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Abstract— With network-based attacks, such as Man-in-the-
Middle (MitM) attacks, the attacker can inject false data to
force a closed-loop system into any undesired state, unless even
intermittently integrity of delivered sensor measurements is
enforced. Yet, the use of standard cryptographic techniques that
ensure data integrity, such as Message Authentication Codes
(MACs), introduces significant communication and computation
overhead. Thus, in this work we explore the use of cumulative
MACs that significantly reduce network overhead. We consider
systems with Kalman filter-based state estimators and sequen-
tial probability ratio test (SPRT) intrusion detectors. We show
that strong estimation guarantees under MitM attacks can be
obtained even with intermittent use of a single cumulative MAC
that is added to appropriate sensor measurements transmitted
over the network. We present a design-time methodology to
evaluate the effects of any given cumulative integrity enforce-
ment policy on reachable state-estimation errors for any type of
stealthy attacks; this provides a base for design of cumulative
enforcement policies with desired performance guarantees even
in the presence of MitM attacks. Finally, we illustrate the
effectiveness of our approach on an automated steering control.

I. INTRODUCTION

Techniques for securing cyber-physical systems (CPS)
have been mostly limited to either making the physical layer
inaccessible, or to the use of cyber methods to secure com-
munication over the underlying networks. The latter mainly
include cryptographic mechanisms that ensure data confiden-
tiality and/or integrity, such as message authentication codes
(MACs) that are commonly employed in embedded control
networks. On the other hand, the physical layer provides
opportunities for the use of physics-based attack-detection
and resilient control techniques; recent research efforts in this
domain have focused on the utilization of a physical model
of the system to improve security guarantees with a design of
attack-resilient controllers or state estimators (e.g., [1], [16],
[15]), as well as intrusion detectors (e.g., [10], [5], [6], [9]).

In this work, we focus on a standard Kalman-filter based
control architecture that employs a residual-based intrusion
detector; such detectors were introduced in the literature
through χ2 detectors (e.g., [10], [5], [3]), as well as se-
quential probability ratio test (SPRT) (e.g., [6], [4]) and
CUSUM detectors (e.g., [2], [18]). Specifically, we consider
the problem of stealthy false-data injection attacks on mea-
surements provided by system sensors, commonly performed
as network-based Man-in-the-Middle (MitM) attacks. For a
large class of physical plants, it was shown that in such sce-
narios these attacks could introduce unbounded errors in state
estimation while avoiding detection [10], [5]; this effectively
allows a stealthy attacker to freely control the system.
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We have recently shown that by combining such physics-
based intrusion detectors with even intermittent use of cryp-
tographic mechanisms that ensure data integrity, we can sig-
nificantly limit the attacker’s impact on the system [3], [2] –
i.e., either the attacks are detected or the resulting estimation
error is bounded. We consider systems that could utilize
data authentication (e.g., MACs) but have limited resources,
such as CAN-based automotive systems. In such scenarios,
resource constraints are twofold – network bandwidth is
usually tightly designed for the number of messages that
are being transmitted [7], and computational power of CPUs
used for MAC signing/checking is limited [8]. While inter-
mittent integrity enforcements significantly reduce resources
required to add security to existing systems, in most of these
systems network bandwidth is the bottleneck [7], especially
for certain classes of systems as the required number of
authenticated packets depends on plant dynamics [2].

On the other hand, the use of cumulative (sometimes
referred to as “delayed”) message authentication schemes
reduces the network load by transmitting a MAC for multiple
data points in a single package [14]. Consequently, in this
paper we extend our work from [3], [2], and provide theo-
retical basis for the intermittent use of cumulative data au-
thentication that maintains the strong security guarantees. We
also introduce a computationally efficient method to evaluate
attacker’s influence over time, which is then used to design
and evaluate cumulative integrity enforcement policies that
ensure low estimation errors even in the presence of attacks.

The paper is organized as follows. In Section II, we
describe the system and attack models, and formalize the ef-
fects of cumulative data integrity enforcement policies on
state estimation guarantees. Section III provides a design-
time method to efficiently estimate worst-case bounds on
performance degradation under stealthy attacks as well as
evaluate effects of different cumulative integrity enforcement
policies. Finally, Section IV illustrates the design and use
of such authentication policies on an automotive case-study,
before we provide concluding remarks in Section V.

