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Abstract— We study the problem of stabilizing a linear
system over a wireless control network. We propose a scheme
where each wireless node maintains a scalar state, and period-
ically updates it as a linear combination of neighboring plant
outputs and node states. We make connections to decentralized
fixed modes and structured system theory to provide conditions
on the network topology that allow the system to be stabilized.
Our analysis provides the minimal number of feedback edges
that have to be introduced to stabilize the system over a
network, and shows that as long as the network connectivity
is larger than the geometric multiplicity of any unstable
eigenvalue, stabilizing controllers can be constructed at each
actuator. A byproduct of our analysis is that by co-designing the
network dynamics with the controllers, delays in the network
are not a factor in stabilizing the system.

I. INTRODUCTION

The widespread availability of low-cost wireless network-
ing technology promises to bring about a shift in the architec-
ture of industrial control systems. However, the introduction
of wireless communications into the feedback loop also
presents several challenges for real-time feedback control.
For instance, delays due to multi-hop routing or packet
dropouts due to transmission collisions can be detrimental to
the goal of maintaining stability of the system. Substantial
research has been devoted to understanding the limitations
of performance in such settings (e.g., [1], [2], [3], [4]).

In a recent paper [5], we asked the following question:
is it possible to formulate a distributed algorithm for the
resource-constrained wireless nodes to follow so that the
computation of the control law is done collectively by the
network (rather than by a specially designated controller)? To
answer this question, we considered a setup where each node
maintains a limited internal state, and periodically updates it
as a linear combination of the node states and plant outputs in
its immediate neighborhood. We referred to this paradigm as
a Wireless Control Network (WCN). The proposed scheme
has several benefits, including easy scheduling of wireless
transmissions, allowing compositional design, and its ability
to handle geographically separated sensors and actuators.

In this paper, we continue our investigation of how the
dynamics and topology of the wireless network can be
leveraged to stabilize large scale plants. To do this, we
make connections with the idea of decentralized fixed modes
[6], [7], [8], [9], and with structured system theory, which
allows us to use graph-theoretic tools to analyze linear
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systems [10], [11], [12]. Specifically, we develop a method
to incorporate structural analysis (which abstracts away all
numerical system parameters) into the design of a control
network for a numerically specified plant (potentially with
eigenvalues of multiplicity larger than one); to the best of
our knowledge, this is the first work to consider the interplay
between these two realms of analysis.1

Our analysis reveals that as long the plant is stabilizable
and detectable from all of its inputs and outputs taken
together, and as long as the wireless network provides paths
from certain plant sensors to certain other plant actuators,
then for almost any choice of coefficients in the linear
iterative strategy employed by the network nodes, a stabi-
lizing compensator can be designed at each actuator. An
interesting byproduct of our results is that stabilization is
possible despite the length of the paths between the sensors
and actuators, as long as compensators of sufficiently large
order are allowed at the actuators. Furthermore, our scheme
requires each node in the network to transmit its state only
once per time-step of the plant, thereby maintaining the
beneficial scheduling and compositionality aspects described
in [5].

II. NOTATION AND TERMINOLOGY

We use ei to denote the column vector (of appropriate size)
with a 1 in its i-th position and 0’s elsewhere. The symbol
IN denotes the N × N identity matrix, and A′ indicates
the transpose of matrix A. For a square matrix M, Λ(M)
denotes the set of eigenvalues of M. The cardinality of a set
S is denoted by |S|, and for two sets S and R, we use S \R
to denote the set of elements in S that are not in R. Finally,
we define the sets M = {1, 2, ...,m} and P = {1, 2, ..., p}.

A. Structured Linear Systems
Consider a system Σ of the form:

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k], (1)

where x[k] ∈ Rn,u[k] ∈ Rm,y[k] ∈ Rp and the matrices
are of the appropriate dimensions. For convenience, we will
denote the system as Σ = (A,B,C).

A linear system of the form (1) is said to be structured
if each entry in the system matrices is either a fixed zero or
an independent free parameter [10]. A structured system Σ
can be represented via a directed graph GΣ = {VΣ, EΣ}.2
The vertex set is given by VΣ = {X ∪ U ∪ Y} where
X = {x1, ..., xn} denotes the set of state vertices, while

1For instance, previous works that used graph-theory to analyze numerical
systems were limited to the case where all eigenvalues had multiplicity equal
to one (e.g., [9]), which is the generic case when the numerical parameters
are abstracted away.

2We will sometimes refer to these graphs as structural graphs.
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Fig. 1. A multi-hop WCN used as a distributed controller.

U = {u1, ..., um} and Y = {y1, ..., yp} denote the sets of
input and output vertices, respectively. The edge set is given
by EΣ = EA ∪ EB ∪ EC with EA = {(xi, xj)|aji 6= 0},
EB = {(ui, xj)|bji 6= 0}, EC = {(xi, yj)|cji 6= 0}. For a
structured system, a simple path is called a U-rooted path if
the path starts at a vertex in U . A set of mutually disjoint
U-rooted paths is called a U-rooted path family. Similarly, a
simple path that ends at a vertex in Y is called a Y-topped
path, while a set of mutually disjoint Y-topped paths is called
a Y-topped path family.

We will be interested in properties of a structured system
that can be inferred purely from the zero/nonzero structure
of the system matrices. These properties will hold almost
everywhere - for almost any choice of free parameters (i.e.,
the set of parameters for which the property does not hold
has Lebesgue measure zero [10]). Two systems are called
structurally equivalent if they have the same number of
states, inputs and outputs, and their system matrices have
zeros in the same locations.

