
1

Distributing Numerical Control for
Reconfigurable Manufacturing Systems

Vuk Lesi, Student Member, IEEE, Zivana Jakovljevic, Member, IEEE, and Miroslav Pajic, Member, IEEE

Abstract—Ever-increasing demands for highly-efficient cus-
tomized manufacturing are driving the development of Indus-
try 4.0. Reconfigurable Manufacturing Systems (RMS) based on
modular, convertible, and interoperable equipment present a key
enabler of the 4th industrial revolution. Besides suitable mechani-
cal design, control of these smart manufacturing resources should
facilitate reconfigurability, unlike existing Numerical Control
Kernels (NCK) which hinder rapid reconfiguration due to the
complexity of their monolithic centralized controller.

On the other hand, reconfigurability is naturally promoted
by the distributed control paradigm; therefore, in this paper
we investigate design challenges in distributing the conventional
centralized NCK designs used for control of Computerized
Numerical Control (CNC) systems. We introduce an architec-
ture where each axis module is augmented with a networked
Low-Level Controller (LLC) that performs local control and
exposes a network interface for communication with other LLCs
towards executing the part program. These smart manufacturing
resources communicate with a cloud- or edge-based High-Level
Controller (HLC) that provides the part program over the
network and schedules manufacturing tasks. We investigate real-
time and network bandwidth requirements of different mappings
of the NCK layers to the LLCs and the HLC, providing
design-time tradeoffs for implementing distributed CNC control.
We demonstrate feasibility of our approach using industry-
grade single-axis robots and low-cost microcontrollers, and show
minimal accuracy impairment is introduced compared to the
centralized setup based on ISO 230 and ISO 10791-7 standards.

Index Terms—Reconfigurable Manufacturing Systems, Indus-
trial Cyber-Physical Systems, Computerized Numerical Control,
distributed motion control

I. INTRODUCTION

DEVELOPMENT and implementation of Reconfigurable
Manufacturing Systems (RMS) represent one of the

key enablers of high product variety manufacturing within
Industry 4.0 [1], [2]. To responsively address fluctuating
market demands, RMS enable rapid and cost effective changes
in production line structure, capacity and functionality [3].
They are characterized by scalability, convertibility, diagnos-
ability, and customization that are achieved through ad hoc
reconfiguration [4], [5]. Furthermore, quick, easy, and cost
effective RMS reconfiguration requires modular manufacturing
equipment with interfaces for rapid integration.

Major components of RMS represent reconfigurable ma-
chines, including reconfigurable machine tools (RMT), usually

V. Lesi and M. Pajic are with the Department of Electrical and Com-
puter Engineering, Duke University, Durham, NC, 27708 USA e-mail:
vuk.lesi@duke.edu, miroslav.pajic@duke.edu.

Z. Jakovljevic is with the Faculty of Mechanical Engineering, University
of Belgrade, 11000 Belgrade, Serbia e-mail: zjakovljevic@mas.bg.ac.rs

characterized by a modular mechanical design [6]. Mechanical
elements of modularly designed machine tools can be readily
configured using computer-aided design systems, while ca-
bling can be supplied using quick connection elements [7]. On
the other hand, control system reconfiguration represents a bot-
tleneck that requires special attention not only with respect to
wiring and connection, but also related to the control software
design. Currently, during reconfiguration of an RMS, experts
adapt and configure automation software and communication
protocols, thus increasing system downtime [7], [5].

One of the key enablers of quick reconfiguration is modular
control designed for fast (if possible automatic) setup, inter-
connection and start-up [8]. Rapid control system integration
can be achieved through distribution of control functions
traditionally performed at a central monolithic controller to a
master node and slave nodes (integral to mechanical modules)
that communicate over field bus, or even a wireless network,
as illustrated in Fig. 1. In networked CNC (Computerized Nu-
merical Control) systems, transmission latency reduction and
clock synchronization of master node (Numerical Control—
NC controller) and slave nodes (i.e., servo drives, I/O modules,
PLCs) have attracted significant attention. To reduce trans-
mission latency in CNC systems based on real-time Ethernet,
in [9] a cut-through routing mechanism is proposed in which
slave nodes immediately start sending information to the next
node, even before they receive the whole frame and before
cyclic redundancy check is performed. A clock synchroniza-
tion scheme based on frequency composition and peer-to-peer
transparent clock mechanism is proposed in [10], while [11]
proposes a three-ply CNC system reconfiguration based on (i)
hardware reconfiguration through loading axis control files on
FPGA, (ii) module reconfiguration using Profibus-DP, and (iii)
manual software reconfiguration carried out by the operator
using the local human-machine interface.

In [12], an embedded CNC system architecture based on
PLCopen handling real-time tasks and cloud-based service
to improve capacity for non-real-time computations is intro-
duced. Another open architecture design from [13] consists
of a host PC that performs generic software functions related
to NC code interpretation, validation, error compensation and
interpolation, while distributed microcontroller-based slave
nodes implement only position control and sensor monitoring.
While different MCU platforms were evaluated, the details of
low-level control were not reported, and the reported accuracy
and repeatability of the motion control is 0.2 − 1.0 mm.
In [14], the Linux Real-Time Application Interface is utilized
as the NCK runtime environment on a PC-based system featur-
ing high-bandwidth, real-time Ethernet Powerlink connection



2

axis

contro
lle

r

H
M

I
axis

contro
lle

r

axis

contro
lle

r

Fig. 1. High-level view of the proposed distributed CNC setup.

to axis servo drives.
Introduction of IEC 61499 is also seen as a major enabler

of intelligent automation [15]. To facilitate reconfigurability
of NC systems, in particular for slave node parameter self-
reconfiguration, machine control-specific modeling language
compliant with IEC 61499 is presented in [16], along with a
proof of concept NCK. Furthermore, in [17], a multi-agent-
based control system is proposed.