Notation and Terminology: Support set of a vector x,
i.e., indices of all non-zero values of x, is denoted by
supp(x), while sup stands for supremum. Moore-Penrose
inverse of a matrix A is denoted by A†. Zero vector of
appropriate size is represented by 0, and empty set is denoted
by ∅. We use iTj to denote the row vector with all elements
equal to 0 except of j-th element that is equal to 1. For a set
of all sensors S = {s1, ..., sp}, projection matrix PK of set
K ⊆ S is PK =

[
ik1 |. . . | ik|K|

]T
, where k1 < · · · < k|K| –

i.e., PKy retains elements of vector y with indices in K.
Finally, we denote probability of an event as P (·), while

E [x] is the expected value of a random vector x. Also, x ∼
N (0,A) denotes that vector x is a random variable with the
zero-mean normal distribution with variance matrix A.
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Fig. 1. System architecture – sensor measurements are communicated over
a potentially compromised network to the estimator. We assume that the
attacker can access and modify the sensor data transmitted over the network.

II. SYSTEM MODEL
We consider a common networked control architecture

(Fig. 1) where plant sensor measurements are transmitted
over a potentially compromised network. The plant is mod-
eled as an observable linear-time invariant system of the form

xk+1 = Axk + Buk + wk, yk = Cxk + vk, (1)

where xk ∈ Rn and yk ∈ Rp denote the plant state vector
and sensor measurements obtained from the set of sensors
S = {s1, . . . , sp} at time k, respectively. Also, we assume
that the initial state x0, modeling noise wk, and sensor noise
vk are Gaussian random variables. Finally, by R we denote
the covariance matrix of measurement noise vector vk.

Furthermore, a Kalman filter is used for state estimation.
We assume the system has been running for some time before
the first attack occurs; thus, the Kalman filer has reached a
steady state and can be considered as a fixed gain estimator.
Hence, the filter’s state estimate, denoted by x̂k, evolves as

x̂k = Ax̂k−1 + Buk−1 + Kzk

K = ΣCT (CΣCT + R)−1

zk = yk −C(Ax̂k−1 + Buk−1), ek = xk − x̂k.

(2)

Here, matrix K represents the Kalman gain and ek denotes
the state estimation error. In addition, residue zk captures
the discrepancy between received sensor measurements and
the values estimated by the model. As such, zk is commonly
used for intrusion and anomaly detection (e.g., [2], [3], [10],
[12]). Specifically, a detection function gk is defined and
alarm is triggered when gk > h, where h is some predefined
detection threshold. Note that even without attacks there is a
probability that an alarm will be triggered due to noise. We
denote such probability (i.e., of false alarm) at time k as

βk = P (gk > threshold). (3)

These detectors are commonly designed to operate with a
low false-positive rate, and thus when the system is not under
attack, the value of βk should be low. While this is a general
setup to capture intrusion detectors, more details about the
considered intrusion detector is provided in Section II-B.
A. Attack Model

We assume that the network has been compromised; the
attacker could launch MitM attacks that may change the
delivered messages from a subset of sensors K ⊆ S when
no security mechanisms are employed to protect integrity of
the transmitted packets. We model this influence as additive
disturbance ak on sensors from K, and thus in the presence
of MitM attacks the system evolves as

xak+1 = Axak + Buak + wk

yak = Cxak + ak + vk,
(4)

where ak is a sparse vector with support in K (i.e.,
supp(ak) = K). Here, we assume that when no data integrity
mechanisms are used, such as MACs, the nonzero injected
signals can have any values. On the other hand, for all time
steps k when MACs are used, ak has to be equal to zero.
Finally, note that in (4) and throughout the paper, we use
superscript ”a” to denote the evolution of a compromised
system – i.e., the corresponding system values in the presence
of attacks. For instance, by x̂ak and zak we denote the Kalman
filter estimate and residue from (2) in the presence of attacks,
and thus the state estimation error is eak = xak − x̂ak.