III. WIRELESS CONTROL NETWORK

Consider the system in Fig. 1, where a wireless network is
used to control a system Σ = (A,B,C) with state x ∈ Rn,
input u ∈ Rm and output y ∈ Rp. The measurements of the
output vector y[k] are provided by the sensors from the set
S = {s1, s2, . . . , sp}, while the input vector u[k] is applied
to the plant by actuators from the set A = {a1, a2, . . . , am}.

The wireless network is described by a graph G = {V, E},
where V = {v1, v2, . . . , vN} is the set of N nodes and E ⊆
V × V represents the communication topology (i.e., edge
(vj , vi) ∈ E if node vi can receive information directly from
node vj). We also define VS ⊂ V as the set of nodes that
can receive information directly from at least one sensor,
and VA ⊂ V as the set of nodes whose transmissions can
be heard by at least one actuator. In addition, we define a
new graph Ḡ = {V ∪ S ∪ A, E ∪ Ein ∪ Eout} that includes
the initial graph G, the plant’s sensors and actuators, and the
edge sets:

Eout =

{
(sl, vi)

sl ∈ S, vi ∈ VS ,
vi can receive values from sensor sl

}
, (2)

Ein =

{
(vi, al)

al ∈ A, vi ∈ VA,
actuator al can receive values from vi

}
. (3)

The WCN scheme proposed in [5] requires each wireless
node to maintain a (possibly vector) state and to implement
the following simple iterative procedure: at every time step
(i.e., communication frame) each node in the network up-
dates its state to be a linear combination of its previous state

and its neighbors’ states. Each node from the set VS also
includes a linear combination of the sensor measurements
(i.e., plant outputs) from all sensors in its neighborhood.
Denoting node vi’s state at time step k by zi[k], the update
procedure is given by:3

zi[k+1] = wiizi[k]+
∑

vj∈Nvi

wijzj [k]+
∑

sj∈Nvi

hijyj [k]. (4)

For the scheme in [5], each plant input ui[k], i ∈ M is
taken to be a linear combination of values from the nodes in
actuator ai’s neighborhood:4

ui[k] =
∑
j∈Nai

gijzj [k]. (5)

Aggregating the state values of all nodes at time step k
into the value vector z[k], the state maintained by the network
evolves according to the dynamics given by

z[k + 1] = Wz[k] + Hy[k] , (6)
u[k] = Gz[k] (7)

where z[k] ∈ RN if each node maintains a scalar state5 and
matrices W, H and G are of the appropriate dimensions.
In the above equation, for all i ∈ {1, . . . , N}, wij = 0
if vj /∈ Nvi ∪ {vi}, hij = 0 if sj /∈ Nvi , and gij = 0
if vj /∈ Nai . Therefore, the matrices W,H and G are
structured, with sparsity constraints determined by the WCN
topology. Thus, the linear strategy employed by all nodes
causes the entire network itself to behave as a structured
dynamical compensator.

If the overall system state is denoted by x̂[k] =[
x[k]′ z[k]′

]′
, the closed-loop system can be described as:

x̂[k + 1] =

[
A BG
HC W

] [
x[k]
z[k]

]
, Âx̂[k]. (8)

Choosing W,G and H to obtain a stable6 Â can be cast
in the form of a static output feedback problem with sparsity
constraints on the gain matrix; this is a nonconvex problem,
but various numerical procedures have been proposed in the
literature (e.g., [13]). In [5], we adapted some of these nu-
merical procedures to find values for the nonzero parameters
in W, H and G so that the matrix Â is stable, given a
network topology and a predefined state size maintained by
each node. However, the proposed procedure is iterative in
nature, and convergence depends on the initialization point
for the algorithm. Thus, even if a stabilizing configuration
exists, the procedure might not be able to find it.

In this paper, we study topological conditions on the
network that guarantee the existence of a stabilizing config-
uration. To facilitate our investigation, we focus on a WCN
architecture where each wireless node maintains a scalar
state, but where more computation can be assigned to the

3The neighborhood Nv of a vertex v is with respect to the graph Ḡ.
4Eq. (5) captures the situation where the plant sensors and actuators are

geographically separated, preventing the plant input from directly depending
on any of the plant’s outputs.

5In the general case z[k] ∈ RNs , where Ns is a sum of state sizes of
all nodes in the network. For more details see [5].

6We refer to matrices W, H and G that satisfy the topological
constraints and guarantee stability of Â as a stabilizing configuration.



actuators (essentially causing them to act as reduced order
controllers). This scenario is motivated by practical reasons,
since actuators are usually placed on ‘fixed’ positions and
are not power constrained, allowing them to utilize more
powerful CPUs. On the other hand, wireless nodes in the
network are usually battery-operated low-power microcon-
trollers, which are not computationally powerful. To find
conditions that guarantee stabilization in this case, we will
make use of the concept of fixed modes in decentralized
control systems.

IV. DECENTRALIZED FIXED MODES

The decentralized fixed modes of a linear dynamical
system are eigenvalues of the plant that cannot be moved by
static output feedback, where the feedback gain matrix po-
tentially has some sparsity constraints. The concept of fixed
modes was initially introduced for decentralized continuous-
time systems in [6] (where the gain matrix has a block
diagonal structure), and was generalized in [12] to handle
arbitrary feedback patterns, and to enable a graph-theoretic
analysis of the problem. For the discrete-time case, the basic
problem of system stabilization using decentralized feedback
controllers (i.e., a problem equivalent to [6]) was considered
in [14], where only algebraic conditions were derived.

