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Abstract—Deep Brain Stimulation (DBS) is effective at allevi-
ating symptoms of neurological disorders such as Parkinson’s
disease. Yet, despite its safety-critical nature, there does not
exist a platform for integrated design and testing of new
algorithms or devices. Consequently, we introduce a model-
based design framework for DBS controllers based on a physi-
ologically relevant basal-ganglia model (BGM) that we capture
as a network of nonlinear hybrid automata, synchronized via
neural activation events. The BGM is parametrized by the
number of neurons used to model each of the BG regions,
which supports tradeoffs between fidelity and complexity of
the model. Our hybrid-automata representation is exploited
for design of software (Simulink) and hardware (FPGA) BGM
platforms, with the latter enabling real-time model simulation
and device testing. We demonstrate that the BGM platform
is capable of generating physiologically relevant responses to
DBS, and validate the BGM using a set of requirements
obtained from existing work. We present the use of our frame-
work for design and test of DBS controllers with varying levels
of adaptation/feedback. Our evaluations are based on Quality-
of-Control metrics that we introduce for runtime monitoring
of DBS effectiveness.

I. INTRODUCTION

Parkinson’s disease (PD) is the second most prevalent neu-
rological disorder [1], affecting nearly one million people in
the US, with 60,000 new cases diagnosed every year [2].
With the aging population, which constitute the majority of
patients suffering from the disease, the expectation is that
these numbers will significantly increase. This will have a
growing economic impact, as the US alone is estimated
currently to spend $25B annually for disease treatment,
social security, and loss of income due to the inability to
work, with PD patients spending $2, 500 – $100, 000 per
year on treatment, depending on disease severity [2].

Deep brain stimulation (DBS) of the basal ganglia is
effective even in the most severe cases of PD, and is
also effective at treating symptoms of essential tremor and
dystonia. Commercially-available DBS devices implement
stimulation that is always ‘ON’, applying periodic pulses
with fixed frequency and without any feedback from the
patient (i.e., in open loop). Recently, it was shown that per-
formance of DBS controllers can be optimized, both in open-
loop and closed-loop setting, to increase the battery life of
the implanted devices without compromising effectiveness
of the therapy (e.g., [3]–[5]). Given research efforts focused
on improving sensing technology for DBS, a rapid increase

in the number of adaptive and closed-loop DBS devices is
expected in the near future.

However, such devices will have significantly increased
software design complexity, expected to exceed that of
cardiac pacemakers and implantable defibrillators, which
currently have 100,000 lines of code [6]. Even with existing,
relatively simple controllers, there are a number of DBS
device recalls due to software bugs; e.g., in 2013, more than
60,000 Medtronic DBS devices were recalled for software
design [7]. With the increase in software complexity, these
numbers will only rise, matching the trend for general
medical device recalls where for instance, software failures
resulted in 24% of all medical device recalls in 2011 [8],
with more than 1,500,000 software-based medical devices
recalled from 2002-2010 [9].

Although implantable medical devices, such as DBS
devices, are a primary example of safety-critical Medical
Cyber-Physical Systems, the medical device industry is only
starting to use methods for development of safety-critical
systems (e.g., [6], [10]), which were successfully employed
in other domains (e.g., automotive, avionics). One of the
main reasons is the lack of patient models and clinically-
relevant simulators that can be used for both device design
as well as safety and efficacy evaluation [6], [10]. For DBS
devices, this is highlighted for closed-loop and adaptive DBS
controllers; there is a need for high-fidelity, physiologically
relevant models that can be used as part of an integrated
development framework – both for model-based design and
simulation-based evaluation of controllers, as well as for
testing of their implementations (i.e., physical devices).

Although the underlying mechanisms of DBS are still not
fully understood, there exist computational models of the
basal ganglia (BG) in humans [11]–[13] and rats [14], which
represent the response of neurons to DBS therapies. These
models were employed to derive more efficient open-loop
therapies based on the use of non-regular temporal patterns
of stimulation that reduce energy consumption while less-
ening PD symptoms [3]. However, the high-computational
complexity of such models results in 4 to 5 orders of magni-
tude increase in execution-time compared to real-time. This
not only prevents their use for testing of physical devices,
but also significantly limits their usability in development
and evaluation of closed-loop and adaptive controllers. Thus,
animal testing is still the dominant method for design and
testing of DBS therapies (i.e., controllers).
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Figure 1. Model-based design framework for DBS devices – the developed BGM platform allows real-time physiologically relevant testing of DBS devices,
as well as simulation of controller models in Simulink or LabView; simulations are done in real-time when hardware-in-the-loop (HIL) functionality is used.

We introduce a model-driven development framework for
DBS controllers, illustrated in Fig. 1. First, we show that
a physiologically relevant model of the basal ganglia can
be captured as a network of nonlinear hybrid automata that
synchronize via neural activation events – we refer to this
model as the Basal Ganglia Model (BGM). The BGM is
parametrized by the number of neurons used to model each
of the BG regions, which supports tradeoffs between fidelity
of representation and complexity of the model. From the
network of hybrid automata models, software and hardware
implementations of the BGM are obtained. Note that such
a representation fits well with parallel execution models
supported by FPGAs, and thus the hardware-implemented
BGM platform capturing basal ganglia behaviors associated
with both healthy and PD conditions, as well as the response
to DBS, can be executed in real-time.

The platform also supports a fully programable interface
enabling access to (a) functional (continuous) electrical
potentials required for validation through simulation and
device testing, and (b) logical signals that can be used for
discrete-event based controller analysis. We provide a set
of formal requirements for model validation and successful
DBS control, and show how these can be checked at runtime
by a suitable set of monitors. Finally, we show how the
validated BGM model can be used for testing of DBS
devices, as well as design and evaluation of existing and new
controllers that optimize stimulation parameters, or employ
adaptation of stimulation based on the patient condition.

This paper is organized as follows. In Section II, we
provide more details on DBS. Section III introduces our
BGM-based development framework. In Section IV, we
describe the BGM and present formal requirements for
model validation; this is followed by description of the
BGM implementation. Section V shows the use of the BGM
framework for DBS controller design and evaluation, before
we provide concluding remarks in Section VI.