To formally capture attack impact, we focus on the differ-
ence between the compromised and non-compromised sys-
tem’s evolution. Specifically, we consider the difference in
estimation error and filter residue due to attacks, defined as

∆ek = eak − ek

∆zk = zak − zk.
(5)

By adding the definitions of ek, e
a
k, zk, z

a
k from (2) into (5),

it follows that

∆ek+1 = (A−KCA)∆ek −Kak+1

∆zk+1 = CA∆ek + ak+1.
(6)

We show later in paper (see (30)), that when attacks start after
the system has reached the steady state it holds that ∆ek =
E[eak]. Thus, the no-noise dynamical system from (6) cap-
tures the evolution of the expected state estimation error due
to MitM attacks. This allows us to formalize the attacker’s
capabilities and goals. Specifically, while designing attack
vectors ak, we assume a very powerful attack model where:

1) The attacker has the full system knowledge. This
includes knowledge of the system dynamics and em-
ployed controllers (i.e., estimator and intrusion detec-
tor), as well as the real-time information about the val-
ues of all signal values in all the sensors and controller.

2) The attacker possesses unlimited computational power.
This allows the attacker to plan and inject attacks
in real-time without consideration for computational
complexity of the problem.

The attacker’s main goal is to maximize the change in
the state estimation due to false-data injection attacks. Thus,
since ∆ek captures the expected discrepancy between the
estimated and real states of the plant, the attacker’s goal
can be captured as maximization of ∆ek until the error
∆ek ∈ Rrisk is reached; here, Rrisk ⊆ Rn denotes a set of
estimation errors that may permanently damage the system.

Additional goal is to make the attack undetectable by the
employed intrusion detector – i.e., to inject a stealthy MitM
attack that maintains the probability of detection βak low, very
close to the false positive alarm probability βk in the case
without attacks. Thus, the stealthiness constraint is specified

βak ≤ βk + ε, (7)

where ε is a small positive constant relative to βk that cap-
tures the largest inconspicuous deviation of alarm probability
due to attacks. It is important to note that ε thus implicitly
denotes the amount of risk that the attacker is willing to take.
In practical use, this will allow for trade-off analysis from the



attacker’s perspective, between tolerable risks and the impact
he can have on the system, as we illustrated in [3], [2] for
systems employing standard MACs to ensure data integrity.

B. Intrusion Detector
In this paper, we assume that a commonly utilized se-

quential probability ratio test (SPRT) is used for intrusion
detection, as in [6], [4]; however, our analysis can be easily
extended to other detectors such as the CUSUM detector
using the techniques from [2]. Hence, we define

gk = gk−1 + Λk; Λk = log

(
fa(zk)

f(zk)

)
, (8)

where fa(zk) and f(zk) denote the probability density
functions for zak and zk respectively. This detector attempts
to distinguish between two hypothesis –H0 : zk ∼ N (0,Q),
and H1 : zk 6∼ N (0,Q). To formally capture the behavior of
the detector, we first address the following two challenges.

First, SPRT-based detectors in general employ two de-
cision thresholds – a lower and an upper threshold. When
detection function gk is below the lower decision threshold,
it is assumed that the system is not compromised, while
when gk is between the thresholds it is undecided whether
the system has been compromised; finally, when gk is above
the upper threshold h, an alarm is triggered. In addition,
after a decision is reached, gk resets to zero to avoid infinite
summation. Without affecting generality of our results, to
simplify our analysis we assume that for stealthy attacks
this reset never occurs. Note that our analysis is focused
on providing guarantees even for worst-case scenarios with
maximal deviation in state estimation errors ∆ek. Hence, this
is a valid assumption as maximization of ∆ek would result in
’largest’ attack vectors ak that do not trigger the stealthiness
condition (7); since from (4) and (2), increase in the size
of ak would in general result in larger gk, optimal attacks
would effectively result in increased (as much as possible
without violating (7)) values for gk.