Consider a discrete-time system Σ = (A,B,C) controlled
by a set of m controllers where each controller is located at
a different actuator, and has direct access to only a subset of
the plant outputs.

Definition 1: The decentralized feedback structure con-
straints (i.e., patterns) are specified as m sets J1, J2, ..., Jm ⊆
P such that for each i ∈M, j ∈ Ji if and only if output yj
can be directly used to calculate input ui.

Using the above definition, m linear time-invariant dynam-
ical feedback compensators are described as (i = 1, ...,m):

zi[k + 1] = Fizi[k] +
∑
j∈Ji

qijyj [k]

ui[k] = h′izi[k] +
∑
j∈Ji

kijyj [k],
(9)

where zi ∈ Rni is the controller’s state vector (of size deter-
mined by the nature of the plant and the feedback patterns),
while matrix Fi and vectors qi,hi are of the appropriate
dimensions. Based on the feedback patterns J1, J2, . . . , Jm,
define the set Kf = {K ∈ Rm×p|kij = 0 if j /∈ Ji} .

Definition 2 ([6], [12]): For the system Σ = (A,B,C),
the set Λf =

⋂
K∈Kf

Λ (A + BKC) is called the set of
fixed modes with respect to the feedback structure constraints
specified by J1, J2, ..., Jm.

The following classical result explains the vital role that
fixed modes play in the stabilizability analysis of linear
dynamical systems.

Theorem 1 ([6]): The system Σ can be stabilized using
the set of controllers defined in (9) if and only if all fixed
modes are stable.

For any subset I ⊆ M we define J =
⋃
i∈M\I Ji. The

following theorem characterizes the fixed modes of a given
system with respect to the feedback pattern J1, J2, . . . , Jm.

Theorem 2 ([8]): A complex number λ is a fixed mode
of the system Σ = (A,B,C) if and only if there exists a
subset I ⊆M such that

rank
[
A− λI BI

CJ 0

]
< n, (10)

where BI and CJ are the columns and rows of B and C
indexed by the elements in sets I and J , respectively.

As described in [7], there are two distinct sources for a
fixed mode. A fixed mode can either arise from a loss of rank
due to a ‘perfect cancellation’ of the numerical parameters
(which is a degenerate case), or it can be caused by deeper
issues relating to the system structure. The later type of fixed
modes are called structural fixed modes.

Definition 3 ([7]): The system Σ has structural fixed
modes with respect to the feedback constraints from (9) if
every system structurally equivalent to Σ has fixed modes
with the same feedback constraints.

As described in Section II-A, one can associate a graph
GΣ = {VΣ, EΣ} with a given system Σ. The graph can be
augmented to capture a given feedback pattern J1, J2 . . . , Jm
via a set of edges EJ = {(yj , ui)|i ∈M, j ∈ Ji}. This pro-
duces the graph GΣ,J = {VΣ, EΣ∪EJ}. From the graph GΣ,J ,
using a similar approach to [12], we can state the following
result that specifies a graph-theoretic characterization for
structural fixed modes (for more details see [15]).

Lemma 1: When a feedback structure J1, . . . , Jm is used,
Σ has no structural fixed modes (other than at the origin) if
and only if each state vertex xk ∈ X is contained in a strong
component of GΣ,J that includes an edge from EJ .

The above lemma does not preclude structural fixed modes
at zero.7 Although such modes are a concern for continuous-
time systems, they are not an issue for stabilization of
discrete-time plants. Thus, the lemma specifies sufficient
conditions for the existence of a set of stabilizing feedback
controllers for almost every plant that has the given structure,
with the given feedback pattern. Two caveats are in order.
First, the theorem does not specify the size of the stabilizing
controllers (i.e., the values for ni, i = 1, ...,m from (9));
only that sufficiently large controllers can be found for each
actuator to jointly stabilize the system. The second caveat is
that the existing analysis of decentralized feedback control
systems assumes that each actuator has direct access to at
least one of the plant outputs (i.e., the quantities qij and kij
in (9) are nonzero). This leads to a nonempty set Kf and
this assumption is utilized in the proof of sufficiency from
[6] to show that all non-fixed modes can be stabilized.

These caveats prevent Lemma 1 from being directly used
to analyze whether the system can be stabilized using a
WCN. First, we would like the wireless nodes to maintain
only small state vectors (ideally scalars). Second, each actu-
ator generally only has access to the transmissions of nearby
wireless nodes, and not the plant outputs directly (thus Kf

contains only the zero matrix). Therefore, in this case, the
role of fixed modes in stabilization over a network must be
carefully studied. This is the objective of the rest of the paper.

7It can be shown that the system does not have structured fixed modes
at the origin if and only if there exist a set of disjoint cycles in the graph
GΣ,J that covers all state vertices.