II. DEEP BRAIN STIMULATION

PD is a neurological disorder originating from degener-
ative changes in the substania nigra pars compacta (SNc)

Figure 2. Location of different basal ganglia (BG) segments – we focus
on the effects of DBS on the subthalamic nucleus (STN), globus pallidus
externus (GPe), globus pallidus internus (GPi), and thalamus (THM). DBS
electrodes (not to scale) are usually implanted in STN or GPi, delivering
biphasic pulses. The figure is a modified version of [15].

nucleus of the basal ganglia (BG) [1]. The disease man-
ifests with multiple symptoms including tremor, slowed
movement (bradykinesia), rigid muscles, impaired posture
and balance, loss of automatic movements, and speech and
writing changes. These symptoms are reflected in neural cell
activity of surrounding regions, including globus pallidus
interna (GPi) and thalamus (TH), where recordings can be
conducted during implantation of DBS electrodes (Fig. 2).
As illustrated in Fig. 3, healthy GPi and TH exhibit sporadic
spiking (i.e., neuron activations) with an overall stable firing
rate. On the other hand, in the PD state, GPi spiking becomes
more frequent and grouped (burst-like), while TH signals
exhibit burst activations and the inability to spike properly
(i.e., reach activation/triggering levels).

High frequency (between 130 and 185 Hz) DBS of two
BG segments – specifically, subthalamic nucleus (STN) and
GPi – is effective in suppressing the major motor symptoms
of PD. This is achieved by placing a thin metal 4-contact
linear array electrode in the STN or GPi (Fig. 2). These leads
generate a continuous train of short voltage pulses, with
amplitude in the range of [1, 3.5] V and duration between
60µs and 210µs for each phase of the biphasic pulse [16].
It is important to highlight that DBS increases the frequency
of spiking in GPi (Fig. 3, right), which is not the same as the
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Figure 3. GPi and TH signals for healthy BG, parkinsonian BG, and
parkinsonian BG treated with 130Hz DBS. Marked data shows aberrant
Thalamus (TH) behavior – double activation and missed activation; with
DBS, these behaviors subside.

expected behavior of GPi neurons in a healthy brain. Still,
the therapy is effective since spiking is evenly distributed in
GPi, and TH neurons recover their healthy behavior, showing
alleviation of aberrant firing patterns seen in the PD state.

Existing DBS devices are delivering fixed parameter
(voltage, pulse duration, pulse repetition frequency) stim-
ulation constantly throughout the time they are deployed.
This method of stimulation puts significant demand on the
primary cell battery that powers the device, and requires
surgical replacement every two to five years [17]. How-
ever, continuous stimulation is necessary as commercially
available DBS devices have no sensing capabilities, and
thus cannot detect when stimulation is required. To address
this, recent research has focused on development of devices
that enable both sensing and stimulation (although not at
the same time instances), which would enable design of
adaptive (closed-loop) DBS therapies [4], [5], [18]. Still,
sensing limitations, including sensing technology and the
number of BG points that can be monitored, prevent runtime
controller adaptation, hence requiring medical staff to tune
DBS parameters over several visits, which significantly
increases the cost of the therapy. Even with multiple visits,
due to the large number of potential stimulation parameters,
selection of parameters that minimize PD symptoms remains
challenging [16]. In addition, it is not possible to estimate
how a specific parameter assignment would work for a
specific patient prior to the surgery, and currently used
testing procedures are based on device setting evaluation
only after the device has been implanted.

III. DBS DEVELOPMENT FRAMEWORK

Fig. 1 illustrates our model-based framework for de-
sign and evaluation of DBS controllers. The framework is
based on the BGM platform that supports both model-based
and physical controller/device-based evaluations. Hence, the
platform plays a crucial role during DBS device development
by ensuring continuous controller validation, which directly
enables implantable DBS device certification [19]. Starting
from the controller modeling stage, the BGM can be used for
virtual prototyping and controller development, by capturing

desired physiologically-relevant patient conditions and inter-
actions between the controller and BG neurons. That way
any discrepancies between the control model and physical
device implementation can be detected at an early stage.

Based on user requirements, the corresponding functional
and logical interfaces of the BGM are generated. The logical
(event-based) interface allows us to abstract the behavior
of the BG regions as interaction of event-triggering nodes,
which is a suitable level of abstraction for some DBS
therapies; with such interface, discrete-event safety and
efficacy analysis of the controller can be performed. On the
other hand, the functional interface exposes the electrical
potentials of the desired subset of BG neurons, thus enabling
system analysis via simulation and testing of DBS devices.

The efficient, resource-aware implementation of the BGM
as a network of non-linear hybrid-automata modeling basal
ganglia neurons, allows us to model neuron interactions
with the desired fidelity, by capturing dynamics of BG
regions with a suitable number of neurons. This enables
system designers to exploit tradeoffs between the BGM
complexity and fidelity, as well as allow for execution
of the BGM on resource constrained platforms (i.e., by
using lower numbers of neurons). Note that as the number
of modeled neurons changes, the behavior of the model
can significantly change even though the rest of the BGM
parameters remain the same. Thus, to ensure that a validated
version of the BGM is used (for specific values of BGM
parameters), we formally capture the requirements for model
validation, and hence the platform automatically monitors
whether the generated BGM configuration corresponds to
a physiologically relevant basal-ganglia network. Similarly,
our formalization of the level of success for the DBS therapy
(i.e., controller) allows us to generate Quality-of-Control
(QoC) runtime monitors that can automatically detect dis-
crepancies between the desired QoC guarantees and the
performance of controller/device at hand.

IV. BASAL GANGLIA MODEL OF THE BRAIN

In this section, we present the BGM, its hardware (in
FPGA) and software (Simulink) implementations, as well
as model validation based on a new formalized set of
requirements for physiologically-relevant BG models.

A. Modeling Neural Activity

The overall structure of the model is shown in Fig. 4,
with each of the components – thalamus (TH), subthalamic
nucleus (STN), globus pallidus internus (GPi) and globus
pallidus externus (GPe), capturing neural activity of the
corresponding BG regions and their interaction. Note that
although TH is technically not a part of BG, it reflects
activity of GPi and helps with PD detection, and thus is
included in the model.