All mentioned works consider the architecture where only
the last stage of the NCK (i.e., position control) is distributed
and all remaining functionality is executed centrally on the
master node. This allocation of tasks to controllers local to
axis modules does not lead to the desired control system recon-
figurability, since significant user intervention is necessary for
any RMS configuration change (i.e., low-level parameters need
to be propagated throughout the entire NCK [7], [5]). A truly
distributed NC requires higher autonomy of slave nodes con-
tributing not only to the reduction of real-time requirements
for networking during system execution, but also to lower
bandwidth requirements and reduction of the necessary steps
during control system reconfiguration. In [18], a simulation-
based investigation of a distributed CNC architecture was
presented, where all NCK stages would execute on every axis
controller; i.e., controllers local to axis modules feature a
significantly higher level of autonomy and the master node
is essentially not needed. However, in addition to not showing
feasibility with a physical implementation, extreme levels of
redundant computation are introduced, as all axes individually
parse and fully execute the same (complete) part specification
(i.e., NC part program).

Consequently, in this work, we focus on design challenges
for fully distributed numerical control as a key enabler of
RMS. Specifically, we explore design trade-offs, limitations,
and architectural constraints arising from different points of
distribution of the NCK; namely, different allocations of NCK
stages (also referred to as tasks) to the low-level controllers
(LLCs) controlling their respective manufacturing resources
(i.e., axes) to which they are integral, as well as a cloud-
or edge-based high-level controller (HLC).1 Essentially, by

1In this work, we abandon the master-slave terminology as it is not
suggestive of a truly distributed setup.

mapping lower stages (i.e., closer to position control) of the
NCK to tasks on the embedded LLCs, the level of autonomy of
axis modules is increased; the LLCs advertise capabilities of
their respective modules (e.g., axis travel length, load handling
specifications, maximum acceleration) over the network after
joining the system, effectively providing the required modu-
larity and reconfigurability, not only in the mechanical design,
but also from the control software perspective. On the other
hand, mapping upper stages of the NCK to the HLC decouples
compute-intensive workloads (e.g., dealing with CAD/CAM
designs and manufacturing process scheduling) from the LLCs
allowing us to effectively decrease their cost.

A specific point of control distribution to LLCs/HLC im-
poses specific bandwidth and real-time constraints on the
underlying network, as well as computation requirements
for the HLC and LLC platforms; therefore, we analyze the
effects of arbitrary NCK task distribution among the HLC
and the LLCs. In this work, we focus on two standard NCK
architectures (i.e., where acceleration/deceleration control is
performed before or after interpolation) [19].

Furthermore, we develop a fully distributed CNC setup
using industry-grade single-axis robots and low-cost ARM
Cortex-M4F-based MCUs, and evaluate accuracy of dis-
tributed position control (relative to the centralized architec-
ture) on a series of positioning and machining accuracy tests
(i.e., ISO 230-2 and ISO 10791-7). We show that accuracy
is negligibly degraded while reconfigurability is achieved
when the NCK is distributed, provided that sufficient level
of synchronization between LLCs is maintained.

This paper is organized as follows. In Sec. II, we give
an overview of the state-of-the-art architecture highlighting
its weaknesses in supporting reconfigurable manufacturing,
before introducing our distributed architecture. We then de-
fine architecture-specific requirements for supporting the dis-
tributed NCK, while varying the point of control distribution in
Sec. III. Sec. IV presents a proof-of-concept implementation
of the distributed architecture while Sec. V presents results
of standard tests utilized to evaluate our implementation.
Sec. VI concludes the paper.

II. STATE-OF-THE-ART AND THE PROPOSED CNC
ARCHITECTURE

A typical CNC system can be divided into three main
components: (i) Numerical Control Kernel (NCK) which is
responsible of controlling the tool positioning process, (ii)
Programmable Logic Controller (PLC) which controls all other
aspects of the process not directly involving controlled motion
(e.g., cooling, spindle/end effector control, tool change), and
(iii) Human-Machine Interface (HMI) through which the op-
erator can enter the NC program, monitor the process state,
or alter the machine configuration. In this work, we focus on
the NCK, since its centralized architecture is the main feature
hindering efficient reconfiguration of CNC-based systems.

NCKs can typically be divided into two classes based
on the order in which trajectory interpolation and accel-
eration control are performed. Functional diagrams of Ac-
celeration/Deceleration Control After Interpolation (ADCAI)



3

Mech. sys.

NCK

Interpreter
Acc/Dec 

Controller

Rough 

Interpolator

Actuators

Position 

Controller

Fine 

Interpolator

Look-ahead

PLC

HMI

Machine 

I/O

Human 

Operator

NC 

Program Parser

...

Sensors

A
D

C
B

I
A

D
C

A
I

Acc/Dec 

Controller

Rough 

Interpolator

Fig. 2. Two standard numerical control kernel implementations: ADCAI—
Acceleration/Deceleration Control After Interpolation (left) and ADCBI—
Acceleration/Deceleration Control Before Interpolation (right). Notice the
inverse order of rough interpolation and acc/dec control.

and Acceleration/Deceleration Control Before Interpolation
(ADCBI) NCKs are shown in Fig. 2. In general, the NC
program is parsed by the parser to extract information on
the commanded linear and circular segments of the desired
workpiece geometry (their end points, commanded feedrate,
arc radius, etc.). This operation is a one-time process that
is not critical to the operation of the NCK and will thus
not be considered. Parsed commands are interpreted by the
interpreter that distinguishes commands by command code,
and extracts relevant commanded trajectory information.

In the case of ADCAI, this information is passed on to the
rough interpolator (IPO) that constructs the tool trajectory
by interpolating the tool path. This path is encoded as a
vector of incremental reference positions that each axis fol-
lows during every sampling period. Acceleration/deceleration
(ACC/DEC) controller modulates these values to enforce
gradual velocity change (e.g., trapezoid- or S-shaped profile)
during acceleration/deceleration of every axis in the system.
In ADCAI, ACC/DEC control is performed on individual
axis’ trajectories independently. The result is a set of points
interpolated with a predefined IPO period (typ. ∼ 10 ms),
that conform to prespecified velocity profiles. Since position
control loops are typically closed at a higher rate, the necessary
sampling rate conversion is performed by linear or moving
average fine interpolator. Finally, the output of the fine inter-
polator are incremental reference position samples for every
axis to be forwarded to their respective position controllers.

The main difference between ADCBI and ADCAI is the
order in which rough IPO and ACC/DEC control are executed.
In ADCBI, ACC/DEC control is not performed over the
interpolated points, but on the commanded linear or circular
segments; i.e., limitations of both axes in a given IPO plane are
taken into consideration. After ACC/DEC control, rough and
fine interpolator are executed, for which same techniques as
in ADCAI are used. As a result, trajectory tracking accuracy
is improved in ADCBI for circular trajectories.2 Additionally,
ADCBI NCK features the look-ahead stage, where interpreted
commands are inspected up to multiple hundreds of instruc-
tions ahead to reduce unnecessary slow-downs at end points

2Detailed comparison of these two architectures in terms of achievable
accuracy can be found in Chapter 4 of [19].

of consecutive segments. As we show in Sec. III, this has
implications for the proposed distributed architecture.