To illustrate the limitations of the conditions from Lemma
1 when a WCN is used, consider the example from Fig. 2(a)
where the plant described by the matrices

A =

[
1 1 0
0 1 1
0 0 2.1

]
, B =

[
0

0.5
1

]
, C = [1 0.5 1] , (11)

is to be controlled using a WCN consisted of two nodes.
The graph GΣ,J of the system is presented in Fig. 2(b).
In this case, the WCN, which acts a dynamic compensator,
has access to all of the plant outputs and inputs (i.e., J1 =
P = {1}), and the conditions from Lemma 1 are satisfied.
However, since the WCN is a structured controller (due to its
sparsity constraints), it can be shown that in this case there
is no stabilizing configuration for the WCN when each node
maintains a scalar state.8 Thus, the necessary and sufficient
conditions from Lemma 1 do not appear to hold in this
case; later, we will show how to address this by allowing
the actuator to maintain a larger state, while the other nodes
maintain scalar states.

V. STRUCTURAL FIXED MODES WITH A WIRELESS
CONTROL NETWORK

In this section, we provide conditions for a given system
to not have structural fixed modes when controlled over a
WCN, where each node in the network maintains only a
scalar state, the actuator nodes maintain vector states, and
no actuator has direct access to any plant output.

Consider the plant Σ = (A,B,C) and the WCN together
as a linear system Σ̃, where the outputs of the plant are
injected into the WCN. At each time-step the plant actuators
receive the transmissions from the wireless nodes in the set
VA, but suppose for now that the plant actuators do not
use these transmissions to close the loop. If we view the
transmissions of the nodes in VA as the output of the system
Σ̃, the system can be specified as:9

x̂[k + 1] =

[
x[k + 1]
z[k + 1]

]
=

[
A 0
HC W

]
︸ ︷︷ ︸

Ã

[
x[k]
z[k]

]
+

[
B
0

]
︸︷︷︸
B̃

u[k],

ŷ[k] =
[
0 EVA

]︸ ︷︷ ︸
C̃

[
x[k]
z[k]

]
, (12)

with EVA =
[
ei1 ei2 ... eit

]′
selecting the state values

from the set VA = {vi1 , vi2 , ..., vit} (where t = |VA|).
The structural graph GΣ̃ = {VΣ̃, EΣ̃} of the system Σ̃ is

obtained by composing the structural graph of the initial plant
Σ and the WCN graph G = {V, E}, where VΣ̃ = X ∪U ∪V ,
EΣ̃ = EA ∪ E ∪ EÕ and (for Eout defined in (2))
EÕ = {(xi, vj) ∈ X × VS |∃yk, (xi, yk) ∈ EC, (yk, vj) ∈ Eout}

8To verify that this was caused by structural fixed modes, we have tried
to stabilize several plants with the same structure and different parameters.
However, in all the cases a stabilizing configuration could not be extracted.

9For technical reasons, we assume that the matrices H and C satisfy the
property that either H has a single nonzero entry in each column, or C has
a single nonzero entry in each row. This assumption guarantees that each
nonzero entry in the product HC will be an independent free parameter, if
each nonzero entry in H and C is treated as independent free parameter.
This assumption can be satisfied by having a dedicated wireless node for
each plant output.
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Fig. 2. (a) An example of a WCN; (b) Graph description of the system.

is the edge set between the state vertices connected to a
plant output and all network nodes in the neighborhood of
the corresponding plant sensor.10

In the basic WCN scheme each actuator applies a scalar
linear combination of its neighboring nodes’ states (i.e.,
see (5)). However, suppose that we allow each actuator
ai, (1 ≤ i ≤ m) to maintain a possible vector state denoted
by zai ∈ Rni . The procedure implemented by the actuator
can be described as:11

zai [k + 1] = Waizai [k] +
∑

vj∈Nai

gijzj [k]

ui[k] = t′aizai [k] +
∑

vj∈Nai

kijzj [k],
(13)

for some matrices Wai , vectors gij , tai and scalars kij .
In this setup, the overall system Σ̃ in (12) is to be

controlled with a set of m decentralized feedback controllers
described by (13). In addition, the feedback pattern is
specified with the edge set Ein from (3) (i.e., in this case
EJ = Ein). The key insight is the following: by having
each wireless node run a linear strategy, the WCN and the
plant together form a linear system Σ̃. Then, by viewing the
transmissions of the wireless nodes closest to the actuators as
the new ‘outputs’ of the system Σ̃, the problem of stabilizing
the system with compensators at the actuators fits within
the classical decentralized control formulation described in
Section IV (where each input has direct access to some
outputs). Therefore, with this insight, we can apply Lemma 1
to obtain the following topological condition that guarantees
the existence of a stabilizing configuration.

Theorem 3: Consider system Σ = (A,B,C) and a WCN
where each actuator acts as a dynamical compensator. For
each plant state vertex xi ∈ X in the structural graph GΣ,
let Ai denote the set of input vertices from which xi is
reachable in the initial system, while VAi denotes the set
of the WCN nodes that are neighbors of the actuators in Ai.
Then, almost any system structurally equivalent to Σ can be
stabilized with the WCN if in the corresponding structural
graph GΣ̃ = {VΣ̃, EΣ̃} every plant state vertex xi has a path
to a WCN state vertex from VAi

.
Proof: Consider the graph GΣ̃ = {VΣ̃, EΣ̃} of the

structured system (12) composed of the plant and the WCN.
If for a plant state vertex xi there exists a WCN state vertex

10These edges appear as a result of the product HC. Since all nonzero
entries of HC are independent, the set of plant output vertices Y do not
appear in the graph, and the wireless node vertices are directly connected
to the plant state vertices.