Each component of the BGM is comprised of n neu-
rons, with n being a design parameter, that are modeled
using a variation of the Hodgkin-Huxley neuron model [20]
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Figure 4. BGM network with components modeling the basal ganglia
regions. The current stimuli from the DBS are delivered to a number (that
depends on the DBS voltage levels) of STN neurons. Regions interact via
neural activations that capture triggering of neurons in each BG region.

based on the region; thus, we name them after their origin
(i.e., STN, GPe, GPi, TH). Activity of each neuron is mainly
described by their electrical potential, which we denote by
vTHj , vSTNj , vGPij , and vGPej , for neuron j ∈ {1, ..., n}
of the corresponding region. Hence, the state of each BGM
component can be captured with a electrical potential vector

vr = [vr1 . . . v
r
n]T ∈ Rn, r ∈ {STN,GPe,GPi, TH}.

(1)
The initial states of the neurons are one of the sources of
stochasticity in the model, in addition to the sensorimotor
cortex (SMC) current in TH (as described in the TH model).

Also, the neurons are interconnected through chemical
synapses to form a BG network (Fig. 4). In general, these
connections can be modeled as dynamical systems with im-
pulse responses specified by the alpha synaptic function [14]

α(t) = te
−t
τ , (2)

where parameter τ depends on the type of the synapse.
However, to allow for discrete-event analysis of interactions
between the brain regions in the BGM, we incorporate the
synaptic functions into the neuron models specified as non-
linear hybrid automata; thus the inputs and outputs of the
neurons are considered as discrete events, and interactions
between the neurons are captured by event passing (i.e., syn-
chronization) with neighboring neurons. We refer to these
events as neural activations, and define them as follows:

Let vrj (t) ∈ R, r ∈ {STN,GPe,GPi, TH}, j ∈ {1, ..., n}
represent electrical potential of the jth BG neuron in re-
gion r, at time t. Then, the neuron generates a binary event
arj (i.e., a trigger) when vrj (t) crosses over a predefined
threshold hrj :

arj(t) = 1⇔ (vrj (t) ≥ hrj)∧(∃δ > 0,∀ε ∈ (0, δ], vrj (t−ε) < hrj).
(3)

We also define sets that capture activations originating
from each neuron over time. Specifically, for jth neuron
in region r, we define the sets of all neural activations
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Figure 5. GPe neuron: Origins of receiving and destinations of transmit-
ting events.

up to time t (denoted by Arj(t)), as well as the set of all
neural activations within the latest time-window of size Tw
(ArTw,j(t)) as

Arj(t) = {t |(t′ ≤ t) ∧ (arj triggers at t
′)}, (4)

ArTw,j(t) = {t′ |(t− Tw ≤ t′ ≤ t) ∧ (arj triggers at t
′)}

(5)

For example, Fig. 5 illustrates one GPe neuron’s con-
nectivity with other neurons; the neuron receives events
from two GPe and two STN neurons, while transmitting
activations to connected neurons. In the rest of the section,
we describe neuron models for each of the BG regions,
focusing on the evolution of electric potential for different
neuron types. The full set of model equations, based on
dynamics from [11]–[13], is provided in the Appendix.

Subthalamic Nucleus: Each STN neuron receives events
from two corresponding GPe neurons, as well as stimuli
from the DBS device – the model of neural connectivity
is presented in Section IV-A1. We also refer to the STN
neurons as ‘system input’ neurons, as only they receive
inputs from the controller. The electric potential evolution
is described as [11]

v̇STN =
1

Cm
(iSTNphys (vSTN )+Iapp+idbs−iGPe→STN ). (6)

Here, iphys comes from internal physiological processes
of the neuron, ISTNapp is a constant current used to bias
firing rates to physiological values, while idbs represents
the current induced by the DBS; this current is usually
set to 300µA/cm2 and follows the shape of DBS voltage
signal. In addition, a higher DBS voltage input results in an
increased number of excited neurons (as the stimuli reaches
a larger number of neurons); thus, higher DBS amplitudes
can be modeled by adding idbs to a larger number of STN
neurons – i.e., by connecting them to the DBS as described
in Section IV-A1.

Finally, let τGPej1
and τGPej2

denote the latest time of
activations aGPej1

and aGPej2
, originating from the connected

GPe neurons and triggering the considered STN neuron. We
can define the current caused by the events from GPe as

iGPe→STN (t) = gsynSGPe,STN (t)(vSTN (t)−Esyn), (7)

where gsyn and Esyn are constants (see the appendix), and

SGPe,STN (t) =
∑

j∈{j1,j2}

α(t− τGPej ).
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Figure 6. Evolution of electric potential in an STN neuron for sev-
eral configurations – with and without DBS or events from neighboring
GPe neurons; activations from the GPe have inhibitory effect on STN,
while DBS overrides the intrinsic neural activations in the neuron with
higher frequency stimuli.

From (2), α(t − τGPej ), and thus SGPe,STN as well, re-
initializes with every new activation of the GPe neurons.

Fig. 6 illustrates the dynamics of STN neurons. Without
activations from neighboring GPe neurons or DBS inputs,
the STN neuron electric potential is periodic, due to its
internal dynamics (Fig. 6(a)). When we allow events from
GPe to influence the STN neuron, the number of activations
in STN decreases, showing inhibitory effects of GPe neurons
(Fig. 6(b)). With DBS, external stimuli overrides the behav-
ior of STN neurons unrelated to GPe activity (Fig. 6(c),(d)).
This shows how DBS can regulate aberrant firing rate of
STN caused by PD and other neurological disorders.

Globus Pallidus: Due to properties of neural cells in
these regions, GPi and GPe electric potentials exhibit same
dynamics. They provide intermediate processing between
neurons in the STN that are directly excited by DBS (‘input
neurons’) and neurons in TH where the effects of DBS
are observed (‘output neurons’); hence, they are sometimes
considered a ‘hidden layer’ of the model. Still, GPi activity
can be recorded for model validation, as it provides good
insights into the inner workings of the BG regions.

GPi and GPe neurons receive four events (Fig. 5), from
two STN neurons and from other two GPe neurons. They
have one key difference – unlike the GPi, the GPe block
effectively contains closed loops (i.e., cycles) due to inter-
connections between its neurons. Formally, dynamics of the
electric potentials can be captured as (we use GP to denote
either GPe or GPi)

v̇GP =
1

Cm
(iGPphys(v

GP ) + IGPapp − iSTN→GP − iGPe→GP ).