The most noteworthy software aspect of a CNC systems’
reconfiguration, regardless of the deployed NCK type, is the
required propagation of the mechanical system characteristics
(e.g., axis travel length, limit/home switch configuration, max-
imum allowed acceleration/deceleration) upward to all stages
of the NCK. If a simple change of pose of axes is necessary,
deep knowledge of the NCK structure is required to ensure
correct system behavior upon reconfiguration. This process
is not automatic in state-of-the-art systems, and implies non-
negligible amounts of down-time. Axis-level reconfigurations
also require significant efforts in terms of control hardware
reconfiguration. Corresponding I/O, actuation and feedback
device interfaces must be available on the centralized con-
troller; furthermore, a large number of conductors must be
wired to the centralized controller—in the case of our exper-
imental setup described in Sec. IV, introducing a single axis
module into the system requires wiring 4 conductors for the
motor, 12 conductors for limit switches and 12 conductors
for the position sensing system. Each sensing component
features different connections (and communication protocols),
effectively hindering inter-operability.

A. Distributed Numerical Control Kernel

We propose a true distributed CNC architecture, in which
control functionalities guaranteeing overall system operation
and performance are distributed among LLCs that close posi-
tion loops with locally connected sensors and actuators, and
execute parts of the NCK. The control distribution is based on
the limitations of the respective mechanical subsystems that
LLCs are controlling, with each LLC presenting itself to the
network as a manufacturing resource with specific capabil-
ities (e.g., I/O capabilities, maximum travel length, acceler-
ation/deceleration and load limits).3 LLCs can be extremely
inexpensive, given that they can be based on standard low-
cost microcontrollers. By utilizing communication capabilities
LLCs receive commands and the machining program from
a remote process planner (HLC) that can be implemented
as a cloud- or edge-based service (depending on the timing
requirements discussed in Sec. III-A), where optimized man-
ufacturing process scheduling can be performed. Additionally,
to ensure performance of the distributed CNC system, LLCs
synchronize their execution over the network (e.g., via the
IEEE 1588 Precision Time Protocol).

From the hardware perspective, such an architecture alle-
viates the physical part of the reconfiguration since an axis’
interface reduces solely to a power connection and a standard
network connection (if wired networking is employed). How-
ever, it also requires thorough understanding of the interfaces
between NCK stages, and their real-time and bandwidth re-
quirements. Therefore, in the remaining of the paper we also
address the following two challenges.

Challenge 1: Given a specific NCK task distribution among
the HLC and LLCs (i.e., point of distribution), what are

3While our proposed architecture easily extends to other actuator/end effec-
tor modules, in this work we focus on axes as their control is most involved.



4

the real-time and bandwidth requirements that the employed
network has to satisfy in order to ensure correctness and
desired performance of the distributed CNC system?

Challenge 2: Given the functional structure of a standard
NCK, does there exist an optimal distribution of NCK tasks
among the HLC and LLCs from the standpoint of system
design complexity, cost, and performance (i.e., accuracy)?

Consequently, we investigate design choices and pinpoint
challenges that arise depending on which part of the NCK is
mapped to the controller local to the axis module (LLC), and
which part is mapped to the remote planner (HLC).

III. DISTRIBUTING THE NUMERICAL CONTROL KERNEL

In this section we begin by giving a detailed specification of
data structures bridging inputs/outputs of the NCK stages, and
the temporal parameters and bandwidth requirements of their
exchange for two standard NCK variants (e.g., as described
in [19]). Then, we discuss implications of different NCK task
mappings onto HLC and LLCs.

A. Numerical Control Kernel Data Flow

Fig. 3 and 4 show the relevant data structures exchanged
by different NCK stages in the cases of ADCAI and ADCBI
NCKs respectively. NCK stages are typically coupled with
ring buffers or shared memory. We first analyze bandwidth
requirements and temporal parameters of the information
flow through each of the buffers; these features will directly
map into real-time networking requirements depending on the
choice of the point of distribution. We will denote NCK stages
as stage, relevant variables as variable, and the corresponding
structure types transferred through buffers as buf_type.
It is important to note that we will consider only single-
distribution-point configurations, i.e., configurations where
specific upper layers of the NCK are mapped on the HLC, and
the corresponding lower layers mapped on the LLC limiting
communication overhead to a single HLC–LLC link.4

1) Data Flow in the ADCAI NCK: As shown in Fig. 3,
the NC program is interpreted by the interpreter and every
trajectory block is encoded with an INTbuf_type structure
that contains the block number and G-code type, start position
and end position in case of linear blocks, as well as arc center
point and arc radius in case of circular blocks. Additionally,
desired feedrate is specified, as well as path control mode
indicating whether complete tool stop is desired at the end of
the current block (i.e., exact stop mode) or if the ACC/DEC
controller is allowed to maximize the speed at the joint with
the following block (i.e., continuous mode) with regards to
the maximum allowed accelerations. Corresponding variable
types are specified within INTbuf_type in Fig. 3. Memory
size required to encode INTbuf_type (and all structures
analyzed in the sequel) depends on the number of axes the
machining program utilizes; we denote the number of axes as
N . In the case of INTbuf_type, 10+12N Bytes of memory

4Arbitrary task mappings that require multiple communication links be-
tween stages of the NCK mapped on the HLC and LLCs feature prohibitively
high overhead and do not promote reconfigurability.

is sufficient and one instance of the structure is needed for
every linear or circular block of the commanded trajectory.