11For each actuator ai and each node vj ∈ Nai there exists some
row l of ŷ[k] in (12) such that zj [k] = ŷl[k]. Therefore, the terms∑

vj∈Nai
gijzj [k] and

∑
vj∈Nai

kijzj [k] correspond to linear combi-
nations of the WCN outputs ŷ[k].



zj ∈ VAi
reachable from xi, then xi belongs to a strong

component with an edge from Ein. Since this holds for all
state vertices, Lemma 1 is satisfied for these vertices.

On the other hand, a fixed mode will be introduced with
each WCN state vertex zi that does not belong to a strong
component in the graph GΣ̃in

= {VΣ̃, EΣ̃∪Ein} with an edge
from Ein (this might happen if the network is disconnected).
However, by setting to zero all the weights associated with
the links outgoing from zi it is ensured that this WCN state
vertex is effectively removed from the network. In this case,
due to the state vertex zi the system will have an additional
structured fixed mode in the origin. Thus, in both cases
the closed-loop system does not have structured fixed-modes
outside of zero, meaning that almost every system with this
structure will be stabilizable using the WCN.

If the condition in the above theorem is satisfied, a stabiliz-
ing configuration for the WCN with dynamical compensators
can be found via a simple modification of the numerical
procedure for the basic WCN described in [5] (for more
details see [15]). For example, we have found that the
system from Fig. 2 and (11) satisfies the conditions in the
above theorem, and using the procedure from [15], it can
be stabilized with the WCN if each node maintains a scalar
state and the actuator maintains a state from R2.

VI. MINIMAL STABILIZING FEEDBACK CONNECTIONS

The previous section describes conditions that guarantee
that a system does not have structural fixed modes when
controlled over a WCN. In this section, we investigate the
minimal connectivity that the WCN should provide to ensure
that the conditions from the previous section hold.

For decentralized continuous-time systems, [16] consid-
ered the problem of determining the minimal number of
direct connections between plant outputs and inputs to en-
sure that the system does not have structured fixed modes.
Leveraging the fact that fixed modes at zero do not cause
problems for the stabilization of discrete-time systems, we
now present a simplified procedure that can be used to
determine a minimal set of feedback edges that guarantee
the absence of nonzero structural fixed modes (again, when
direct plant output-input connections are allowed). We will
then use this to infer properties that the WCN should satisfy
in order to stabilize the plant.

Consider a system Σ = (A,B,C). For all sets I ⊆ M
and J ⊆ P we denote with BI and CJ submatrices of B and
C consisting of columns of B and rows of C with indices
in I and J , respectively. A system ΣIJ = (A,BI ,CJ) can
be described with a graph GΣIJ

= {VΣIJ
, EΣIJ

}, which can
be obtained from GΣ = {VΣ, EΣ} by keeping input vertices
from the index set I and output vertices associated with set
J . These sets are denoted UI and YJ , respectively. Since we
consider structurally controllable and observable systems, we
will use the following results that specify a set of conditions
for structural controllability/observability.

Theorem 4 ([10]): A structured system is structurally
controllable (observable) if and only if each state vertex is
the end (beginning) of a U-rooted (Y-topped) path and there
exists a disjoint union of a U-rooted (Y-topped) path family
and a cycle family that covers all state vertices.

As with the case of fixed modes, uncontrollable and
unobservable modes at the origin are not a major concern
for discrete-time systems, and thus we present the following
simplified tests for structural stabilizability and detectability,
rather than observability and controllability.

Corollary 1: A structured system is structurally stabiliz-
able (detectable) if each state vertex is the end (beginning)
of a U-rooted (Y-topped) path.

Definition 4: A stabilizable subset of the plant inputs is
a set I ⊆ M such that (A,BI) is structurally stabilizable.
Similarly, a detectable subset of the outputs is a set J ⊆ P
for which (A,CJ) is structurally detectable.

For some stabilizable subsets I , it may be possible to find
an even smaller stabilizable subset I ′ ⊂ I . Since we wish
to investigate the minimal feedback requirements, we define
the notion of essential input and output sets.

Definition 5: A stabilizable subset I is called an essential
input set if there is no structurally stabilizable (strict) subset
I ′ ⊂ I . Similarly, a detectable subset J is called an essential
output set if there is no structurally detectable (strict) subset
J ′ ⊂ J .
Note that for a particular system Σ = (A,B,C) there might
exist several different essential input and output sets. In
addition, these sets could have different numbers of elements.
We use the essential input and output sets to determine
the minimal number of feedback connections that would
guarantee that a system does not have nonzero structural
fixed modes. From Lemma 1, for essential input and output
sets I and O, at least max(|I|, |O|) feedback connections
have to be used. We use the theorem below to show that this
number of feedback connections is also sufficient.

Theorem 5: For a structurally stabilizable and detectable
system Σ = (A,B,C), let I and O be essential input and
outputs sets, respectively. Then the system can be stabilized
by introducing max(|I|, |O|) feedback connections (directly
between certain appropriately chosen outputs and inputs).

We will provide a sketch of the proof here. For the full
proof, see [15].

Proof: A directed graph GΣ = {VΣ, EΣ}, representing
the structured system Σ can be uniquely decomposed into
k strongly connected components C = {C1, ..., Ck}. A
component Ci is referred to as a root component if no vertex
in the component has incoming edges from vertices in any
other component. Furthermore, Cj is called a leaf component
if no vertex in Cj has an outgoing edge to a vertex in any
other component.