(8)
Again, let us define τGPej1

and τGPej2
as times of most recent

activations in the GPe neurons that can trigger the considered
GPe or GPi neuron. Then, we have that

iGPe→GP (t) = gsynSGPe,GP (t)(vGP (t)− Esyn),

SGPe,GP (t) =
∑

j∈{j1,j2}

α(t− τGPej ). (9)

Also, iSTN→GP (t) = gsynSSTN,GP (t)(vGP (t) − Esyn),

where, if i1 and i2 are the indices of the STN neurons
connected to the considered GP neuron and ASTNi1

and
ASTNi2

are defined as in (4), it holds that

SSTN,GP (t) =
∑

t′∈ASTNi1
(t)

α(t− t′) +
∑

t′′∈ASTNi2
(t)

α(t− t′′).

Unlike re-initializing synaptic α function that was used for
SGPe,STN , due to its definition, SSTN,GP will exhibit a
cumulative behavior taking into account all previous activa-
tions, with larger impact coming from the more recent ones.

Thalamus: TH neurons receive one input from SMC and
one event from GPi. As they generate no events for other
neurons of BG, and their potential can be recorded to asses
effectiveness of a DBS therapy, we also refer to them as
monitor (i.e., sink) neurons. Their electrical potential is
modeled as

v̇TH =
1

Cm

(
iTHphys(v

TH) + iSMC − iGPi→TH
)
. (10)

Here, current iTHphys comes from internal physiological
processes occurring in TH (see Appendix), while iSMC

represents inputs from SMC. This current is modeled as a
PWM signal with amplitude 3.5µA/cm2, pulse width of
5ms, and inverse-gamma distributed random period with
shape parameter 25 and scale parameter 1785.71. Finally,
iGPi→TH represents the effects of activations coming from
the connected GPi neuron. Let AGPij (t) denote the set of
all activations from the GPi neuron, as in (4). Then, the
resulting current can be modeled as

iGPi→TH(t) = gsynSGPi,TH(t)(vTH(t)− Esyn), (11)

with parameters gsyn and Esyn defined in the Appendix, and

SGPi,TH(t) =
∑

∀t′∈AGPi(t)

α(t− t′).

1) Network of Neurons: The network of (i.e., signaling
between) previously described neurons can be captured as a
directed graph (V, E), where V = VTH ∪ VSTN ∪ VGPe ∪
VGPi is the set of vertices capturing all n neurons in each
of the modeled regions. The set of edges E is defined as

E =
{

(vGPij , vTHj ) | 1 ≤ j ≤ n
}
∪

∪
{

(vGPej , vSTNj )
}
∪
{

(vGPej+n1, v
STN
j ) | 1 ≤ j ≤ n

}
∪
{

(vGPej+n1, v
GPi
j )

}
∪
{

(vGPej−n2, v
GPi
j ) | 1 ≤ j ≤ n

}
∪
{

(vSTNj , vGPij )
}
∪
{

(vSTNj−n1, v
GPi
j ) | 1 ≤ j ≤ n

}
∪
{

(vGPej+n1, v
GPe
j )

}
∪
{

(vGPej−n2, v
GPe
j ) | 1 ≤ j ≤ n

}
∪
{

(vSTNj , vGPej )
}
∪
{

(vSTNj−n1, v
GPe
j ) | 1 ≤ j ≤ n

}
∪
{

(vDBSj , vSTNj ) | 1 ≤ j ≤ bnudbs/umax + 0.2c
}
(12)

where ”+n” and ”−n” denote addition and subtraction
modulo n, while udbs and umax denote current and maximal
voltage of the DBS device, respectively. For example, the



connection from neuron vGPij to neuron vTHj is captured by
the first subset above.1 Finally, each neuron can only receive
events coming from distinct neurons, which is violated
in (12) for n = 1 and n = 3. Thus, to obtain a valid BGM
network, the lowest number of neurons per region is four.

B. Model Implementation

The Basal Ganglia Model was implemented both in hard-
ware (FPGA) and software (Simulink). The Simulink BGM
with n = 10 neurons per region was 4 orders of magnitude
slower on a 6th gen. 3.5 GHz Intel i7 CPU with 16GB of
memory than the FPGA BGM capable of running in real-
time. Thus, the Simulink implementation allows for model-
based design and evaluation of DBS control protocols di-
rectly in Simulink, while the FPGA BGM platform enables
testing of physical DBS devices in real-time. Also, with
Hardware-in-the-Loop (HIL) support we directly interface,
in real-time, signals from the BGM platform to control mod-
els designed in Simulink or LabView, as shown in Sec. V.

To ensure consistency between the FPGA and Simulink
BGM implementations, we implemented a discretized model
of the BGM from Section IV-A. As the BGM is modeled
as a network of hybrid automata, the discretized model was
obtained using Forward Euler Method, as in e.g., [21], with
sampling period of 100 kHz.2 Since the Simulink BGM im-
plementation was straightforward, due to Simulink’s support
for modeling of hybrid systems, here we focus on the FPGA
implementation of the BGM.

The FPGA implementation of the BGM is fully paramet-
ric – i.e., suitable VHDL code for a specific number of
neurons per region n is automatically generated. Also, the
fully programable interface exposes electric potentials and
activation signals from the desired neurons, where the former
are upsampled (while ensuring that no activations are lost) to
the sampling frequency of the DBS controller or data logger.

Given that the BGM can be described as a network of
hybrid automata communicating via discrete events, the par-
allel execution model intrinsic to FPGAs provides excellent
support for real-time execution. However, the complexity
of the BGM conflicts with our goal to obtain a resource
efficient VHDL implementation. Thus, we had to address
the following challenges. First, the BGM is described using
a high number of nonlinear functions for each of the neurons.
To avoid their exact computation in real-time (and minimize
the number of used hardware multipliers), we opted for the
use of Look-Up-Tables (LUTs). We were able to represent
all the required functions using linear operations and 4 basis
functions captured by the LUTs: f(x) = x

x+10 , f(x) =
x

x+15 , f(x) = ex and f(x) = 1
1+ex . Also, to minimize

1We sometimes abuse the notation by using vrj , to denote both electric
potential of the jth neuron in region r as well as the neuron itself.