The rough interpolator processes the interpreted com-
mands and interpolates all trajectory points in between the
commanded start and end points, based on the chosen in-
terpolation method, on a block-by-block basis. As a result,
roughIPObuf_type contains incremental reference posi-
tions per every rough interpolation period which effectively
define a rectangular velocity profile. Additionally, path control
mode is passed on to the ACC/DEC controller. 1+4N Bytes is
sufficient to encode roughIPObuf_type and one instance
of the structure is required per every rough interpolation period
(on the order of 10ms [19]). The ACC/DEC controller uti-
lizes prespecified mechanical limitations, desired acceleration
and deceleration times, and the path control mode variable to
modulate the input velocity profile; i.e., a rectangular velocity
profile is transformed into the desired velocity profile. Such
adjusted incremental reference positions per every rough inter-
polation period are passed onto the fine interpolator through
ACCDECbuf_type which requires 4N Bytes of memory
to be encoded. Finally, the fine interpolator acts as a rate
transition block by utilizing linear or moving average interpo-
lation to adjust produced incremental reference positions for
each axis in the periodicity of position control (on the order of
1 ms [19]). These samples are transferred to position control
through fineIPObuf_type structure which requires the
same amount of memory as the ACCDECbuf_type structure.

2) Data Flow in the ADCBI NCK: In ADCBI NCK,
ACC/DEC control is performed before interpolation while the
(optional) look-ahead module receives trajectory information
from the interpreter. Therefore, the structure INTbuf_type
remains unchanged. The output of the look-ahead stage—
LAbuf_type, in addition to G-code type, start position and
end position, arc center point and arc radius contains opti-
mized look-ahead calculated start velocity and end velocity.
The size of the LAbuf_type is (9 + 12N) Bytes, and one
instance of the structure is needed per linear or circular block
of the commanded trajectory.

Followed by look-ahead, the ACC/DEC controller com-
putes acceleration time, constant velocity time, and deceler-
ation time for the current block. Thus, ACCDECbuf_type
contains these and G-code type, start position and end po-
sition in the case of linear blocks, as well as arc cen-
ter point and arc radius in case of circular blocks and
the commanded feedrate during constant velocity period.
ACCDECbuf_type structure requires (19 + 12N) Bytes
for each trajectory block. The rough and fine interpolators
perform the same tasks as in ADCAI NCK, and thus the cor-
responding roughIPObuf_type and fineIPObuf_type
are the same as in the case of ADCAI NCK, with the exception
of path control mode in roughIPObuf_type.

Tables I and II summarize the temporal properties and band-
width requirements of the communication between stages of
the NCK—in essence they address Challenge 1. The required
bandwidth is computed on a per-axis basis by adding the mem-
ory footprint of all variables for a given data structure (i.e.,
one of each of the scalar variables, and one element of each of
the vector variables) and multiplying it by the corresponding



5

roughIPObuf_type
(one instance per RoughIPO period)

Incremental position [vector of int32]

Path control mode (Exact stop/Continuous) [bool]

Acc/Dec

Controller

ACCDECbuf_type
(one instance per

RoughIPO period)

Incremental position [vector of int32]

Fine Interpolator

fineIPObuf_type
(one instance per

FineIPO period)

Incremental position [vector of int32]

INTbuf_type
(one instance for every block)

Block number [uint16]

G-code type (G00/G01/G02/G03) [uint8]

Start position of block [vector of int32]

End position of block [vector of int32]

Center point of arc [vector of int32]

Radius of arc [uint32]

Feedrate [uint16]

Path control mode (Exact stop/Continuous) [bool]

Rough Interpolator

(same as in ADCBI)

Part Program

N0100 G17 G90 G15;

N0200 G00 X100 Y30;

N0201 X100 Y150;

N0202 X100 Y270; 

N0203 X100 Y150;

N0204 X100 Y270;

N0205 G16; 

...

Interpreter

ADCAI

VX

time time

IPO planes

Rough IPO method

Rough IPO period

ACC/DEC time

Max. ACC/DEC

Fine IPO

method

Fine IPO

period

Position Control

Y

XA

B

VY

time

time

VX

time

VY

time

VX

VY

Controller 

parameters

DP2DP1

DP3 DP4

Fig. 3. Data flow in a typical ADCAI NCK. NCK stages are denoted as stage, variables as variable, and the corresponding structure types as buf_type.
Possible distribution points (DP) are denoted with clouds (e.g., DP1).

ACCDECbuf_type
(one instance per block)

G-code type (G00/G01/G02/G03) [uint8]

Start position of block [vector of int32]

End position of block [vector of int32]

Center point of arc [vector of int32]

Radius of arc [uint32]

Acceleration time [uint32]

Constant velocity time [uint32]

Deceleration time [uint32]

Feedrate [uint16]

roughIPObuf_type

(one instance per

RoughIPO period)

Incremental position [vector of int32]

Fine Interpolator

fineIPObuf_type

(one instance per

FineIPO period)

Incremental position [vector of int32]

INTbuf_type
(one instance per block)

Block number [uint16]

G-code type (G00/G01/G02/G03) [uint8]

Start position of block [vector of int32]

End position of block [vector of int32]

Center point of arc [vector of int32]

Radius of arc [uint32]

Feedrate [uint16]

Path control mode (Exact stop/Continuous) [bool]

Look-ahead

(same as in ADCAI)

Part Program

N0100 G17 G90 G15;

N0200 G00 X100 Y30;

N0201 X100 Y150;

N0202 X100 Y270; 

N0203 X100 Y150;

N0204 X100 Y270;

N0205 G16; 

...

Interpreter

ADCBI LAbuf_type
(one instance per block)

G-code type (G00/G01/G02/G03) [uint8]

Start position of block [vector of int32]

End position of block [vector of int32]

Center point of arc [vector of int32]

Radius of arc [uint32]

Look-ahead-calculated start speed [uint16]

Look-ahead-calculated end speed [uint16]

Rough Interpolator

Acc/Dec

Controller Position Control

Y

XA

B

time

VX

time

VY
time

time

VX

VY
time

time

VX

VY

VX

VY

IPO planes

Rough IPO method

Rough IPO period

Max. ACC/DEC

Fine IPO

method

Fine IPO

periodLook-ahead

buffer size
DP1

DP2 DP3

DP4

DP5

Controller 

parameters

Fig. 4. Data flow in a typical ADCBI NCK. NCK stages are denoted as stage, variables as variable, and the corresponding structure types as buf_type.
Possible distribution points (DP) are denoted with clouds (e.g., DP1).

rate.5 Additionally, notice that the output structures of the
interpreter in ADCAI, and outputs of the interpreter, look-
ahead, and ACC/DEC controller in ADCBI are instantiated per
trajectory block; thus all instances of this structure could be
transmitted once over the network before program execution,
or gradually throughout execution, which does not impose
real-time requirements.