The second challenge is the SPRT assumption that fa(zk)
is known. For realistic attack scenarios, we cannot impose
such unrealistic constraints, and thus the attacker is modeled
as a non-deterministic rather than probabilistic signal. This in
turn limits our capability to exactly compute Λk. We resolve
this challenge by introducing an approximation similar to the
one from [6], [4] – i.e., we specify that

Λk =
1

2
zTkQ−1zk + log c

√
(2π)pdet(Q), (9)

where c = e
−p
2 /
√

(2π)pdet(Q). The above equation uses
the idea similar to χ2 detectors [11], [13], [10] and allows
us to argue about the attack through statistic properties of zk
while retaining zero-centered gk. Therefore, from (8) and (9)
along with the assumption of non-resetting SPRT, we obtain
the following form of the SPRT detection function

gk =

k∑
T=1

(
1

2
zTTQ−1zT + log c

√
(2π)pdet(Q)

)
=

=
1

2

k∑
T =1

(
zTTQ−1zT

)
+ k log c

√
(2π)pdet(Q),

(10)

or rather
gk =

1

2

k∑
i=1

(zTi Q−1zi)−
kp

2
, (11)

As described before, the probability of false positives de-
tected by SPRT can now be defined as βk = P (gk > h).

Finally, we can now define the set of stealthy attacks.

Definition 1. [2] Let us denote a1..k = [aT1 . . .a
T
k ]T . Then,

the set of all stealthy attacks up to time k is defined as

Ak = {a1..k|βak′ ≤ βk′ + ε, ∀k′, 1 ≤ k′ ≤ k}. (12)

C. Cumulative Message Authentication
When standard MACs are used, at every time-instance

when integrity of a sensor measurement is enforced, the cor-
responding MAC for the measurement only is computed and
attached to the transmitted packet. Thus, we define standard
intermittent integrity enforcement policies as follows.

Definition 2. [3], [2] A standard intermittent data au-
thentication policy (µs, fs, Ls), where µs = {tj}∞j=0 with
t0 ≥ fs, and for all j > 0, tj−1 < tj , such that Ls =
supj>0 (tj − tj−1), ensures that

atj = atj−1 = ... = atj−fs+1 = 0,∀j ≥ 0.

Intuitively, a standard intermittent data authentication pol-
icy ensures that an attack does not influence sensor values
(i.e., ak = 0) within pre-specified time windows of f sample
points when data integrity is enforced; the end-points of
these windows are captured in the sequence µs and all the
windows (i.e., their beginnings or ends) are separated by at
most L samples. In [2], we showed that for a very general
class of intrusion detectors, when a standard intermittent data
authentication policy is used with f = min(ψ, qun), where
ψ denotes the observability index of the (A,C) pair and
qun denotes the number of unstable eigenvalues of A, the
attacker cannot introduce unbounded state estimation errors
while remaining stealthy. This also allows us to commonly
use f that is directly determined from the plant’s dynamics.

On the other hand, with cumulative integrity enforcement
policies, blocks of fc measurements are used to compute
a single MAC (thus, the term cumulative MACs), which is
then attached to communication packets containing the last
measurements from these blocks. Hence, when a cumulative
MAC, which is computed over fc last time-points, is received
at time tj , the controller will be able to detect whether
false-data has been injected in the last fC transmissions. To
formalize this notion, we introduce the following definition.

Definition 3. An intermittent cumulative data authentication
policy (µc, fc, Lc) at time (i.e., sample point) k, such that
µc = {tj}∞j=0 where t0 ≥ fc, and for all j > 0, tj−1 < tj ,
with Lc = supj>0 (tj − tj−1), ensures that

at = at−1 = ... = at−fc+1 = 0,∀t ∈ Dk, (13)

where Dk = {tj | tj ∈ µc and tj ≤ k}.

Unlike when standard MACs are used as in Definition 2,
a cumulative data authentication policy as defined above,
denies the attack impact retroactively, only after a cumulative
MAC, which is computed over a block of fc consecutive



Fig. 2. Stealthy attacks depending on the threshold of the Rrisk region.
Cumulative MAC is assumed to arrive at tj = t + fc. When Threshold 1
describes Rrisk region, ”Attack 1” is detected after cumulative MAC is
received at tj without reaching Rrisk , and thus attacker has to perform
”Attack 2” to remain stealthy. On the other hand, when Rrisk boundary
is Threshold 2, the attack reaches Rrisk states before authentication, and
successfully damages the system with ”Attack 1” before it is detected.

measurements, is received. Thus, if the attacker cannot reach
a desired error by the time a cumulative MAC arrives, he
should not insert false data during the time points used to
compute the MAC; otherwise, modified data will not pass the
check when the MAC arrives and the attack will be detected.