2Due to discretization, some of neuron activations may be delayed by
approximately 10µs. To show that this does not introduce invalid BG
behaviors, in the next subsection, we present the BGM validation by
focusing on the FPGA BGM implementation.
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Figure 8. Histogram of (required and obtained) SMC inter-activation times.

memory use, the LUTs are shared between the neurons in
each BG region. That on the other hand, introduced the
problem of resource scheduling, requiring a design of an
execution state machine (FSM) for each region, to control
data flow between neurons and access to the LUTs (Fig. 7).

We also had to make a decision between fixed and floating
point implementation, and the number of bits used for data
representation. While floating point representation provides
better precision, it requires far greater resources (logical
elements and registers, fixed-point multipliers). Given that
the BG behavior is quasi-periodic, we were able to account
for a range of possible state values. Thus, to avoid potential
overflow we opted for the use of 10 bits for the integer
part. As most FPGAs provide 18-bit hardware multipliers,
we support two implementations based on the use of 37-bit
(obtained using four 18-bit multipliers) or 18-bit multipliers.

Finally, it is worth noting that suitable random generators
are used for the SMC current (Fig. 8) and initial neuron
states. We tested our design on Altera DE2-115 FPGA board
(Fig. 12) that provided sufficient resources for n = 10 neu-
rons per region, resulting in a model with good fidelity [3],
[12], [14]. For an implementation based on the use of 37-bit
multipliers, Table I provides a list of the required hardware
resources for BGM with 10 neurons per region.

C. Model Validation
The fidelity of the BGM depends on the parameter settings

and the number of neurons per region – we refer to these
values as a BGM configuration. To validate the functionality



Resource Used
Logic Elements 97,818
1-b Registers 54,604
HW Multipliers 320
Memory [b] 3,331,136

Table I
HARDWARE RESOURCE CONSUMPTION FOR THE BGM VHDL

IMPLEMENTATION WITH n = 10 NEURONS PER BG REGION.

of the BGM, we compare behavior of the model to available
recordings obtained from real patients with healthy and
Parkinsonian brains, and show how the BGM can reproduce
the underlying electrical activity of the BG regions.

Furthermore, we formalize a set of requirements that
electrical activity in both the healthy and Parkinsonian
states needs to satisfy. These requirements are captured
using metrics that are defined over moving time-windows of
suitable size, denoted by Tw; thus, we directly mapped them
into a set of runtime monitors that can be used to validate if
a specific BGM configuration captures the desired behaviors.
Note that the specified set of constraints is used to capture
behaviors without DBS – requirements for electrical activity
of the BG under a successful DBS therapy will be described
in Section V. Also, note that the Hodgkin-Huxley neuron
model along with the α synaptic function results in a quasi-
periodic behavior (as in Fig. 6). Therefore, although there
is a great deal of variability in parameters between different
subjects and electrode positions, for observation windows
of suitable size, these metrics should remain consistent over
time for any observed electrical activity in the BG regions.

1) Requirements and Metrics for Model Validation: To
validate various BGM configurations, we employ the follow-
ing set of metrics that capture regularity of specific events in
the model. Based on experimental data available in literature,
these metrics are then used to define a set of constraints that
BGM signals capturing healthy and Parkinsonian behaviors
should satisfy. It is important to highlight that some of
these conditions may be satisfied for activations associated
with both healthy and PD brains; e.g., the value ranges for
mean firing rate metrics, defined below, as healthy and PD
behaviors overlap for some BG regions. Hence, none of the
constraints should be considered alone but rather all have to
be satisfied for a model to pass validation. Also, the metrics
are defined over the sets of neural activations during the
last Tw time units (i.e., from (5)), with Tw being a design
parameter. In our experiments, we used Tw = 10 s as in [14].

Mean Firing Rate (mr
fr) within a region r (STN, GPi, or

GPe) captures the average number of recorded activations
originating from the region during the time-window – i.e.,

mr
fr =

∑n
j=1 |ArTw,j |
nTw

, r ∈ {STN,GPe,GPi}, (13)

with ArTw,j defined as in (5). The mean firing rates of STN
and GPi neurons are higher, whereas that of GPe neurons
are lower for patients with PD compared to the healthy
patients (e.g., [22], [23]). Note that this test was originally

developed for recordings from only the BG regions, and as
such does not include TH. The left side of Table II presents
experimental results available in literature (e.g., [23]).

Coefficient of Variation (Cv): GPi neurons in a healthy brain
exhibit regular firing, while PD alters the dynamics to more
irregular, burst-like activation patterns. This is captured by
the coefficient of variation Cv for GPi neurons. To formally
define Cv , we start from the set of inter-spiking-intervals
(ISI) over time-window Tw as (for j ∈ {1, . . . , n})

Θj(Tw) = {τisi = τ1 − τ2 | τ1, τ2 ∈ AGPiTw,j ∧ (τ1 < τ2)∧
((τ1, τ2) ∩ AGPiTw,j = ∅)},

where (τ1, τ2) denotes the open time interval between these
points. Then, the Coefficient of Variation can be computed as

Cv =
σ(Θj(Tw))

µ(Θj(Tw))
.

where σ and µ denote standard deviation and the mean value,
respectively, across the elements of the set. Coefficient Cv
should be lower during the healthy condition compared to
the PD state. This characteristic was observed in experi-
mental data from [24], and it also holds that in general
Cv ∈ [0.19, 0.82] for healthy brains, and Cv ∈ [0.5, 0.97]
for patients with PD, as shown in Table II.

Beta Band Power (Pβ): Let V GPiTw,j
(ω) be the one-sided

power spectrum of vGPij (t), j ∈ {1, . . . , n}, computed over
the window Tw. As shown (e.g., in [14]), low-frequency
oscillatory activity in the beta band (i.e., [13 − 35Hz]) is
correlated to motor symptoms of PD. Hence, we compute
parameter Pβ as

Pβ =
1

n

n∑
j=1

∫ 2π·35Hz

ω=2π·13Hz
V GPiTw,j (ω)dω.