Remark 1 (Computational capability requirements): In
terms of processing power required by the NCK software
modules, it is worth noting that while generally lower NCK
layers impose more stringent real-time requirements (as can be
seen in the presented analysis), upper layers could benefit more
from higher computational capabilities. For instance, part code
interpretation is a one-time task that, if executed faster, enables
faster startup of the manufacturing process. On the other
hand, interpolation imposes strict real-time requirements, and
the complexity of the employed interpolation method directly
determines the required compute power. For instance, linear
interpolation requires significantly less resources than spline-
based interpolation. However, with the increasing capabilities
of low-cost microcontroller and crossover platforms, even
mapping these tasks to LLCs is not intractable.

The following subsection analyzes feasibility and practical-
ity of different NCK task mappings.

5Notice that this calculation does not include protocol-incurred overhead
and is thus the required application (i.e., payload) data rate.

TABLE I
TEMPORAL PROPERTIES AND BANDWIDTH REQUIREMENTS OF

COMMUNICATION BETWEEN STAGES OF THE ADCAI NCK.

Data Size Period Bandwidth
structure [Bytes] [ms] per axis [kbps]

INTbuf_type 10 + 12N — —
roughIPObuf_type 1 + 4N 10 4
ACCDECbuf_type 4N 10 3.2
fineIPObuf_type 4N 1 32

B. Optimal HLC-LLC Task Mapping

1) ADCAI NCK Task Mapping: If the ADCAI NCK is
distributed at distribution point 1 (DP1) in Fig. 3, and the
part program supplied to LLCs through the network, fully
parallel execution of the entire NCK is obtained. Each LLC
executes the part program through its local NCK with regard
to its controlled axis. Introduction of a new axis in the system,
or change of axis pose reduces to the agreement between
LLCs on which controller is in charge of which axis in
the system, which promotes reconfigurability. Additionally,
this configuration introduces no real-time constraints on the
network, as the part program execution can be deferred until
the entire program is sent over the network, and received by all
LLCs. However, this increases hardware complexity of LLCs,
required memory size (i.e., to store the entire part program
and inputs/outputs of all stages), and consequently their cost.
Moreover, the replicated execution of all layers of the NCK
results in excess redundant computation on LLCs.

Distribution points DP2 and DP3 are similar in terms of



6

TABLE II
TEMPORAL PROPERTIES AND BANDWIDTH REQUIREMENTS OF

COMMUNICATION BETWEEN STAGES OF THE ADCBI NCK.

Data Size Period Bandwidth
structure [Bytes] [ms] per axis [kbps]

INTbuf_type 10 + 12N — —
LAbuf_type 9 + 12N — —

ACCDECbuf_type 19 + 12N — —
roughIPObuf_type 4N 10 3.2
fineIPObuf_type 4N 1 32

bandwidth and real-time requirements (as shown in Table I),
but distinct in terms of support for reconfigurability. ACC/DEC
control is highly dependent on the properties of the axis’
mechanical components. Thus, it is beneficial to map the
ACC/DEC control task to the LLC as it locally has access
to the mechanical resources and their limitations. In this case
(i.e., distribution at DP2), each axis advertises itself to the
network as a manufacturing resource with specific capabilities
(e.g., travel length, max. speed). The mapping of the axes in
the machining program to the physical axes can be performed
automatically by the HLC (based on axes’ configuration in the
workspace) or set manually by the operator.

In the case of DP4, distribution practically affects position
control only. All stages of the NCK execute on the HLC, while
position controllers are networked. Due to high bandwidth
requirements, and hard real-time networking requirements at
this point, special purpose network technologies and com-
munication protocols guaranteeing timely packet delivery are
required. As previously discussed this principle is applied in
state-of-the-art commercial systems, where position control is
embedded in smart motor drives, that are interfaced through a
field bus. This architecture does not ease the reconfiguration
problem, since any changes in the position control layer, or the
servo and mechanical subsystems, require manual propagation
of machine configuration to upper layers, i.e., distributed LLCs
feature an extremely low level of autonomy.

In conclusion, distributing the ADCAI NCK at the output
of the rough interpolator (i.e., at DP2) is most beneficial in
terms of reconfigurability while incurring moderate real-time
and bandwidth requirements.

2) ADCBI NCK Task Mapping: If all tasks are replicated
on all LLCs (i.e., by introducing the network at DP1 in Fig. 4)
or if only position control is distributed (i.e., DP5 in Fig. 4),
exact arguments extend from ADCAI NCK analysis from the
previous subsection.

In terms of distribution points DP2–DP4, slight differences
exist compared to ADCAI NCK due to the inverse ordering
of interpolation and ACC/DEC control. Optimally (in terms
of network requirements and reconfigurability), tasks of part
code interpretation, look-ahead and ACC/DEC control are
performed jointly for all axes and can thus be mapped to
the HLC. On the other hand, rough and fine interpolation
are mapped on to the respective LLCs. This configuration
(i.e., introduction of network at DP4 in Fig. 4) promotes
reconfigurability as again axes can present themselves to the
HLC as smart manufacturing resources with a set of capa-
bilities and limitations (e.g., axis travel length, load handling

Commanded trajectory buffers

MQX RTOS

ETH PHY

TCP Rx 

handlerETH comm. 

+ 1588 sync 

stack

TCP Tx 

handler

1588 TIM.

IPO 

routine

IPO 

TIMER

ACTR 

TIMER

Sync. 

routine

1s
1ms

ENC 

CNT

To motor drive

Position 
sensing

Position 

feedback

Ethernet network

Low Level 

Controller

ETH PHY

Linux

Monitoring
High Level 

Controller
TCP svc. 

thread
Operator 
interface

Fig. 5. LLC/HLC software/firmware architecture and hardware dependencies.

specifications, maximum acceleration).
It is worth noting that the two preferred configurations (i.e.,

distribution at DP2 in ADCAI and DP4 in ADCBI) support
custom implementations of interpolation and acceleration/de-
celeration control on LLCs. This promotes interoperability;
e.g., in specific configurations such as 2.5D machining, Z-
axis motion interpolation is decoupled from X and Y axes
that may implement more complex methods. In general, the
optimal balance between network overhead and reconfigura-
bility benefits is obtained when the system is distributed at the
point in the NCK when control over axes becomes decoupled,
i.e., NCK tasks common for all axes are executed on the
HLC, which enables LLCs to independently perform non-
redundant computations for their respective axes. This analysis
effectively addresses Challenge 2.

