j.), where
by[(25) s; () involves integrating

(s h) q(hi, pi(ps h))

g = gluw) < (W' — p) "Elsk | pur] (45)

for all i/ € R'?". To show this fact compafe (3f)-(35) with
[(25] to conclude thaE[sy | 1] = s(pr) becausey, is i.i.d

(43) for everyk. Inequality (45) then follows directly frofn (24).




By Assumptiori B there exists a strictly feasible primal so- square summable. Heneg is integrable. By the relation
lution &/(.),p’(.). Call P’ the resulting objective value of [(50) it easily follows that, satisfies
[(I5] and lete’ > 0 denote the constraint slack[of (17), i.e.,
¢i + € < Enal(h)q(hi,pi(h)). Then we may bound the Elas1 | Fi] < ax. (52)
dual functiorf (I9) at any point by Such a stochastic process, i.e., integrable, adaptegto
m and satisfying (52) is called a supermartingale [4, Ch. 5].
g(p) < L(o/,p',p) = P+ Z i [e; — Enai(h) q(hy, pli(h))]  Moreover, a non-negative supermartingale converges almos
Py surely to some limit random variablel[4, Th. 5.2.9]. Observe
(46) that the second summand,=, €752 of a;, in[(51) is deter-
ministic and converges to 0 because of square summability

which by the assumption is upper boundedy-3 ), wic’. ot the stepsizes. Hence the random varidipig— .*||2 con-

Regrrgn%gﬂg termj, ngj _sin;(ze?);) i/t f?rilovgftit:j;frovrvgvf?r% verges almost surely (to some random variable).

bl = 2 5=1H5 = —glp)/e. Inp | / To arrive at a contradiction suppose the limit random ran-

that the optimal dual variables are finitg, < (P’ — D)/¢'. dom variable is not identically zero, i.e., it takes posithal-
Since the optimal dual variables are finite, the distance ;o5 with nonzero probability. Equivalently there exist 0

g — /%*” is a well-defined anq bounded random variable gnde > 0 such that with probability we have| iy, — || > e

depending on the random; obtained by (3§). The follow-  or 41| sufficiently largek. This implies thau, are bounded

ing lemma examines how this distance evolves. Recall that away from the optimal, i.e., that for sufficiently largewe

as we commented affer (25) the subgradie(yts are always  hayeD — g(u;,) > ¢’ for somee’ > 0. Hence with probabil-

bounded in our problem. ity & we haved 7% 26.(D — g(uy)) = +oo. This implies
LEMMA 2. Let D be the optimal value of the dual prob- o

lem[{27),..* be an optimal solution, and be the bound on E " 2er(D — g(ur)) = +o0, (53)

the subgradient{s(u)|| < S for anyn € R7. Then at each k=0

stepk of the updaté (3) we have which however contradicts wifh (47). The reason is that if

||t — 112 1] < [l — 1t |2 +€2.52 — 261 (D— g1z \(/)ve tak]evexpectatlon on both sideg of (47) and iteraté fer
(47) ,..., N we get

* (|12 * (|2
PROOF. First use the expression fp, . ; in[(36) to write 0 <Ellpnr = w7 < llwo — w7l
N o)
[pk1 — 1"l = [k + ersil+ —p*|| < ||uk+6k8k—/g|s\;) +) ST —ED 26(D — g(u))- (54)
k=0 k=0

where the last inequality holds because projecting on the
positive orthant can only decrease the distance from a point hat in the limit as he riaht hand side b
1 in the orthant. Taking expectation on both sides giugn ~ that In the limit as — oo the right hand side becomes

and expanding the square norm of the right hand side, we gefl€gative. Therefore it must happen tfial, —.*|| converges
to zero with probability 1.