If we denote the β-band power of a healthy and PD
thalamus by Phβ and PPDβ , human and animal recordings
have shown that PPDβ has to be significantly higher than
Phβ – such as during episodes when a brain moves from
exhibiting healthy behaviors to PD symptoms (e.g., if a
drug is induced) [14]. Thus, for model validation, rather
than inspecting the spectrum visually as is the common
practice, we consider the Phβ /P

PD
β ratio, which should be

lower than 1 for valid BGM models.
2) Experimental Validation: We experimentally validated

the BGM on several standard clinically relevant scenarios fo-
cused on behaviors associated with healthy and Parkinsonian
brains. Using the hardware and software BGM platforms,
we performed standard evaluation tests from [11], [12], [14].
Due to the space constraints, in this section, we show several
common representations of the recorded data from GPi
neurons only, for a BGM model with n = 10; specifically,
we present time series, rastergram, and spectrum (Fig. 9), as
well as ISI histogram (Fig. 10). As can be seen, time series
from a GPi neuron show that GPi with PD has a higher



Values from Literature Developed BGM
n = 4 n = 6 n = 8 n = 10

Normal PD Normal PD Normal PD Normal PD Normal PD
mSTNfr [Hz] [9, 29] [11, 41] 11.68 13.52 10.08 12.59 10.14 11.34 10.34 12.66

mGPefr [Hz] [47, 85.2] [29.2, 67.8] 70.08 40.56 70.6 37.77 71.48 31.73 70.16 37.99

mGPifr [Hz] [59.8, 101.2] [76.6, 135.4] 78.69 81.14 72.11 88.16 76.62 91.28 74.23 82.86

Cv [0.19, 0.82] [0.5, 0.97] 0.247 0.627 0.203 0.74 0.205 0.47 0.202 0.65

Phβ /P
PD
β [0,1) 0.6613 0.7288 0.686 0.796

Table II
COMPARISON BETWEEN AVAILABLE RESULTS IN THE LITERATURE AND THE RECORDED ACTIVITY FOR THE DEVELOPED BGM.

frequency with more bursty neural activations (Fig. 9(top)).
The rastergram in Fig. 9(middle) and histogram in Fig. 10
further support this observation, showing that this holds for
all neurons in the GPi of the parkinsonian BGM. Finally,
a significant increase in power can be observed in the β-
frequency band in the PD case.

Full comparison between experimental data obtained from
literature and our implementation with n = 10 neurons is
provided in Table II. While the obtained values lie within the
required ranges, it can also be observed that all previously
specified conditions are satisfied as well. For example, for
all considered values of n, it holds that mfr of STN and
GPi are higher in PD compared to healthy BG, while the
opposite holds for the GPe region. Furthermore, Cv is
greater in the PD case, compared to the healthy BG. Note
that although some values, such as mSTN

fr for n = 4 satisfy
both healthy and PD requirements, when all constraints
are taken into account none of the ’healthy’ BGM models
satisfied all (or even majority) of the PD requirements,
and vice-versa. An interesting observation was that some
metrics alone (e.g., mGPe

fr ) were shown as reliable features
to (independently of others) differentiate between healthy
and parkinsonian BG; investigating this further will be an
avenue for future research.

In addition, as shown in Table II, the BGM remains
valid for varying number of neurons (n ≥ 4), both from
the perspective of the required value ranges, as well as
the described relationship between observed activations in
Parkinsonian and healthy brains. This shows that the model
can be implemented on even resource-constrained platforms.
However, models with higher numbers of neurons still
provide several advantages. First, the difference between
parameters obtained for normal and PD conditions tends to
increase with n, mainly for observed firing rates; given that
synchronization of firing between different neuron groups is
oftentimes increased in PD, a higher number of neurons n
provides better model fidelity. In addition, a larger n allows
more accurate modeling of the effects of DBS voltage modu-
lation, such as changes in amplitude or shape (e.g., different
types of biphasic voltage pulses).

V. MODEL-BASED DESIGN OF DBS CONTROLLERS

As part of DBS therapy, there are generally three param-
eters that can be changed – pulse width, frequency/temporal

patterns, and voltage – with the goal of obtaining suf-
ficient Quality of Control (QoC), while reducing energy
consumption. In this section, we illustrate the use of our
BGM platform for design and evaluation of DBS controllers
and devices. We show how the BGM supports testing of
existing DBS devices, as well as modeling and design of
new controllers along with experimental evaluation once
they are implemented. To facilitate this, we formalize the
requirements for successful DBS, and implement them as
runtime monitors providing real-time feedback about the
QoC for the controller under consideration.

A. Quality of Control Metrics for DBS

Quality of control for a DBS controller is determined by
PD symptoms. While symptom severity is usually diagnosed
by a clinician that is observing patient’s behavior, this test
can be very subjective and inappropriate for automated QoC
evaluation and parameter tuning. Hence, several metrics
based on signals from TH and GPi are developed to evaluate
severity of PD. Here, we consider two – Error Index (EI) [3],
and Power Spectral Density (PSD) [14]. The definitions of
the QoC metrics are based on the set of activations in a
moving time-window of size Tw, which can be directly
implemented as circular FIFO buffers of suitable size. Thus,
without significant resource utilization, we included them
into the BGM platform.

1) Error Index (EI) observes the number of healthy re-
sponses in TH to inputs from SMC – i.e., EI(t) = Nerr(t)

NSMC(t) .
Here, NSMC represents the total number of activations from
the SMC inside the observed time window, i.e., NSMC(t) =
|ASMC

Tw
(t)| as defined in (5). Also, Nerr(t) tracks the

number of faulty TH activations in relation to the received
SMC inputs. Specifically, a TH activation is deemed faulty
if TH neuron corresponding to an SMC input does not
have exactly one activation inside the 25 ms time-window
following the SMC activation. The value EI equal to 0
is associated with no PD symptoms, while the EI value 1
represents the most severe case of PD.

2) Power Spectral Density (PSD) is computed over the β-
band spectrum of signal inside of the time window Tw, since
a healthy brain exhibits a consistent shape of PSD, while
parkinsonism causes increased activity in the beta frequency
range. Thus, we use Pβ as in Section IV, where higher values
of Pβ indicate increased severity of PD symptoms.
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Figure 9. Time series of a single neuron, and rastergram and averaged normalized spectrum of all n = 10 recorded GPi neurons. The difference between
parkinsonian and healthy BG is that PD neurons fire in bursts of more frequent activations, and β-band activity ([13, 35] Hz) is significantly increased.
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Figure 10. Histograms of inter-spiking intervals (ISI) of GPi neurons. In a
healthy brain, activations arrive at variable time distances, grouped around
the mean value. For PD brains, inter-spiking intervals are divided into more
spaced bins of equidistant activations.