Consider a directed acyclic graph GC = {C∪UI∪YJ , EC∪
EIC ∪ EJC}, where (Ci, Cj) ∈ EC if and only if component
Cj has an incoming edge from a vertex in Ci, and

EIC =

{
(ui, Ct)

i ∈ I, Ct is a root component from C,
Ct has an edge from input vertex ui

}
,

ECO =

{
(Ct, yj)

j ∈ J, Ct is a leaf component in C,
output vertex yj has an edge from Ct

}
.

Since the system Σ is structurally stabilizable and detectable
each leaf component has to be connected to an output vertex
yj ∈ YJ and each root component is connected to an input
vertex ui ∈ UI .

We now use the following algorithm to introduce a set
of feedback links between output vertices from YJ and



input vertices from UI . This set, denoted EF , contains
max(|I|, |O|) links and satisfies the conditions from Lemma
1 (for details see [15]). Thus, a feedback pattern consisting
only of max(|I|, |O|) is sufficient to ensure that the system
has no nonzero structurally fixed modes.

Algorithm 1 Creating a minimal set of feedback connections
1. Select an input vertex ui1 ∈ UI and a corresponding
output vertex yj1 ∈ YJ such that yj1 is reachable from
ui1 in the graph GC .

2. At iteration t ≥ 1, select an input vertex uit+1
∈

UI \ {ui1 , ..., uit} such that there exists an output vertex
yjt+1

∈ YJ \ {yj1 , ..., yjt} reachable from uit+1
in the

initial graph GC . If such an input uit+1
does not exist,

add the edge (yjt , ui1) to EF , and go to the next step.
Otherwise, add the edge (yjt , uit+1

) to the set EF , set
t← t+ 1 and repeat step 2.

3. If {ui1 , ..., uit} 6= I and {yj1 , ..., yjt} 6= J then select
uit+1

/∈ {ui1 , ..., uit} and yjt+1
/∈ {yj1 , ..., yjt} and add

the edge (yjt+1 , uit+1) to EF . Set t ← t + 1 and repeat
step 3.

4. If {ui1 , ..., uit} = I then for all yj /∈ {yj1 , ..., yjt} add
the edge (yj , ui) to EF , where ui is an input vertex from
which yj can be reached in the initial graph GC .

5. If {yj1 , ..., yjt} = J then for all ui /∈ {ui1 , ..., uit}
add the edge (yj , ui) to EF , where yj is an output vertex
reachable from ui in the initial graph GC .

We now apply the above result to the case where a WCN
is used for control (for situations where direct edges between
plant inputs and outputs cannot be introduced). As mentioned
earlier, the key trick is to view the composition of the WCN
and the plant as a new dynamical system. Here, the set of
nodes VA (in the neighborhood of the actuators) corresponds
to the outputs of the new system. The new system will be
structurally detectable if there exists a path between each
essential plant output and a node from VA. Therefore, we
introduce the following results.

Definition 6: A detectable set of WCN nodes VDET ⊆ VA
is a set of nodes such that for each sensor sj that corresponds
to an output yj from an essential output set J , there exists
a path from sj to a node from VDET .

Corollary 2: Consider a structurally stabilizable and de-
tectable system Σ(A,B,C) with essential input and output
sets I and O. The system can be stabilized with a WCN
described by a graph G = {V, E} using max(|I|, |VDET |)
links between the nodes from a detectable set VDET and
actuators corresponding to the essential input set I .

The proof of the above corollary is readily obtained by
noticing that if such a detectable set of nodes VDET ⊆ VA
exists, then due to structural detectability of the plant there
would be a path between each plant state vertex and a vertex
representing the state of a node from VDET . In addition, all
network nodes that do not have a path to at least one node
from VDET can be disregarded as in the proof of Theorem 3

(by setting all weights related to them to be zero). Thus,
the ‘new’ system Σ̃ that contains the plant and the network
is structurally detectable. Similarly, it can be shown that
the ‘new’ system is stabilizable and the proof follows from
Theorem 5, and by applying Algorithm 1.

Note, however, that there is a possibility that the feedback
edges created by Algorithm 1 cannot be physically imple-
mented, because it might cause an actuator to rely on a
wireless node that is not actually in its neighborhood. The
following corollary introduces a straightforward condition to
preclude this case, and for designing WCNs that guarantee
stabilization of almost all systems having a certain structure.

Corollary 3: Almost every structurally stabilizable and
detectable system Σ can be stabilized if the following con-
ditions are met:

i. The WCN is strongly connected.
ii. There exists an essential output set, where each sensor

in the set is connected to the network.
iii. There exists an essential input set, where each actuator

in the set is connected to the network.

VII. DESIGNING THE WCN TOPOLOGY TO STABILIZE A
NUMERICALLY SPECIFIED PLANT

In the previous sections, we have been focused on design-
ing a WCN for a plant from a purely structural perspective;
in other words, we considered only the interconnections
between the plant state variables, but did not consider the
numerical values of those interconnections. This allowed
us to characterize WCN properties that would guarantee
stabilization of almost any plant having a certain structure.
However, one may be interested in designing a WCN for
a given (numerically specified) system Σ = (A,B,C). If
this system falls within the measure zero set that is not
covered by the structural analysis, one has to be more
careful in designing the WCN. Specifically, any plant that has
eigenvalues of multiplicity larger than 1 will not be captured
by the generic set [8], and we will show that the multiplicity
of eigenvalues in the plant will require the WCN to contain
linkings of a sufficiently large size.12

Consider a WCN used to control a given (numerically
specified) system Σ = (A,B,C), where the pair (A,C)
is detectable, and the pair (A,B) is stabilizable. Assuming
for now that the plant actuators do not close the loop via the
transmissions of nearby wireless nodes, the overall system
Σ̃ = (Ã, B̃, C̃) (plant and wireless network) is given by
(12). As in the previous sections, we consider the following
problem. How should the WCN be designed to guarantee
that a dynamic compensator can be designed at each actuator
to stabilize the system, when each actuator only receives
information about the output of the system via the WCN
(and not directly)?