To illustrate this, consider Fig. 2 that shows two attacks –
one that attempts to stay stealthy only prior to time tj = t+fc
(”Attack 1”) and the other that remains stealthy after (”Attack
2”). Until time tj , authenticity of sensor data between t and
tj cannot be valideted, and thus false-data vectors do not
have to be zero, as captured in (13). In this case, if Rrisk
threshold is Threshold 2, Attack 1 will force the system into
Rrisk, and thus the attacker does not need to be concerned
with authentication checking at time tj (i.e., that he would be
detected then). However, if Rrisk threshold is Threshold 1,
Attack 1 would be unable to reach Rrisk by tj , and thus
needs to continue after. Yet, with the arrival of cumulative
MAC at tj the attack will be detected. Therefore, in this case
Attack 2 should be used, since this strategy remains stealthy
even with the newly considered integrity enforcement policy.

To capture constraints cumulative authentication imposes
on the attacker, let us define the attack vector’s support set
for a standard policy (µ, f, L) according to Definition 2 as

K̃j =

{
∅, j − i ∈ µ, for some i, 0 ≤ i < f,
K, otherwise (14)

From Definition 3, it follows that an intermittent cumulative
data authentication policy (µc, fc, Lc) at time k changes the
support set of a stealthy attack a1..k as

supp(aj) =

{
K̃j , for some j, j ≤ k − f,
K, otherwise

(15)

Finally, for a stealthy attack a1..k from Definition 1, we
denote its support set as supp(a1..k) = Qk ⊆ {1, . . . , pk}.

III. REACHABILITY ANALYSIS FOR SYSTEMS WITH
INTERMITTENT CUMULATIVE INTEGRITY ENFORCEMENT

In this section, we introduce a method to compute the set
of all reachable estimation errors caused by a stealthy attack
that are obtainable with probability at least η. Parameter η
exists to limit values of ek to realistically obtainable values,
as ek is a Gaussian random variable and thus takes the values

from an unbounded set. Set of reachable estimation errors
allows us to estimate the effects of a stealthy attack on the
system, as it captures deviation from the steady state of the
system. We refer to this set as the k-reachable region of the
state estimation error, and define it as follows.

Definition 4. The k-reachable region Rk of the state esti-
mation error under the attack (i.e., eak) is the set

Rk =

{
e ∈ Rn eeT 4 E[eak]E[eak]T + γΣ,

eak = eak(a1..k), a1..k ∈ Ak

}
,

(16)

where Σ = Cov(eak), and for a cumulative distribution
function Fe(·) of ek, we can relate γ to η as

η = Fe(γCov(ek))− Fe(−γCov(ek)).

Note that Cov(eak) = Cov(ek), with ek being Gaussian (the
full proof is available in [2]). To find an analytic solution for
these regions, we use the following lemma.

Lemma 1. [2] For a system with a detection function

gak =

k∑
i=1

ciz
T
i Q−1zi,

the set of all stealthy attacks at time k, Ak, can be overap-
proximated by the set

Ak = {a1..k|‖∆zk′‖Q−1 ≤ α, ∀k′, 1 ≤ k′ ≤ k} (17)

(i.e., Ak ⊇ Ak), where ci are non-negative constants, α =
αχ2(ε, p, h/cmax) with cmax = max(c1, ..., ck), and αχ2

defines an upper bound of ‖zk‖Q−1 when χ2 detector is
utilized instead of the SPRT.

The above lemma allows us to obtain an analytic solution
for k-reachable regions under a specific cumulative data
authentication policy, as specified in the following theorem.

Theorem 1. The k-reachable region Rk under an intermit-
tent cumulative data authentication policy (µc, fc, Lc) can
be overestimated as

Rk =
{

eak|eakeak
T 4 α2

χ2MkP
†
QkΘ

−1
k (MkP

†
Qk)

T
+ γΣ

}
,

(18)

where α2
χ2 = α2

χ2(ε, kp, 2h + kp) is an upper bound on
‖zak‖Q−1 . Furthermore,

Θk =

k∑
τ=1

HT
τ Q−1Hτ (19)

Hτ =
[
NτP

†
Qτ 0p×(|Qk|−|Qτ |)

]
(20)

Nk =
[
−CAMk−1 I

]
(21)

Mk = −
[

(A−KCA)k−1K . . . K
]
. (22)

Similar results can be found in [2] and [6]. However, there
are two essential differences that separate these theorems.
In [2], data is authenticated instantaneously, causing the
attacker to plan ahead and providing limits even before
authentication occurs. On the other hand, in [6], authors do
not consider data authentication, and consider E[gak ] > h
rather than P (gak) > h as the stealthiness constraint.