In the following section, we describe the distributed ADCAI
architecture employed on our proof-of-concept CNC system
that we developed using low-cost LLCs and industrial-grade
single-axis robots.

IV. PROOF OF CONCEPT SYSTEM ARCHITECTURE

To demonstrate feasibility of our approach and validate of
our analysis, we developed a distributed CNC system based
on HIWIN KK86 single-axis robots driven by TRINAMIC
QSH5718-series stepper motors and Geckodrive G203V step-
per motor drives. With the motor step size of 1.8◦, and 10-
microstepping capability of the motor drive, the axes’ Basic
Length Unit (BLU) is 5 µm. Traditionally, as discussed in
previous sections, rough and fine interpolation are separated
due to restricted computational capabilities of legacy CNC
controllers. However, modern platforms provide sufficient
computational power at no added cost, enabling the interpola-
tion (in the case of both ADCAI and ADCBI) and ACC/DEC
control (in case of ADCAI) to be performed at the target rate
of position control eliminating the need for fine interpolation.

We realized this single-rate version of ADCAI NCK by
implementing part code interpretation on the HLC, while
executing interpolation, ACC/DEC control and position con-
trol on LLCs. The HLC is based on an Nvidia Jetson TK1



7

Fig. 6. Our physical reconfigurable CNC axes (left), and the motor-drive-
controller module (right).

Linux-based embedded platform featuring an ARM Cortex-
A15 CPU and a low-power Nvidia Kepler-based GPU. The
HMI is integrated within the HLC; i.e., the GPU unit is
used to accelerate visualization of the current tool position
for the operator with near-real-time response.6 The LLCs
are embedded in the axis-motor-stepper drive module (shown
in Fig. 6) and based on low-cost NXP FRDM-K64F Arm
Cortex-M4F-based microcontrollers. LLCs are running MQX
RTOS where all NCK- and communication-related software
components are realized through threads of different priorities.
The electrical interface of an axis module is reduced from a
total of 28 conductors (for the motor, limit switches and the
position sensor), to a simple 2-wire power connection and a
standard network connection (discussed in the sequel), which
greatly reduces installation/reconfiguration time.

High-level system overview of the HLC and LLC software
architectures (including hardware dependencies) is shown in
Fig. 5. HLC communicates with LLCs via standard IEEE
802.3 Ethernet protocol. Recall that since the NCK interpreter
executes on the HLC (i.e., the system is distributed at DP2
in Fig. 3), the underlying communication network need not
provide real-time guarantees. The HLC runs a Transmission
Control Protocol (TCP) server and accepts TCP communica-
tion requests from LLCs.7 A dedicated TCP service thread
is created at runtime when a new manufacturing resource
(i.e., axis) joins the system, and is used to communicate with
the TCP client (TCP Rx and TCP Tx handlers in Fig. 5)
running on the respective LLC. While the part program can be
transmitted to the LLCs in its entirety before execution starts,
this may impose impractical memory size constraints on LLCs
for large part programs. Therefore, in our implementation
the HLC transmits interpreted commands in bursts of 10
trajectory blocks while LLCs feature a double receiving buffer
(commanded trajectory buffers in Fig. 5) to ensure starvation-
free part program execution. Thus, in this implementation, part
program size does not impose memory storage requirements
on the LLCs, while allowing use of standard non-real-time
communication protocols.

6Notice that if trajectory visualization is not of interest, the HLC need not
be equipped with a graphics processing unit.

7We implemented the LLC-HLC communication through TCP rather than
the User Datagram Protocol (UDP) to ensure reliable delivery during recon-
figuration and part program execution as TCP packets are tracked and checked
for errors, eliminating lost and/or corrupt transmissions.

The LLCs synchronize their operation through the stan-
dard IEEE 1588 Precision Time Protocol (PTP) using the
methodology described in detail in. In essence, the protocol
on this platform allows generation of synchronous 1 PPS
(Pulse Per Second) events on LLCs that invoke the syn-
chronization routine. The sync. routine ensures local time
offsets are corrected, both in terms of timely processing of
the commanded trajectory (i.e., strictly periodical execution
of interpolation, ACC/DEC control, and position control), and
in terms of synchronous generation of the stepping pulse
train (i.e., pulse edge and frequency synchronization between
LLCs). The IPO timer invokes the chain of interpolation,
ACC/DEC control and position control with 1 ms period. As
a result, a decision is made on whether the axis should be
accelerated, decelerated, or current feedrate maintained, and
this decision is propagated to the motor drive by adjusting the
stepping pulse generator (i.e., actuation timer—ACTR timer).
We employed closed-loop position control; position sensing
is performed trough compact high-resolution magnetically-
coded BALLUFF BML-S1F1 positioning system with 1 µm
digital resolution and overall system accuracy of ±10 µm.
Incremental position pulses are accumulated by the encoder
counter (ENC CNT) within the LLC.

The following section gives results of standardized accuracy
tests that prove only minor performance degradation (i.e.,
accuracy impairment) is incurred when distributing the NCK,
while reconfigurability is ensured.

V. TESTING AND EVALUATION

We validate the 2D configuration of our distributed CNC
implementation by running standardized tests defined by the
International Standardization Organization (ISO). While these
standards provide definitions of representative test conditions
in general, our goal is to compare performance of centralized
and distributed control architectures conditioned that the posi-
tion control algorithms and the underlying mechanical system
are identical. Influence of different systematic and random
errors inherent from the underlying mechanical system can
be isolated if both centralized and distributed control modes
are tested using the same components; thus we implement
a synchronous mode of operation in our system described in
Sec. IV. In synchronous mode, IEEE 1588-based synchroniza-
tion is bypassed and the Y-axis controller is synchronized to
the X-axis controller by means of a simple wired connection;
the 1 ms-period IPO timer on X-axis triggers execution of
the local IPO routine and a change in the state of an output
port, which triggers execution of the IPO routine on Y-axis.
This ensures perfect synchronization between axis controllers
and allows us to validate performance of the distributed setup.
The following subsections give results of tests conducted under
ISO 230-6 [20] and ISO 10791-7 [21] standards.