B. DBS Controller Design and Validation
To illustrate the use of the BGM-enabled design and eval-

uation framework, we considered three types of controllers:
1) Classic controller, denoted by Cfreq , is a conven-
tional DBS device used in clinical practice. It continuously
provides a periodic signal with amplitude equivalent to
300µA/cm2, pulse width of 300µs and pulse repetition
frequency in the 130Hz − 180Hz range.
2) Pattern-based controller (Cpatt) is similar to the classic
controller, as it persistently delivers pulsatile stimulation.
This recently proposed type of controller [3] employs any
temporal pattern with a constant firing rate over a large time
window, instead of having constant frequency; reduction
in energy consumption is achieved by the use of lower
pulse repetition frequencies. The main challenge is to find
a suitable temporal patternof stimulation [3].
3) Adaptive controller (Cadapt) is based on the recently
proposed sensing technology (though not deployed in prac-
tice). Given that the stimulation signal has significantly
higher amplitude than the signal being recorded, sensing
and DBS have to be done in separate time slots [18]. In
our design, Cadapt periodically (every 10 s) measures GPi

DBS

𝑡 ≤ 10𝑠
Idle

𝑡 ≤ 10𝑠

PD, 𝑡 > 2𝑠

Detect

using 𝑃𝛽
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𝑡 ≔ 0

PD, 𝑡 > 2𝑠
𝑡 ≔ 0

𝑡 ≔ 0

𝑡 ≔ 0
𝑡 > 10𝑠

𝑡 > 10𝑠

Figure 11. Adaptive controller Cadapt that periodically checks for
presence of PD symptoms (using Pβ values) and stimulates accordingly,
thus increasing the battery lifetime of the device.

signal for Tsens = 2s, after which it decides whether to start
stimulation or remain dormant for the following 10s; the
decision is based on the β-band power calculation (Fig. 11).

The aforementioned controllers were designed and tested
using testbed shown in Fig. 12. Specifically, (a) Cfreq was
implemented directly in a Cortex-M3 microcontroller, (b) the
exploration of temporal patterns for Cpatt, based on a search
similar to the one from [3], was done in LabView using
HIL real-time simulation support and directly employing the
feedback from QoC monitors on the platform, and (c) for
Cadapt, modeling and simulation was done using the HIL
real-time support, while the transition from the model to
Cadapt implementation on top of nanoRK RTOS was done
manually (although code generation tools for such models
exist, e.g., [25]). Each of the controllers was tested on
Parkinsonian BGM with n = 10 neurons per BG region.

Figure 12. Experimental setup for DBS controller evaluation, supporting
HIL simulation of controller models as well as testing of physical devices.
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Figure 14. Effects of DBS on PD given different frequencies. Although
GPi shows periodic behavior, there are no pulse trains observed for PD
condition in Fig. 9. Furthermore, the β frequency band (13-35Hz) is not
pronounced, showing alleviation of PD symptoms.

Healthy PD
EI [0 , 0.037] [0.1481 , 0.52]
Pβ [7.168 , 20.35] [85.05 , 106.8]

Table III
COMPARISON OF AVERAGE QOC VALUES FOR HEALTHY BG AND

PARKINSONIAN BG WITHOUT DBS.

The classic controller Cfreq was tested for stimulation
frequencies ranging from 130Hz to 180Hz. To facilitate
comparison with considered healthy and PD BGMs, we
experimentally evaluated values for the QoC metrics when
DBS was not used (Table III). Mean values for QoC metrics
for all controller executions (Table IV) show the effective-
ness of the controller. Also, the recordings from GPi neurons
in Fig. 14 validate this – although activations seem more
frequent than for a healthy brain on the left side of Fig. 9,
the bursty neuronal activations (Fig. 9, right) were prevented,
thus alleviating PD symptoms; this is especially true for
140Hz DBS (Table IV) that was more effective for the
BGM configuration. Note that there are notable differences
between the QoC values for effective DBS on a PD brain and
the values when DBS was not used. Thus, the QoC monitors
can be used to detect non-effective DBS controllers.

130Hz 140Hz 150Hz 160Hz 170Hz 180Hz
EI 0.004 0 0 0.0015 0.0014 0.0026
Pβ 23.8 8.816 14.97 15.28 19.7 16.8

Table IV
COMPARISON OF THE AVERAGE QOC MONITOR VALUES FOR VARIOUS
STIMULI FREQUENCIES OF THE Cfreq DBS FOR A PARKINSONIAN BG.

PD + Pattern DBS
EI 0.0019
Pβ 76.88

Table V
QOC PARAMETERS FOR A PARKINSONIAN BG STIMULATED BY Cpatt

WITH AVERAGE FIRING RATE CORRESPONDING TO 100HZ.

Furthermore, we tested the pattern controller Cpatt for
obtained DBS pattern where the HIL functionality and real-
time feedback from QoC monitors were used for (subopti-
mal) parameter search. While results presented in Table V
are not as impressive as for the 140Hz classic controller
Cfreq, the stimulation rate is equivalent to 100Hz, signif-
icantly improving energy efficiency. Finally, the adaptive
controller Cadapt was tested for 130Hz DBS, and given
the separation of QoC parameters between healthy and PD
conditions, it managed to detect all PD and healthy states
throughout the run. Given that data remained consistent with
values presented in Table III, we omit them here. A sample
of recorded TH signal is shown in Fig. 13. This illustrates
the benefits of closing the loop (even without sensing and
actuation during the same time intervals), as the use of DBS
is reduced when there was not need for it.

VI. CONCLUSION

We introduced a model-based design framework for deep
brain stimulation (DBS). The main component of the frame-
work is the basal ganglia model (BGM), specified as a net-
work of hybrid automata, that captures physiologically rel-
evant behaviors of healthy and Parkinsonian brains. Based
on this representation, we developed software (in Simulink)
and hardware (FPGA) BGM implementations, with the latter
enabling real-time model simulation and device testing. The
BGM was validated using a set of formal requirements that
we developed, and used for design and test of three types of
DBS controllers with varying levels of adaptation/feedback.
To evaluate the controllers, we introduce formal Quality-of-
Control (QoC) metrics and requirements that can be used
for runtime monitoring of DBS effectiveness.