Before we provide the theorem’s proof, we introduce the
following lemma.

Lemma 2. For any k ≥ 1, the matrix Θk is positive definite.

The proof is based on the idea that P†Q1

T
P†Q1

= I|Q1|
and that elements of the sum from (19) are orthogonal. We
omit the proof due to space constraints since it follows the
approach used to show a similar result in [2].

Proof of Theorem 1. From (11), it follows that

βk = P (gk > h) = P (

k∑
i=1

(zTi Q−1zi) > 2h+ pk).

Using Lemma 1, the stealthiness condition can be overap-
proximated by

‖∆zk‖Q−1 ≤ αχ2 . (23)

We represent (6) in their non-recursive form, and substitute
them in (23) to obtain that

α2
χ2(ε, kp, 2h+ kp)− (PQta1..k)TΘkPQka1..k ≥ 0 (24)

needs to be satisfied for the attacker to remain stealthy. From
Lemma 2, Θk is positive definite, and thus we can form
Schur complement – i.e., the following holds[

Θk
−1 PQka1..k

(PQka1..k)
T

α2
χ2(ε, kp, 2h+ kp)

]
< 0. (25)

In order to generalize error computation for any stealthy
attack a1..k, let us introduce the matrix

G =

[
−MkP

†
Qk 0n×1

01×|Qk| 1

]
. (26)

Now, we can consider a quadratic representation

G

[
Θk
−1 PQka1..k

(PQka1..k)
T

α2
χ2(ε, kp, 2h+ kp)

]
GT < 0, (27)

from which it follows that[
MkP

†
QkΘk

−1(MkP
†
Qk)

T
−MkP

†
QkPQka1..k

−(PQka1..k)
T

(MkP
†
Qk)

T
α2
χ2(ε, kp, 2h+ kp)

]
< 0.

(28)
Once again, by employing Schur complement and the non-
recursive form of (6), we obtain

MkP
†
QkΘ

−1
k (MkP

†
Qk)T − 1

α2
χ2

∆ek∆ek
T < 0. (29)

Since ∆ek is a deterministic signal from (6) (i.e., the system
modeled by (6) is noiseless), we have that

∆ek = E(∆ek) = E(eak)− E(ek) = E(eak). (30)

Thus, the first condition in Rk can be overapproximated by

E[eak]E[eak]T + γΣ 4 α2
χ2MkP

†
QkΘ

−1
k (MkP

†
Qk)

T
+ γΣ.

Our initial assumption was (23), which generates the attack
set Ak from Lemma 1 that overestimates Ak. Thus, the
second condition in Rk that a1..k ∈ Ak ⊆ Ak is satisfied,
which concludes the proof.

Algorithm 1 Deriving periodic integrity enforcement poli-
cies with cumulative f steps authentication.
Inputs: System model, set Rrisk, policy parameter fc, ε.

1: Enforcement distance L = 0
2: repeat
3: L = L+ 1
4: Form policy (µ, f, L) as in Theorem 2 with t0 = L
5: Assign k = 0, union of reachable regions R∪ = ∅,

and R0 = 0
6: repeat
7: R∪ = R∪ ∪Rk, k = k + 1
8: Compute Nk and Mk from (21) and (22)
9: Compute Θk from (19)

10: Compute α(ε, kp, 2h+ kp), and Rk from (31)
11: until Rk ⊆ R∪
12: until Rk ∩Rrisk 6= ∅
13: Accept policy (µ, f, L− 1)

If we denote Y = α2
χ2MkP

†
QkΘ

−1
k (MkP

†
Qk)

T
+γΣ, then

by using Schur complement one more time, the overapprox-
imation of the k-reachable region Rk can be specified as

Rk =
{

eak|eak
TY−1k eak ≤ 1

}
, (31)

which is an ellipsoid that can be easily computed.
Finally, we deem cumulative data authentication policy

(µc, fc, Lc) to be successful when

Rk ∩Rrisk = ∅, ∀k ∈ N.