A. ISO 230-6 Diagonal Displacement Tests

ISO 230 standard [20] consists of eleven parts; in this work
we consider positioning accuracy tests specified by Part 6.
According to this part of the standard, axes of the machine
tool should be commanded a trajectory spanning all diagonals



8

TABLE III
EXCERPT OF ACCURACY METRICS DEFINED IN ISO 230-6 MEASURED ON

OUR 2D SYSTEM IN DISTRIBUTED AND SYNCHRONOUS MODES.

Parameter Sync. mode Distr. mode Impairment
Repeatability of

positioning (left) [µm]
10.8443 13.0231 2.1788

Repeatability of
positioning (right) [µm]

16.4316 15.2970 —

Accuracy of positioning
(left) [µm]

11.3909 13.0231 1.6322

Accuracy of positioning
(right) [µm]

16.4316 15.8333 —

Systematic positional
deviation (left) [µm]

1.5557 1.9799 0.4242

Systematic positional
deviation (right) [µm]

3.8183 4.8082 0.9899

of the workspace, such that positioning accuracy is evaluated at
multiple target positions along the diagonals. In the case of our
2D setup, there exist two diagonals. According to the standard,
the dwelling duration of the axes in the target positions should
be long enough to permit stabilization of axes’ positions and
measurement acquisition. The set of target positions along the
axes is determined by ISO 230 Part 2 as a minimum of five
points that are to be approached by the respective axes from
both directions five times. Notice that when tests are performed
according to Part 6 of the standard, these target positions are
chosen along diagonals (rather than individual axes). Exact
position of each point is obtained by adding a random term
to equidistant target positions; this ensures suppression of
effects of periodical deviations on estimates of positioning
accuracy. We conduct measurement acquisition by means of
sampling the position sensors (encoders) used in the local
position feedback loops. This procedure is alternative to using
equipment such as a laser interferometer, and is permitted by
Annex D of ISO 230 Part 4 [20]. These tests are referred to
as tests using feedback signal.

Table III shows an excerpt of accuracy metrics for our
system according to ISO 230, both for the synchronous and
the distributed mode of operation, for one of the workspace
diagonals. It is worth starting with the manufacturer’s specifi-
cation, advertised repeatability of positioning is ±10 µm for
our specific single-axis robots [22]. Our measured repeatability
(first two rows of Table III), approximately attest this (notice
that the specifications are single-axis parameters, while diag-
onal repeatability may be worse). Furthermore, notice that,
since acquisition of obtained positions is performed when the
position has stabilized (while both axes are halted in the target
position), performance of our setup in both synchronous and
distributed modes of operation is practically identical. This is
expected since the closed-loop position control will eventually
stabilize the axis within a ±1 BLU = ±5 µm range of the
target position (as this is the granularity of displacement the
feedback controller is operating with). Results show insignif-
icant impairment when the NCK is distributed.

B. ISO 10791-7 Machining Accuracy Tests

ISO 10791 Part 7 [21] defines test pieces to be machined
as a part of evaluation of geometric accuracy of a machining

0.05 C

4x

0.010

0.010 B

4x

0.010

0.010 B

0.010
0.015

0.010 B

0.010

2x

B

0.010 B

0.010

2x

0.010

0.025 C

C

0.05 C

4x

0.010

0.010 B

4x

0.010

0.010 B

0.010
0.015

0.010 B

0.010

2x

B

0.010 B

0.010

2x

0.010

0.025 C

C

Fig. 7. ISO 10791-7 test piece; machining trajectory of the piece in the X-Y
plane is used as a reference input during testing. Tolerances are captured as
(type, tolerance, datum), where type specifies how the tolerance is mea-
sured, tolerance is the allowed deviation, and the optional datum specifies
the reference features relative to which the respective tolerance is defined.

TABLE IV
EXCERPT OF TOLERANCES DEFINED IN ISO 10791-7 MEASURED ON OUR

2D SYSTEM IN DISTRIBUTED AND SYNCHRONOUS MODES.

Feature and tolerance Synchronous
mode

Distributed
mode Impairment

ou
te

r
ed

ge
s B datum

straightness [µm]
1.0326 1.0392 0.0066

left vertical edge
straightness [µm]

0.0000 1.3285 1.3285

di
am

on
d

ed
ge

s bottom-left edge
straightness [µm]

16.2776 24.0416 7.7640

bottom-left edge
angularity [µm]

15.5563 17.6777 2.1214

co
rn

er
bo

re
s

bottom-left bore
position [µm]

1.0000 2.2361 1.2361

bottom-right bore
position [µm]

4.0000 5.0000 1.0000

center. Fig. 7 shows the test piece drawing we used along with
tolerances on geometric features. We perform tests under no-
load conditions using the feedback signal. Since standard tol-
erances could not be obtained from an independent measuring
instrument (as tests using feedback signal are conducted), we
computed the straightness error by finding maximal deviations
(in both perpendicular directions) from a straight line fitted to
the first and the last sample corresponding to the respective
feature. Angularity was determined by computing the distance
between two lines sloped according to the feature angle that
fully enclose the obtained trajectory. Position error was de-
termined by computing the distance between the commanded
and the obtained bore positions.

Table IV compares an excerpt of straightness, angularity
and position tolerances defined in ISO 10791-7 for the syn-
chronous and distributed modes of operation. Again, these
tests indicate practically insignificant impairments when the
NCK is distributed, given that the basic length unit of our
axes is 1 BLU = 5 µm, and the overall accuracy of position
sensing is ±10 µm confirming feasibility of the plug & play
CNC architecture.

C. Reconfigurability Benefits of the Proposed Architecture

Besides significantly simplifying the hardware aspect of
reconfigurations (as described in Sec. II-A), the proposed
architecture is proven feasible from the functional performance
perspective, as shown above. On the other hand, from the



9

higher-level reconfigurability aspect, the increased autonomy
of CNC system’s building blocks controlled by LLCs decou-
ples the centralized planning software running on the HLC
from low-level subsystem-specific control. This allows the
HLC to utilize modules (over the network) based on what they
are capable of (e.g., travel length and load handling charac-
teristics), without worrying about how control over a specific
module should be performed (e.g., AC vs DC motor control).