To answer this, for any actuator ai, i ∈ M, let Vai
denote the WCN nodes whose transmissions can be heard
by ai. For any set I ⊆ M, define VM\I =

⋃
i∈M\I Vai .

In words, VM\I is the set of all WCN nodes that are in

12For a directed graph G = {V, E}, given two subsets V1,V2 ⊂ V , an
r-linking from V1 to V2 is a set of r vertex disjoint paths, each with start
vertex in V1 and end vertex in V2.



the neighborhood of actuators not in I . To show that the
system (12) has no fixed modes with respect to the feedback
structure Va1 , ...,Vam , we will use Theorem 2 to show that

rank

A− λI 0 BI

HC W − λI 0
0 EF 0


︸ ︷︷ ︸

M̃I,F (λ)

≥ n+N (14)

for all unstable eigenvalues λ of the matrices A or W. Here,
EF is a matrix with a single 1 in each row, selecting the
portions of the WCN state vector z[k] corresponding to the
nodes in VM\I .

First, consider an unstable eigenvalue λ of A. Assume that
λ is not an eigenvalue of W.13 Then, for any I ⊆ M, the
matrix M̃I,F from (14) has rank

rank
(
M̃I,F (λ)

)
= rank

 A− λI 0 BI
0 W − λI 0

EF (W − λI)−1HC 0 0


= N + rank

[
A− λI BI

EF (W − λI)−1HC 0

]
. (15)

Thus, λ is a fixed mode of Σ̃ = (Ã, B̃, C̃) with respect
to Va1 ,Va2 , . . . ,Vam if and only if it is a fixed mode of
(A,B,EF (W − λI)−1HC), with respect to the feedback
pattern Va1 ,Va2 , . . . ,Vam . For any set I ⊆M, let

rank
[
A− λI BI

]
= n− dI

where dI is a nonnegative integer. Thus, the matrix[
EF (W − λI)−1HC 0

]
must provide dI rows that are

linearly independent of all rows in
[
A− λI BI

]
. We will

provide conditions on the WCN topology to guarantee this.
First, due to the assumption that the pair (A,C) is

detectable, we have rank
[
A−λI

C

]
= n for any unstable eigen-

value λ of A. This means that for any set I ⊆M, there are
dI rows in the matrix

[
C 0

]
that are linearly independent of

the rows in
[
A− λI BI

]
. Let J ′1, J

′
2, . . . , J

′
s be all possible

sets of dI rows of C that satisfy this linear independence
property, and let Y1,Y2, . . . ,Ys be the sets of dI outputs of
the plant corresponding to those rows. If we can guarantee
that the row space of CJ′i

is contained in the row space of
EF (W− λI)−1HC for some i, then the right hand side of
(15) will be at least N + n.

To satisfy this condition, note that EF (W − λI)−1H in
(15) is the transfer function of the WCN (where the outputs
are taken to be nodes in the set VM\I ) evaluated at λ. This
matrix must have rank at least dI in order for the right hand
side of (15) to have rank n. To analyze this condition, we can
consider a general structured linear system Σ, and ask what
the largest possible rank of the transfer function would be
over all possible values of the nonzero free parameters and λ;
this is called the generic rank of the transfer function matrix
for the system. The following result from [17] relates this
rank to a property of the graph associated with the system.

Theorem 6 ([17]): Let Σ = (A,B,C) be a structured
linear system, and let GΣ be its associated graph. Then, the

13For a structured square matrix W and for a finite set of nonzero
complex numbers L, the eigenvalues of W will all be different from the
elements of L for almost any choice of parameters in W [8].

generic rank of the transfer function matrix is equal to the
size of the largest linking from the input vertices to the output
vertices in GΣ.

We now present a result guaranteeing that the transfer
function matrix will be full rank when evaluated at certain
values λ.

Lemma 2: Consider the structured system Σ =
(A,B,C), and suppose that the graph GΣ contains a
linking of size m from the input vertices to the output
vertices. Let L = {λ1, λ2, . . . , λr} be a finite set of nonzero
complex numbers. Then,

rank(C(A− λiI)−1B) = m, i ∈ {1, 2, . . . , r}, (16)

for almost any choice of free parameters in (A,B,C).
The proof is conceptually similar to the proof of Lemma

1.48 in [8], and we omit it here in the interest of space. For
a detailed proof, see [15].

Now that we have a handle on some rank properties of
the matrix EF (W − λI)−1H, we return to the problem of
ensuring that the row space of CJ′i

is contained in the row
space of EF (W − λI)−1HC, for some i ∈ {1, 2, . . . , s}.
The following theorem provides topological conditions for
the WCN to satisfy to guarantee that this condition holds.