A policy that satisfies this condition always exists if the
system is safe without attacks – e.g., when fc = Lc = 1,
meaning that all attacks are prevented by authenticating every
message without delay (using standard MACs). Furthermore,
we obtain the following result using an approach similar to
the one from [2] where standard MACs are intermittently
employed; the idea is to map the problem into the problem
of bounding the reachable set when standard intermittent
integrity enforcement policy (µc, fc, Lc + fc) is used – we
omit full proof due to space constraints.

Theorem 2. Consider an LTI system from (1) with a inter-
mittent cumulative data integrity policy (µc, fc, Lc), where

fc = min(ψ, qun), (32)

Lc is finite, ψ is the observability index of the (A,C) pair,
and qun denotes the number of unstable eigenvalues of A.
Then for all k ∈ N, Rk is bounded.

Although in general an unbounded number of steps needs
to be explored, as Rk will converge to its bounds arbi-
trarily slow, in practical tests we observed that after some
system-dependent time point kt, Rkt+1 ⊆ ∪ktk=1Rk, which
terminates the search. Therefore, we can design safe cumu-
lative integrity enforcement policies using Algorithm 1.

IV. CASE STUDY

We demonstrate our method on a steering control case-
study [17]. We consider a vehicle that weighs m = 1573kg,
and measures lf = 1.1m in front and lr = 1.58m behind its
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Fig. 4. Simulation of the steering control system in the presence of a
stealthy attack on system sensors, with the attack starting at 2 s.

center of gravity. Yaw moment of inertia is Iz = 2873kgm2,
and front and rear cornering coefficients are both Caf =
Car = 80k. At the time of the attack, vehicle is assumed
to be moving at a constant speed of vx = 35m/s. We also
assume that the false positive probability is 5%, while the
alarm-probability increase acceptable to the attacker is ε =
0.01%. The model of the vehicle is provided as in (4), where

A =


0 1 0 0

0 −2
CafCar
mvx

2
CafCar
m 2

−Caf lf+Carlr
mvx

0 0 0 1

0 −2
Caf lf−Carlr

Izvx
2
Caf lf−Carlr

Iz
−2

Caf l
2
f+Carl

2
r

Izvx


B =

[
0 2Caf/m 0 2

Caf lf
Iz

]T
; C = I4

To defineRrisk set, we assume that the attack is successful
when ‖ek‖2 ≥ emax. Specifically, to impose constraints for
the error in lateral position, lateral speed, steering angle and
angular velocity of axle, we set emax = 0.6856. Using the
conditions from [10], [5], [2], it follows that the system is
perfectly attackable (i.e., limk→∞Rk is unbounded) when
no data integrity enforcement policy is used, and thus a
stealthy attacker will be able to reach Rrisk.

To protect from the attack, we choose a periodic cumu-
lative integrity enforcement policy – i.e., MACs are sent at
equidistant intervals Lc. We evaluated different values of Lc
up to Lc = 5 for which the attacker almost reaches Rrisk.
Plot of the maximal error norm evolution for the case without
authentication versus the case with periodic cumulative au-
thentication with fc = 4 is shown in Fig. 3. In addition, Fig. 4
shows a 4 s simulation of the estimation error if the system
is compromised at 2s, for the derived periodic cumulative
authentication policy under the computed worst-case attack.

V. CONCLUSION

We have considered the problem of securing networked
control systems against stealthy false-date injection attacks
on sensor measurements. We have proposed the use of
both cumulative and intermittent integrity enforcements to
limit attack influence without imposing high communication
(i.e., bandwidth) costs. We have shown that arbitrarily tight
estimation requirements can be ensured even in the presence
of attacks, with the use of appropriate integrity enforcement
policies. We have introduced a formal model of stealthy at-
tacks, and provided an efficient method to compute impact of
stealthy attacks on estimation errors for systems that employ
SPRT detectors. We have used this computation to guide the
design of periodic cumulative authentication policies, which
ensure that the system would never reach an unsafe state even
under attack. Finally, we have illustrated the effectiveness of
our approach on a secure vehicle steering control study.
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