With the developed architecture, in a typical reconfiguration
scenario, such as adding a new degree of freedom, after being
physically introduced into the system and powered on, the
axis module (i.e., its LLC) communicates its capabilities to
the HLC over the network. Depending on the type of module,
the reconfiguration can be automatic, i.e., functional role of
the module can be assigned automatically according to a
CAD model for the specific manufacturing task. Alternatively,
the operator can be prompted to only provide the desired
configuration, i.e., assign functional role (e.g., X, Y, Z axis)
to each of the modules. Beyond reducing the downtime based
on control functionality distribution, this architecture does not
fundamentally limit interoperability, as even modules coming
from different series or manufacturers (potentially employing
different proprietary control techniques) can be used if they
can be interfaced over the network in the described manner
and composed mechanically to obtain the desired workspace.

VI. CONCLUSION

In this work we have proposed a distributed motion control
architecture suitable for reconfigurable machine tools. In this
architecture, each axis module is augmented with an LLC con-
trolling the axis module by utilizing locally connected sensors
and actuators, and exposes a network interface through which
it communicates with other LLCs and a HLC where process
planning is performed. This architecture promotes reconfigura-
bility as a configuration change such as introduction of a new
module in the system, is performed by simply presenting the
new module to the network of smart manufacturing resources.
We have investigated design tradeoffs arising when different
stages of the numerical control kernel are mapped onto the
LLCs and the HLC, while considering two standard NCK
implementations. Additionally, we have instantiated the dis-
tributed motion control architecture on industry-grade single-
axis robots augmented with low-cost Arm Cortex-M4F-based
controllers and have shown minimal accuracy impairment is
introduced when the NCK is distributed.

REFERENCES

[1] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster, Recommenda-
tions for implementing the strategic initiative INDUSTRIE 4.0: Securing
the future of German manufacturing industry. Forschungsunion, 2013.

[2] H. ElMaraghy, G. Schuh, W. ElMaraghy, F. Piller, P. Schönsleben,
M. Tseng, and A. Bernard, “Product variety management,” CIRP Annals
- Manufacturing Technology, vol. 62, no. 2, pp. 629 – 652, 2013.

[3] Y. Koren, X. Gu, and W. Guo, “Reconfigurable manufacturing systems:
Principles, design, and future trends,” Frontiers of Mechanical Engineer-
ing, vol. 13, no. 2, pp. 121–136, 2018.

[4] Y. Koren and M. Shpitalni, “Design of reconfigurable manufacturing
systems,” Journal of Manufacturing Systems, vol. 29, no. 4, pp. 130 –
141, 2010.

[5] J. Otto, B. Vogel-Heuser, and O. Niggemann, “Automatic parameter
estimation for reusable software components of modular and recon-
figurable cyber-physical production systems in the domain of discrete
manufacturing,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 1, pp. 275–282, Jan 2018.

[6] M. Gadalla and D. Xue, “Recent advances in research on reconfigurable
machine tools: a literature review,” International Journal of Production
Research, vol. 55, no. 5, pp. 1440–1454, 2017.

[7] G. Pritschow, K.-H. Wurst, C. Kircher, and M. Seyfarth, “Control
of reconfigurable machine tools,” in Changeable and Reconfigurable
Manufacturing Systems, H. A. ElMaraghy, Ed. Springer-Verlag London,
2009, pp. 71–100.

[8] M. Abel and P. Klemm, “Flexible soa based platform for research on
start-up procedures for reconfigurable production machines,” Lecture
Notes in Mechanical Engineering, vol. 7, pp. 489–501, 2013.

[9] Y.-Q. Wang and F.-C. Huang, “A complete real-time ethernet solution
for numerical control systems,” International Journal of Advanced
Manufacturing Technology, vol. 74, no. 1-4, pp. 89–100, 2014.

[10] X. Xu, Z. Xiong, J. Wu, and X. Zhu, “High-precision time synchro-
nization in real-time ethernet-based cnc systems,” Int. J. of Advanced
Manufacturing Technology, vol. 65, no. 5-8, pp. 1157–1170, 2013.

[11] T. Wang, L. Wang, and Q. Liu, “A three-ply reconfigurable cnc sys-
tem based on fpga and field-bus,” International Journal of Advanced
Manufacturing Technology, vol. 57, no. 5-8, pp. 671–682, 2011.

[12] H. Wang, X. Tang, B. Song, and X. Wang, “A novel architecture of
the embedded computer numerical control system based on plcopen
standard,” Proc. of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture, vol. 228, no. 4, pp. 595–605, 2014.

[13] A. Amra, J. Padayachee, and G. Bright, “An open architecture control
system for reconfigurable numerically controlled machinery,” in Machine
Vision and Mechatronics in Practice, J. Billingsley and P. Brett, Eds.
Springer-Verlag Berlin Heidelberg, 2015, pp. 309–322.

[14] K. Erwinski, M. Paprocki, L. M. Grzesiak, K. Karwowski, and
A. Wawrzak, “Application of ethernet powerlink for communication
in a linux rtai open cnc system,” IEEE Transactions on Industrial
Electronics, vol. 60, no. 2, pp. 628–636, Feb 2013.

[15] V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent
Automation: State-of-the-Art Review,” IEEE Transactions on Industrial
Informatics, vol. 7, no. 4, pp. 768–781, Nov 2011.

[16] N. Zhou, D. Li, S. Li, S. Wang, and C. Liu, “Model-based development
of knowledge-driven self-reconfigurable machine control systems,” IEEE
Access, vol. 5, pp. 19 909–19 919, 2017.

[17] A. Bruzzone and D. D’Addona, “New perspectives in manufacturing: An
assessment for an advanced reconfigurable machining system,” Procedia
CIRP, vol. 67, pp. 552–557, 2018.

[18] V. Lesi, Z. Jakovljevic, and M. Pajic, “Towards Plug-n-Play Numerical
Control for Reconfigurable Manufacturing Systems,” in 21st IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), Sept 2016, pp. 1–8.

[19] S.-H. Suh, S. K. Kang, D.-H. Chung, and I. Stroud, Theory and Design
of CNC Systems. London, UK: Springer-Verlag London, 2008.

[20] International Standardization Organization, ISO 230 Test code for ma-
chine tools, Std., 2012.

[21] ——, ISO 10791 Test conditions for machining centres – Part 7:
Accuracy of finished test pieces, Std., 1998.

[22] HIWIN Motion Control and System Technology, Industrial Robot,
Technical Information, Std. K02TE10-1301, 2013.