Theorem 7: Consider the detectable and stabilizable (nu-
merical) system Σ = (A,B,C), along with a WCN. Let λ
be an unstable eigenvalue of A. For any subset I ⊆M, let
dI = n − rank

[
A− λI BI

]
. If for every possible subset

I , there exists a subset J ′ of dI plant outputs such that
rank

[
A−λI BI

CJ′ 0

]
= n, and the WCN contains a dI linking

from those outputs to VM\I , then for almost any choice of
free parameters in W and H, λ is not a fixed mode of the
system Σ̃. Furthermore, if the above holds for every unstable
eigenvalue of A, then for almost any choice of parameters
in W and H such that W is a stable matrix, system Σ̃ will
have no unstable fixed modes.

Proof: For a given subset I and corresponding set
VM\I , denote the graph of the structured system ΣWCN =
(W,H,EF ) by GΣWCN

. Noting that the inputs to the WCN
are the outputs of the plant, the input vertices in GΣWCN

are given by Y . Furthermore, denote the output vertices of
GΣWCN

by VM\I . Consider any subset I ⊆ M for which
dI > 0, and let Y ′ be the set of dI outputs correspond-
ing to the set J ′ described in the theorem. According to
the assumption in the theorem, the graph GΣWCN

contains
a linking of size dI from these outputs to VM\I . Let
HJ′ denote the matrix consisting of the columns of H
corresponding to the outputs in set Y ′, and consider the
system (W,HJ′ ,EF ). The graph of this system is obtained
simply by removing the vertices that are not in Y ′ from the
graph GΣWCN

. Since this reduced graph has an dI -linking
from the inputs to the outputs, Theorem 6 and Lemma 2
indicate that EF (W − λI)−1HJ′ will have rank dI for
almost choice of free parameters in W and HJ′ . Thus,
EF (W − λI)−1HJ′CJ′ will have rank dI , and

rank
[

A− λI BI

EF (W − λI)−1HJ′CJ′ 0

]
= n

Now, consider the matrix
[

A−λI BI

EF (W−λI)−1HC 0

]
; this ma-

trix has rank n for some choice of W and H (i.e., by setting



the columns of H that are not in J ′ to be zero, and choosing
all other parameters almost arbitrarily). Thus, there is an n-
th order minor of the above matrix that is nonzero. Now,
setting all nonzero entries in the columns of H that are not
in HJ′ to be free parameters, this minor will be a nonzero
polynomial in those parameters. Thus, the set of parameters
for which the rank of the above matrix is less than n lies
on an algebraic variety, and so the above matrix has rank at
least n for almost any choice of free parameters.

The above analysis holds for every subset I ⊆ M, and
thus λ is not a fixed mode of the system; furthermore, if the
conditions in the theorem hold for every unstable eigenvalue
of A, all of these eigenvalues will not be fixed modes for
almost any choice of free parameters in W and H. Finally,
note that the eigenvalues of Ã in (12) are the union of the
eigenvalues of A and W. The set of free parameters that
makes W a stable matrix has measure greater than zero, and
the above analysis will hold for almost any such choice of
parameters. Furthermore, this guarantees that no eigenvalue
of W can be an unstable fixed mode, which concludes the
proof.

While the above result provides a method to test if the
system has any fixed modes when controlled over a WCN,
it is rather cumbersome to apply because of the need to test
all possible subsets of M. The following result provides a
sufficient condition for the system to have no fixed modes
that is much easier to check and enforce.

Theorem 8: Consider the detectable and stabilizable sys-
tem Σ = (A,B,C), along with a WCN. Let d denote the
largest geometric multiplicity of any unstable eigenvalue of
A. Suppose the connectivity of the network is at least d, and
each actuator has at least d WCN nodes in its neighborhood.
Then, for almost any choice of parameters in W and H
such that W is stable, the system Σ̃ can be stabilized via a
dynamic compensator at each actuator.

Proof: First, note that for any unstable eigenvalue λ of
A, we have rank(A − λI) ≥ n − d, and thus the quantity
dI specified in Theorem 7 is no larger than d. Also, for any
subset I ⊆M, let J ′ be the set of dI outputs specified in that
theorem, let Y ′ be the corresponding set of outputs, and let
V ′S be the nodes in the WCN that receive information from
the outputs in Y ′. Next, note that |VM\I | ≥ d ≥ dI by the
assumption that each actuator has at least d wireless nodes
in its neighborhood. Since the connectivity of the network
is d, and since |VM\I | ≥ d and |V ′S | = |Y ′| = dI ≤ d
(by the assumption in Footnote 9), there exists a linking of
size dI from the set V ′S to VM\I [18]. Thus, all conditions in
Theorem 7 are satisfied, and the system will have no unstable
fixed modes.

VIII. CONCLUSION AND DISCUSSION

In this paper we have presented a set of topological
conditions for a WCN to satisfy in order to stabilize both
structured and numerically specified plants. Our analysis
shows that as long as these conditions are satisfied, the
system will not have fixed modes, and can be stabilized
via a dynamic compensator at each actuator. An interesting
byproduct of our analysis is the following observation: the
network diameter does not enter into the conditions required

for stabilization over the WCN. In other words, delays in
the network are not a factor when considering the issue
of stability. This is achieved by incorporating dynamics
into the network via the linear iterative strategy, and then
designing the controllers to capture the dynamics of the
plant and network simultaneously. However, while stability
is guaranteed despite the lengths of the paths in the network
(as long as the network satisfies the appropriate connectivity
requirements specified in Theorem 3 or Theorem 8), we
conjecture that the robustness or performance of the closed-
loop system will potentially suffer. A detailed analysis of
this phenomenon will be the subject of future research.
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