Elll 1 — w5117 k) <llpw — w1 )1* + €257 By continuity of the (concave) dual functigriz) we also
+ 2 (use — 1) TE[s, |uk] (49) have thay(ux) converges to the optimalp*) = D a.s.

where we boundelE[s, | 4]||2 < S%. The statemefit(@y) A-3 Proof of Theorem(1
follows from[(49) by applying inequality (4p) with the sub- First note that by imitating the steps leading from {10) to
stitutiony’ = p*. O [(I5]), the statement pF (38) becomes equivalent to

The right hand side then needs to be positive], bui (53) iraplie

Our goal is to usg (4¥) to show thii1 — p*||> — 0 ¢i — Eny[ain q(hig, pik) | ] < €, (55)

almost surely. First note that at apy. the dual function is for some appropriate constarft > 0. To suppress nota-

lower than the optlm_al vz_al_ue (df._(31)). 90 — g(pr) = 0. tion we have exploited the fact that according to the online

Hence (47) can be simplified to algorithm the variablesy;, p,, depend just on the value of
Elll g1 — 501 ) < Nl — p*[I* + 2S%. (50) (e and not on the whole observed channel history. Also by

the expression of;, given in[(35) equatiof (5b) is equiva-

Then define the non-negative random variable lent toEy,, [sx ’ 1ux] < ¢. Then as we argued in the proof of

cio N 5 Prop.BEx, [sk | 1x] = s(pe) Wheres(u) is given by[(25).
ar = [l = p*|I" + Zel 5%, (51) To sum up, we have shown so far that (38) is equivalent to
=k s(ui) < €
which depends on the sequence (filtratidh)= { o, - - . , & }- Under Assumptioql3 we have established in Propodition 3

Note thata; is bounded becausg, generated by (3p) is that for the online algorithmy, — p* almost surely with
bounded at every and also by assumption the stepsizes are respect to the channel sequerég, ¥ > 0}. Then we note



a convex analysis fact by|[1, Prop. 4.2.3].¢lis concave,
andu, — p*, ands(uk) is selected as a subgradient of
at g, then every limit point ofs(uy) is a subgradient of
g at u*. Hence for the sequence pf, obtained by the on-
line algorithm we have that almost surely the sequetigg)
converges to a subgradientpét .*.

Then under Assumptiorid ] I 3 we can combine Prop.

[@(c) with Lemmdl to conclude that all subgradientg.,at
satisfys(u*) < 0 - a detailed argument was given preceding
Prop.[2. Hence for the sequence.qf obtained by the on-
line algorithm we have that almost suréiy sup s(uy) < 0.

This proves statemefit (38) via the equivalence we estab-

lished above betwees{ux) < ¢ and (38).
Finally let us provd (39). Recall that the dual function

equalsg(u) = L(a(u),p(u), ) wherea(u), p(n) are La-
grange optimizers at according td (20). Using the defini-

tion of the Lagrangian at (I8) and the interpretation of the

subgradient () at[(25) as the constraint slack, we have that
for any iy

(k) = En Y cilprs W)ps(puws h) + i s(px) - (56)

i=1

2013. To appear.

[7] K. Gatsis, A. Ribeiro, and G. J. Pappas. Optimal
power management in wireless control systems. In
Proc. of the 2013 American Control Conference (ACC
2013) pages 1562-1569, 2013.

[8] L. Georgiadis, M. J. Neely, and L. Tassiul&esource
allocation and cross-layer control in wireless
networks Now Publishers Inc, 2006.

[9] A. Goldsmith.Wireless communication€ambr. Univ.
Press, 2005.

[10] D. Hristu-Varsakelis. Feedback control systems as
users of a shared network: Communication sequences
that guarantee stability. IRroc. of the 40th IEEE
Conference on Decision and Control, 20@blume 4,
pages 3631-3636, 2001.

[11] J. Le Ny, E. Feron, and G. J. Pappas. Resource
constrained Igr control under fast samplingAroc. of
the 14th international conference on Hybrid systems:
computation and contrppages 271-280. ACM, 2011.

[12] X. Liu, E. K. Chong, and N. B. Shroff. A framework
for opportunistic scheduling in wireless networks.
Computer Network41(4):451-474, 2003.

Now observe that the expectatior{in (39) equals the expecta{13] H. Rehbinder and M. Sanfridson. Scheduling of a

tion given in[(56) because by step (B4) the primal variables

are selected as Lagrange optimizergatTherefore to show
that{(39) holds a.s. it suffices to show that the expectation i
[(56) converges a.s. tB, which equalsP by duality.

Propositior B establishes that the left hand side of (56) sat

isfiesg(ur) — D, and also thaj, — p* a.s. We have
also already argued thafu,) — s(u*) a.s. Therefore also
us(ur) = pwTs(u*) a.s. Butby Prodd1(l)*'s(u*) = 0.
This completes the proof.
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