The BGM platform opens new opportunities to advance



DBS devices and controllers. While the BGM allows mod-
eling varying levels of PD, our goal is to provide methods to
fit BGM parameters to patient-obtained data. These patient-
specific BGMs will provide clinicians a better starting set
for patient-specific parameter tuning. We will also focus on
developing auto-tuning and closed-loop controllers. Further-
more, different neuron configurations can be used to fit
specific conditions, or even changed in real time to simulate
drug effects. Finally, the BGM is a network of subsystems
communicating through discrete events. This enables the use
of invariant mining to generate abstraction of the model,
which allows for formal controller synthesis and verification.
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APPENDIX
DETAILED DYNAMICS OF THE BASAL GANGLIA MODEL

To help with brevity of equations for the model
from [12], we will sometimes use v rather than vr, r ∈
{STN, TH,GPi,GPe} when there is no confusion.

Thalamus (TH):

Cmv̇
TH = iTHphys(v

TH) + iSMC − iGPi→TH
iTHphys(v) = −iL − iNa − iK − iT

ḣ = (h∞ − h) /τh(v)

ṙ = (r∞ − r) /τr(v)

where

iL = gL (v − EL) ; gL = 0.05

iNa = gNam∞(v)
3
h (v − ENa)

m∞(v) = 1/ (1 + exp (− (v + 37) /7))



h∞(v) = 1/(1 + exp ((v + 41) /4))

τh (v) =
1

0.128 exp
(
−v+46

18

)
+ 4/

(
1 + exp

(
− v+23

5

))
gNa = 3;ENa = 50

iK = gK(0.75 (1− h))
4

(v − EK)

gK = 5; EK = −75

iT = gT p∞(v)
2
r (v − ET )

p∞(v) = 1/ (1 + exp (− (v + 60) /6.2))

r∞(v) = 1/ (1 + exp ((v + 84) /4))

τr(v) = 0.15 (28 + exp (− (v + 25) /10.5))

gT = 5; ET = 0

Subthalamic Nucleus (STN):

Cmv̇
STN = iSTNphys (vSTN ) + ISTNapp + idbs − iGPe→STN

iSTNphys (v) = −iL − iNa − iK − iT − iCa − iahp
ḣ = 0.75 (h∞ − h) /τh(v)

ṅ = 0.75 (n∞ − n) /τn(v)

ṙ = 0.2 (r∞ − r) /τr(v)

ċ = 0.08 (c∞ − c) /τc(v)

˙CA = 3.75 · 10−5 (−ICa − IT − 22.5CA)

where

iL = gL (v − EL) ; gL = 2.25; EL = −60

iNa = gNam∞(v)
3
h (v − ENa)

m∞(v) = 1/ (1 + exp (− (v + 30) /15))

h∞(v) = 1/ (1 + exp ((v + 39) /3.1))

τh(v) = 1 + 500/ (1 + exp ((v + 57) /3))

gNa = 37; ENa = 55

iK = gKn
4 (v − EK) ; gK = 45; EK = −80

n∞(v) = 1/ (1 + exp (− (v + 32) /8))

tn(v) = 1 + 100/ (1 + exp ((v + 80) /26))

iT = gTa∞(v)
3
b∞(r)

2
r (v − ET )

a∞(v) = 1/ (1 + exp (− (v + 63) /7.8))

b∞(r) = 1/

(
1 + exp

(
−r − 0.4

0.1

))
− 1/ (1 + exp (4))

r∞(v) = 1/ (1 + exp ((v + 67) /2))

tr(v) = 7.1 + 17.5/ (1 + exp ((v + 68) /2.2))

gT = 0.5; ET = 0

iCa = gCac
2 (v − ECa)

c∞(v) = 1/ (1 + exp (− (v + 20) /8))

tc(v) = 1 + 10/ (1 + exp ((v + 80) /26))

gCa = 2; ECa = 140

iahp = gahp (v − Eahp) (CA/ (CA+ 15))

gahp = 20; Eahp = −80

Globus Pallidus (Both GPi and GPe):

Cmv̇
GP = iGPphys(v

GP ) + IGPapp − iSTN→GP − iGPe→GP
iGPphys(v) = −iL − iNa − iK − iT − iCa − iahp

ḣ = 0.75 (h∞ − h) /τh(v)

ṅ = 0.75 (n∞ − n) /τn(v)

ṙ = 0.2 (r∞ − r) /τr(v)

˙CA = 1 · 10−4 (−ICa − IT − 15CA)

where

iL = gL (v − EL) ; gL = 0.1; EL = −65

iNa = gNam∞(v)
3
h (v − ENa)

m∞(v) = 1/ (1 + exp (− (v + 37) /10))

h∞(v) = 1/ (1 + exp ((v + 58) /12))

τh(v) = 0.05 + 0.27/ (1 + exp ((v + 40) /12))

gNa = 120; ENa = 55

iK = gKn
4 (v − EK)

n∞(v) = 1/ (1 + exp (− (v + 50) /14))

τn(v) = 0.05 + 0.27/ (1 + exp ((v + 40) /12))

gK = 30; EK = −80

iT = gTa∞(v)
3
r (v − ET )

a∞(v) = 1/ (1 + exp (− (v + 57) /2))

r∞(v) = 1/ (1 + exp ((v + 70) /2))

gT = 0.5; ET = 0

iCa = gCas∞(v)
3

(v − ECa)

s∞(v) = 1/ (1 + exp (− (v + 35) /2))

gCa = 0.15; ECa = 120

iahp = gahp (v − Eahp) (CA/ (CA+ 10))

gahp = 10; Eahp = −80

Synaptic functions parameters:

Synapses Parameters
iSTN→GPe gsyn = 0.15 Esyn = 0
iSTN→GPi gsyn = 0.15 Esyn = 0
iGPe→STN gsyn = 0.5 Esyn = −85
iGPe→GPe gsyn = 0.5 Esyn = −85
iGPe→GPi gsyn = 0.5 Esyn = −85
iGPi→TH gsyn = 0.17 Esyn = −85

Modeling Healthy and Parkinsonian condition:
Previously defined model can capture both healthy and PD

conditions of BG. The change between the two is possible
through proper selection of the Iapp current.

Conditions ISTNapp IGPeapp IGPiapp

Healthy 33µA/cm2 20µA/cm2 21µA/cm2

Parkinsonian 23µA/cm2 7µA/cm2 15µA/cm2


